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Assuming that the recent result obtained from Monte Carlo simulations on the nonperturbative existence of
pure SU(2) Yang-Mills theory in five dimensions can be applied to a more general class of higher-dimensional
gauge theories, we derive the conditions imposed by the nontriviality requirement on the theories. We find that
the supersymmetric grand unified theories with extra dimensions prefer a large waR)eof tan3 of the
minimal supersymmetric standard model, in accordance with today’s possible observation of the Higgs particle
at CERN LEP2.
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[. INTRODUCTION cessible within the framework of lattice gauge theory in the
near future. We therefore assume that the fadi that the
In recent years a variety of theories having large extrdattice 8 function of the gauge coupling can be well approxi-
space-time dimensions have been consid¢fed?]. It has mated by the one-loop form can be extended to other cases
been found that certain theoretical problems such as the hand that the existence of an ultraviolet fixed point can be
erarchy problem may be solved by introducing large extranvestigated on the basis of the one-logpfunctions. In
dimensions(see Refs[8,9] for review). So far it is only  doing so we would like to derive the conditions imposed by
theoretical speculation that we live in more than four dimenthe requirement of the nontriviality of the higher-
sions, and experimental indications for the existence of extr@gimensional unified gauge theories. We expect phenomeno-
dimensions are currently being searched[&4.0]. logical consequences from this requirement, as the upper
It is widely believed that any interacting gauge theory inpound of the Higgs boson mass of the standard msiel)
more than four dimensions, being perturbatively unrenormalcan be obtained from the nontriviality requirement of the
izable, is a cutoff theory, and that for a certain range ofmodel[13].
energy scale it can be an effective theory of a more funda- |n Sec. Il we start by summarizing the results from the
mental theory such as string theory. Is it possible to controMonte Carlo simulations in the pure SU(2) Yang-Mills
the quantum corrections in gauge theories in more than fouheory in five dimensions to make clear our assumptions
dimensions? Is it ensured that massive Kaluza-Klein excitaahout the nontriviality of a more general class of higher-
tions below the compactification scale really decouple so thagimensional Yang-Mills theories. In Sec. Il we will derive
its effective theory below that scale becomes a fourthe conditions for a supersymmetric grand unified theory
dimensional renormalizable theory? How can we answe(SUSY GUT) to be nontrivial and apply in Sec. IV this result
these questions? Investigation of the nonperturbative exigp a concrete model based on the gauge group SU(5) in 4
tence of gauge theories in higher dimensions is, therefore; s dimensions. We will find that the nonperturbative exis-
not only an academic problem, but also a fundamental probence of the model requires a large value2) of tang of
lem if the fundamental theory of partiCIe phySiCS is formu- the minimal Supersymmetric standard modMSSM) and
lated in more than four dimensions. Recently, pure SU(2)hat this is a general feature of SUSY GUTs with extra di-
lattice gauge theory in five dimensions was investigdtdd  mensions, suggesting that today’s possible observation of the
where the extra dimension is assumed to be compactified oRiggs particle with mass-115 GeV at the CERNe* e~
a circle with radiuRR. It has been found there that the scaling collider LEP2[14] could be an indication for the existence of
behavior of the Creutz ratio measured in the four-extra dimensions.
dimensional subspace indicates that the compactified theory
with a nonvanishing string tension can exist nonperturba-
tively. That is, the investigation indicates that the theory is a
cutoff-free theory. Interestingly, this observation is consis-
tent with the existence of the nontrivial ultraviolet fixed point ~ As mentioned in the Introduction, the pure SU(2) lattice
that can be found analytically in the-expansion method gauge theory in five dimensions has been investigated in Ref.
[12]. [11], where an extra dimension is compactified on a circle
It is quite conceivable that not only the pure SU(2) Yang-with the radiusR. There, anisotropic latticell5—-18 have
Mills theory in five dimensions can exist nonperturbatively, been insensitively used to extract maximally the compactifi-
but also a more general class of higher-dimensional Yangeation effects, and it has been observed that the first order
Mills theories containing bosonic and fermionic matter fieldsphase transition which exists in the uncompactified case
in various representations. Unfortunately, because of the ladkl9—21 changes its nature at a certain compactification ra-
of computer power, these investigations based on latticdius and becomes of second order. Moreover, it has become
gauge theories are limited, and phenomenologically interespossible[11], through compactification, to compute tite
ing higher-dimensional unified gauge models will not be ac-function of the gauge coupling, which in turn shows its

II. LATTICE RESULT AND ITS GENERALIZATION
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power-law running, and it has been found that the observed éﬂ)
power-law behavior fits well to the one-loop form suggested ¢
in perturbation theory22,6]. Of course, the nonperturbative
existence of a theory or the existence of an nontrivial ultra-
violet fixed point in the theory should not depend on whether
some extra dimensions are compactified or not. We therefore
believe that the compactification that has been assumed in 0
the above-mentioned investigations based on the lattice regu- i
larization is only technically indispensable and that the
theory exists nonperturbatively whether the extra dimension
is compactified or not.

It is natural to assume that not only the pure SU(2) Yang-

Mills theory in five dimensions can exist nonperturbatively, FIG. 1. The generic form oB{".
but also a wide class of higher-dimensional Yang-Mills theo-
ries. Throughout this paper we assume that the fact that the -
. oy g=(27RA)Pg=A"gpyy, 2.9

lattice B function of the gauge coupling in pure SU(2)
Yang-Mills theory in five dimensions can be well approxi- whoseg function becomes
mated by its one-loop form can be extended to other higher-

dimensional Yang-Mills theories and that the existence of an d§ . 5. 1 Xs .
ultraviolet fixed point can be investigated on the basis of the A—:,Bél)-i- cee==g— 5 by 593+ cee
one-loopp functions in these theories. dA 27 167 (2m)

Let us explain more in detail our assumption in the case (2.6

of pure SUN¢) Yang-Mills theory inD dimensions, where i - .
we assume tha#=D—4 dimensions are compactified on a We see now that th@ function of g can have a nontrivial

circle with radiusR. Let gpyyy be the gauge coupling of the ultraviolet fixed point at
theory. Then the dimensionless, four-dimensional gauge cou- 5 1672 (21)°
pling of the compactified theory is defined as (\6]*)2:E b: X—:' (2.7

g=(27R) "gpy . 2.1 ) ) .

The data obtained from the Monte Carlo simulations for the
The compactified theory has an infinite tower of massivepure SU(2) gauge theory in five dimensiofisl] indicate
Kaluza-Klein stategat least at the classical leyeWe think  that the ultraviolet fixed poin€2.7) in this case is indeed a
of integrating out these massive modes down to the cutoffeal one. Equatiori2.6) suggests that the redefined, dimen-
energy A and define an effective theory &. So, at the sjonless gauge coupling rather tharg, can be regarded as
quantum level, the dimensionless gauge coupling the the effective expansion parameter. Our central assumption is
effective gauge coupling and is a function/of The 8 func-  thus that one can decide on the nonperturbative existence of

tion of g, a higher-dimensional Yang-Mills theory from investigation
q of the ultraviolet fixed points in the space of the effective
A£=ﬁ§1)+ . (2.9  ©xpansion parameters at the one-loop level.

The generic form of thgg function B [see Eq(2.6)] is
shown in Fig. 1, in which two phases are indicated by | and
Il. The renormalization grougRG) flow of the gauge cou-
pling g in two phases are different, as shown in Fig. 2. As the
Ne. (2.3 energy scalé\ decreases from a higher value, the flow of the
6 phase Il develops into a “Landau” pole near the compacti-
fication scale~R™ !, while the coupling in phase | has no
The coefficientXs is a regularization-dependent constantsuch singularity near-R™. That is, the theory in phase II
[22—24, and in the proper time regularization scheme em-will become strongly interacting nearR™*, and it will be

takes in the one-loop order the for@]

1 s 3 22—-1
16772b0(RA) Xs9%,  bo=

Bél): _

ployed in Ref[6] it is given by unlikely that the massive Kaluza-Klein excitatioshich
seem to exist at the classical levelecouplé’ Only if the
812 oo : )
™ theory is in phase | will there be a chance for the massive

X(g:m. (24)

We have added td, the contribution[ —(1/6)Nc in bo] IThis is the critical value in investigating whether or not the dy-

coming from thf scalar in the adjoint representation. Thehamical electroweak symmetry breaking by the top quark conden-
power law RA)° expresses the fact that the larger the cutoffgation in higher dimensior@5] can occur26].

A, the more states are circulating in a loop. This power-like 2Presumably, the notion of the massive Kaluza-Klein excitations
growing of the number of states can be absorbed into a reés not a good one in phase Il. Moreover, it is unclear that the
definition of the coupling low-energy effective theory in phase Il is a gauge theory.
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g , that exist only at a lower-dimensional boundary, the bound-

‘ ary fields, is allowed in the case of orbifold compactification.
Here we restrict ourselves only to the boundary fields that are
located at our four-dimensional Minkowski space. They have
no Kaluza-Klein massive partners, and they count among the
zero modes.

Our main assumptions in considering SUSY GUTs are
that (i) in the zero-mode sector of the Kaluza-Klein tower,
softly broken, four-dimensionall=1 supersymmetry is re-

: alized and(ii) the massive Kaluza-Klein modes forin= 2
0 R A supermultiplets. The first assumption can be simply satisfied
. o thanks to the orbifold compactification, and the second one

FIG. 2. The evolution of the gauge coupling in two phases.can giso be easily satisfied because a simple supersymmetry
_Phase I'is the decoupling phase, while phase Il is the strongly, higher dimensions always contains more than one super-
interacting phase. symmetry in four dimensions. Correspondingly, the matter
supermultiplets of the zero-mode sector Bre 1 chiral su-
%ermultiplets:

Kaluza-Klein excitations to decouple and hence to have
renormalizable, low-energy effective theory belowR 2.
We regard this as a constraint on the gauge coupling. So the
theory should be in phase I, in the decoupling phase.
O =(¢y, 1), (3.9
IIl. NONTRIVIALITY OF SUSY GUTs

WITH EXTRA DIMENSIONS where ¢,(,) is the scalar(fermionic component, and
stands for color and flavor. The most gendraibic) form of
the Yukawa term of the zero-mode sector at the four-
dimensional boundary takes the form

We assume that=D — 4 dimensions are compactified on
an orbifold S'/Z, of a fixed radiusR. We denote the
D-dimensional coordinates &, (M=1,... D), while the
four-dimensional ones byx, (u=1,...,4) and the
s-dimensional ones by, (a=1,...,6). A generic field

¢(2), bosonic or fermionic, satisfying the periodic boundary Y_ 4 1 13K
condition So_f a3 .;K Y hgsbtH e, @9
d(X,Y)=(X,y+27R) (3.1)  where the Yukawa couplingg"¥ are assumed to be com-
. ) pletely symmetric in the indices. Although we have to add a
with the parity property undey,— —VYa, set of certain terms to the above acti&j to make the
boundary theory supersymmetric and gauge invariant, the
¢=¢|, .., for acE, and complete space of the dimensionless couplings of the bound-
a  -a ary theory, by virtue oN=1 supersymmetry, is spanned by
B2 the gauge coupling and the Yukawa coupling¥'’¥: That
¢=—¢l, .., for aeE_, is, no additional dimensionless couplings are present.
& e If the contributions of the massive Kaluza-Klein modes to
can be expanded as the RG functions @ functions and anomalous dimensioys
are suppressed, we have the well-known four-dimensional
L formulas[27]
Y= 2 bnm(X)
n=0 m=1
3
XHace, c0SNaYa/R) e sinimyyp/R), (3.9 ggﬂz% ; [(Ry) —3C,(G) (3.6)
T

where we have divide€E={a=1,...,5} into E, andE_
corresponding to the parity property @f. The coefficients 5 e loop, wheré(R,) is the Dynkin index of the repre-

énm(X) exhibit the Kaluza-Klein tower, angoo(x) is the  sentationR, and C,(G) is the quadratic Casimir of the ad-

zero mode, which is absent i has an odd parity. The jqint representation of the gauge groBpThe 8 functions of
Kaluza-Klein modes other than the zero mode are MassIVeIIK 4re related to the anomalous dimensio,lf\QJ as[27]

~O(R™Y) in four dimensions. Since we consider GUTS, a
certain set of the zero modes also becomes massive after a
spontaneous symmetry breaking of the unifying gauge group
G. Their masses are of the order of the spontaneous symme- ’Bg(l)IJK:z YIJP,ygjl)K_'_(K(_)I)_’_(K(_)J), 3.7)
try breaking or of the GUT scal€l ;. The presence of fields P
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1) 11 A dg
A= 1672| 2 ;Q YlPQYJPQ_Zé\ﬂgzcz(l) ; Bnga
(3.9
5. ¢° X5
where C,(1) is the quadratic Casimir of the representation 29 16772[2(:2((3); I(Ra')}(zw)ﬁjL o
R| y andYIJK:(YUK)*.
The Kaluza-Klein tower modifies the RG functions to the (3.12

form that describes the power-law behavior of the couplings.
The inclusion of the contribution of the massive Kaluza- AL

Klein modes to the RG functions is straightforward, because BY"=A
. . dA
they formN=2 supermultiplets by assumption and we may

use the nonrenormalization theorem fér=2 supersymme- o2 5 1 S

try [28]. Among the zero modes, there are those thathave no  =——| = YVXS(1JK) +| 5 > YIPY e M YRM
massive partner modes, and they do not contribute to the 16w 2 pm

power-law behavior of the couplings. Therefore, their contri-

butions to the RG f_unctions in thA—wo limit are much F(Ko )+ (Ked) Xs oo, (3.13
smaller compared with those coming from the infinite tower (2m)°

of the massive modes, i.e.,
where the elipses stands for higher-order contributions, and

N ) “Y'JKS(UK):"Y”K(E |(Ra,)—2c2(c;))
BP=——| 2 1(Ra)—2C,5(G) |X5(AR)?, (3.9 a’
167 a’
+122" YPSECH(K) | +[Ke 1]+ [K ],
P
1 1 ’ 3‘1
B~ |3 S YRy, YKLM (3.14
PLM Note that the sum in Eq3.14) (though it is proportional to
YIK) is not equal to ¥"K[C,(1)+Cy(J)+Cy(K)], be-
-2, YVPSKG2CH(K) + (K1) cause the sunp is taken over only the possibilities that
P contribute to the power-law behavior.
From thegB functions(3.12 and(3.13 we see that
+(K=J) [XA(AR)?, (3.10 YK=0 (3.15
is an ultraviolet stable fixed point, if
where X5 is given in Eq.(2.4). Here X,/ denotes the sum S(1JK)<0 forall 1,J,K and

overN=2 hypermultiplets, an&’ denotes the sum in which
only the possibilities that contribute to the power-law behav-
ior are included. In deriving thg functions(3.9) and(3.10, 2C,(G)— >, I(Ry)>0 (3.16
we have used the fact that the contributions of each excited a’

Kaluza-Klein state to the anomalous dimension has the samaere satisfied. According to our assumption. the theory exists
form as a massless mode contribut{@n. X 9 ption, y

Now according to the discussion in the previous Sectionnonperturbatively if the condition$3.16 are satisfied. If

; ; . IJK)>0, on the other hand, there will be a certain set of
we go over to the effective expansion parameters: As for tht§( g . S ;
gauge coupling, it is defined in E€.5), and similarly we infrared fixed points. That is, the stable manifptbe set of

can find them for the Yukawa couplings. It is, however, morePoints in the space of "’ that can be initial points of a RG
convenient to work with flow approaching the ultraviolet fixed poif8.15] must be a
subspace of the space ¥¥X. Therefore, the requirement of
the nonperturbative existence implies that the Yukawa cou-
YK YK 7RA )2 GIIK plings at the GUT scal®l g should be in the stable manifold.
= = =— (3.11) If all the Yukawa couplings are small compared with the
g g(2wRA)?? g unified gauge coupling, this condition can be easily satisfied.
If however some of the Yukawa couplings, e.g., the top
quark Yukawa coupling, are comparable with the unified
which yields the following system of thg functions at large gauge coupling in the magnitude, this condition can be a
A severe condition. The situation depends on the model con-

'?IJK
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sidered, of course. In the next section we consider a concrete  1642y;=4 TrGDGT , (4.5
gauge model based on the gauge group SU(5) and discuss

how the requirements coming from the nontriviality can be 21

satisfied. 1672 y,= gg%,—ggz}xg( RA)?, (4.6)

IV. APPLICATION TO THE MINIMAL SUSY SU  (5) GUT whereX ;s is defined in Eq(2.4). Using Eqs(3.9) and(3.10

we then obtain the one-logp functions of the Yukawa cou-

) plings, where we use the fact that the anomalous dimensions
The three generations of quarks and leptons aref the Higgs supermultiplets vanish thanksNe=2 super-

accgmmodaté”dby six chiralN=1 superfields¥'(10) and  gymmetry. Since we are interested in the-o limit, only

®'(5), wherei runs over the three generations. The superfeading contributions in the limit,

field 2(24) is used to break SU(5) down to SUE)

XSU(2) XU(1)y, andH(5) andH(5) (which form anN

=2 hypermultiplet are two Higgs superfields appropriate

for electroweak symmetry breaking. We assume that the

A. Model and its nontriviality

16m2B4=—99°X 5(RA)°, 4.7

matter superfields'(10) and®'(5) are boundary fields so
that they have no Kaluza-Klein excitations, and that the (4
+ 6)-dimensional bulk theory is alN=2 supersymmetric
Yang-Mills theory based oG =SU(5) that contains a hy-
permultiplet in the fundamental representatiorofThe cu-

bic part of the boundary superpotential is given by

3 i 3
Gl - -
W= ; Teaﬁ'}’b‘T\PS%\ngJ%H T—|— IEJ \/EGBCD(I)Q\PE,J};HB

16m2B8,=G [—7—2 216G ,G,+4GLG }X (RA)?
u=0bu ~ 59 uSu DD | s '

(4.9
16m2Bp=Gp[ — 129%+3G|,G,+6GLGp X5 RA)?,
(4.9
63
1672B,=g,| —279°+ <9 Xs(RA)?, (4.10

should be considered. According to the discussion of the
previous section, we now go over to the tide couplifgss-

% By ys a
" 3 2By @9 fined in Eq.(3.11] and find that the corresponding one-loop
B - B functions in theA — o limit can be written as
wherea,, ... are the SU(5) indices, ar@l}, andG{ are
the Yukawa couplings. Thel2H term is a part of theN e np 27~y ~ Xs
=2 gauge interaction and belongs to the bulk action. To 167°By/9°=Gy _§+6Gueu+4GDGD (27)5
make the theory realistic, we have to have the correct pattern (.11
of spontaneous symmetry breaking of gauge symmetries,
soft-supersymmetry-breakingSSB terms, and neutrino X
masses and their mixing. Note that only operators with di- 2% 82 [ e e Ite s
mensions fewer than four are responsible for satisfying these 16" Ao /9”=Gol 3+SGUGU+GGDGD](27)5’
phenomenologically important requirements. Since however (4.12
the contribution of these low-dimensional operators to the
high-energy behavior of the theory decreases with an in- 631 X
creasing energy scal&, we ignore them in the following 167r2"[30/§2=§g[—18+—g§} 2 , (4.13
discussions. 57 (2m)?

Given the model, it is straightforward to compute the one-
loop RG functions. We find that the one-loop anomalouswhereg is defined in Eq(2.5). Moreover, the phenomeno-
dimensions of the chiral superfields are given by logical requirements from the mass of leptons and quarks as
well as from the proton decd9,30 imply that the Yukawa

, | 36, ; : 5 couplings for the top and bottom quarkd?®=G, and G3?
167 y10= -9 +3G,Gy+2GpGp | Xs(RA)?, =G,, are the largest couplings compared with the other
) (4.2 Yukawa couplings, and therefore, to investigate approxi-
mately the high-energy behavior of the theory, it is sufficient
[ 24 to consider the following set g8 functions:
1672 yg= —§g2+4GgGD Xs(RA)?, 4.3 B
16772%:@ —2_7+6ét2+46§ X‘S&, (4.14)
1672y, =3 TrG,G},, (4.4) g > (27)
16w2@:éb[—3+3é$+ 6G2] X5 (4.15
3We use four-dimensional language for supersymmetry. 92 (271-)'S
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G? 0.5
1 L L 1 L
0
Gi
FIG. 3. RG flows in the space @&? andG?. The fixed points FIG. 4. The stable manifoldbounded by the bold linein the
are denoted by solid squares. space ofG2 andGZ. The regions extended by the relaxed nontrivi-

ality requirement are also shown; the dotted, straight boundary lines
We thus have arrived at a simple system defined by Eq§orrespond t@d=1,2, respectively. As fo6=0, the whole region

(4.14) and (4.15 that has four fixed points in Fig. 4 satisfies the relaxed nontriviality requirement.
o = 17 3 9 1 nontriviality requirement. In Fig. 4 we show how the allowed
(Gr2,Gt5=(00, |5z, —0 05 o i i viali i
t b 1~ 20’ 40/’ 10°)" ] region is extended by relaxing of the nontriviality require-

(4.1 ment in the case oMp/Mg=10°. The relaxed condition
depends on the number of the extra dimensiéngVe have

in the two-dimensional space of couplings? and G2, considered.thret_a casés=0, 1, and 2 in Eig. 4, where the
which are shown in Fig. 3. As we have seen in the previoustable manifold is bounded by the bold line. As we can see
section, the origin (0,0) is an ultraviolet-stable fixed point.from Fig. 4, the extensions fof=1 and 2 are very small.
The point (17/20,3/40) is an infrared-stable fixed pdthie ~ This is & consequence of the power-law running of the cou-
Pendleton-Ross fixed pofhf31]), while for the other two Plings; the couplings evolve faster in extra dimensions as the
points there exist attractive as well as repulsive directions€N€rgy scale varies, and so the Landau pole can be reached

We find that the direction perpendicular to l@é axis is the faster compared with the case of logarithmic running. There-

. . ST . . fore, the initial point cannot be very far from the stable mani-
infrared-attractive direction for the fixed point (9/10,0), andfold. As for the logarithmic running§=0).5 we found that

similarly, the direction perpendicular to tH&{ axis is the  the whole region of Fig. 4 satisfies the relaxed nontriviality
one for (0,1/2). In Fig. 3 we show some representative _RQequirement Mp/Mg=10%, justifying our statement
flows, and as we can see from the figure, the stable manifolghove. In the next subsection we would like to investigate
is a finite region in the space G‘f andGﬁ. The critical lines  phenomenological consequences from the nontriviality re-
that go from the infrared-stable point (17/20,3/40) towardquirement.
the end points (9/10,0) and (0,1/2) define the boundary of
the stable manifold. We emphasize that the result above is
independent of the number of the extra dimensiérasd the
scaleA. To satisfy the proton decay constraint, we find tRat*

The nontriviality requirement above could be too strong;=1(3)x 10 GeV for §=1(2) should be satisfied. And for
it is a requirement in thé — o limit. It can be relaxed so as energies belowR ™! the MSSM is assumed to be the effec-
to require for the couplings not to develop into a Landau polaive theory. For an energy scale betweRn! andMg, the
before the Planck scalklp. Since the above result on the effective theory is exactly the one proposed in Hél, in
fixed points(4.16) is independent of the energy scale which only the gauge boson and Higgs supermultiplets of the
especially of the actual value of the unification scilg, MSSM have a tower of Kaluza-Klein states and the lepton
the ratioMp/Mg can take any value greater than1C®. and quark supermultiplets have no tower of Kaluza-Klein
Clearly, the smaller the ratio is, the milder is the relaxed

B. Model betweenR™* and Mg

®Here we are interested only in the qualitative nature. So to derive
“The last three nontrivial fixed points of the right-hand SiR&S) the allowed region in the case of the logarithmic running, we have

of Eq. (4.16 can be used to expre€s? and G2 in terms of the  used the RG equatior@.14 and(4.15 for G, andGy,, while for
unified gauge coupling (reduction of coupling$32)). the gauge coupling we have used E47) with Xs(RA)?=1.
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states. Correspondingly, the one-lg8gunctions for the en- 5f ' ' ' ' ' ]
ergy scales betweeR ! andM s become 6] /R=10"GeV
S /R = 10° GeV
16m2B,=g3| 6+ g(xg/z)(AR)'S, (4.17)
167°B,=g5[ 4~ 6(X5/2)(AR)°], (4.18
16m°B3=03[3— 12AX4/2)(AR)°], (4.19

3 3
167, = Gt{sef— 1091~ 39+ (XJ/2(AR)°

17 32
6G{+2G5— 7201305~ 395”,

X
15

(4.20 tan 3

3 3 FIG. 5.k, as a function of tag for R~*= 10 (straight ling and
16728, = Gb[3G§+ G2— Egi— Eg§+ (Xs/2)(AR)?  10° (dotted ling GeV with Mgysy=1 TeV.

1 32 At the SUSY thresholdM g ,sywe require that the match-
2 2 2 2 2 . .-
X|2G{+6G,— 3917392~ 3703 |, ing conditions
(4.2 GM=G,sinB, GyV=GycosB, GM=G,coss,
167283,=G 3G2+Gz—igz—§g2 13 ,
TP T T 91T 5% N=7|501t0; | cos2 (4.24
+(X§/2)(AR)5(6G3—3g§—39§)}, should be satisfied, wher&> (i=t,b,7) are the SM

Yukawa couplings and is the Higgs self-coupling. This is

(4.22  our definition of ta. (There are MSSM threshold correc-
. tions to this matching conditiof84,35, which we ignore in

where g, 5 are the gauge couplings, ar@ . are the the following discussion.For a given set of the initial values
Yukawa couplings for the top, bottom, and tau, in thesf G, andG, at M, the topquark masM, is no longer a

MSSM, respectively. We have neglected other Yukawa COUfree parameter and can be computed, where we use the for-
plings, and use has been made of the fact that the anomaloy§|a[36,34

dimensions of the Higgs supermultiplets dueNte- 2 super-

symmetry in the excited sector vanish betw@&n' andM g 4 az(My) az(M)\?
3 7 T
a(M
C. Lower bound of tang 0 1 t)}. (4.25
In what follows we will consider only the case with 77

=1. Moreover, to simplify the situation, we assume that ) SMh2 ) )
there exists a uniform SUSY threshdWks,sy. We study the ~ Heréas=ga/dm, a=(G;™) /4, andm(x) is the running
evolution of the couplings beloR ! at the two-loop levef, top qqark mass in the modified minimal subtraction scheme
along with the experimental inpuf83]: the tau masdvi,  and given by
=1.777 GeV, theZ gauge boson masM%=91.187 GeV, L
the effective electromagnetic couplingsy, (M) =127.9 at _ MS . _
M, and the Weinberg mixing angle $t&(M,)=0.2312 in mi(p) = EGI (m)v(p)  with  v(Mz)=246.22 GeV,
the modified minimal subtraction scheme. The experimental (4.26
value of the physical top quark mass is given[Bg]
wherev is the vacuum expectation value of the SM Higgs
M=(174.3-5.1) GeV. (423 field which is made of the two Higgs fields of the MSSM.
The mass of the bottom quark can suffer from a large cor-
rection from the SSB tern{84,35. But we do not take them
6See Ref[30] for more details on the method of the present analy-into account in the present analysis, because we do not con-
ses. sider the SSB terms.
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I ]
[ M, = 180 GeV 1

k, 1} '
[ M, =170GeV ™~ N\ ™ .

: R = 10" GeV i

[ [ e 1/R = 10° GeV ]

0 1 2 3 4 3

tan 8

FIG. 6. The same as Fig. 5 near gn2.

Given all the facilities for the RG evolution of the cou-
plings, we choose a value for tanwith the topquark mass

varying from 170 to 180 GeV and let evolve the couplings

from M, to Mg (at which gauge coupling unification and
b-7 unification are realized We then calculate the ratio

2
(=i 2
1= =G¢ (4.27)

9c

at Mg as a function of ta, wheregg is the unified gauge

PHYSICAL REVIEW D 63 116011

Mgysy = 1TeV
M gysy = 5 TeV

0 1 2 3 4 5
tan 8

FIG. 7. TheMg,sydependence ok, near tag=2 with R™1
=10" GeV.

0.5-2.3
0.7-1.9

175

Mi=1 g0 GEV.

(4.28

for

So today’s possible observation of the Higgs partidé]
might be an indication of the existence of extra dimensions.

V. CONCLUSION

coupling. The results are shown in Figs. 5, 6, and 7. In Fig.

5 we vary ta from 1 to 60 withMg,sy=1 TeV, where
the straight(dotted line stands foR™1=10'* (10°) GeV.
The ranges of smaller tghare plotted in Figs. 6 and 7; Fig.
7 shows theR dependence foM g sy fixed at 1 TeV, while
Fig. 6 shows theMg,sy dependence folR™ ! fixed at
10 GeV. We see from these figures that the valuekof
increases rapidly as t@napproaches-2 from larger values
and that this feature does not depend very muchiRand
Msusy- Comparing this result with Fig. dvhich shows the
region in theG2-GZ plane satisfying the nontriviality re-
quiremen}, we see that for a small values@) of tans,
leading to a large value df;, the theory cannot be made
nontrivial.

As we have seen in Sec. IV B above, the difference be
tween the power-law and logarithmic running is how fast th

e

Our starting point was to assume that the result obtained
from Monte Carlo simulations on the nonperturbative exis-
tence of Yang-Mills theory in five dimensiofd1] can be
applied to a more general class of higher-dimensional unified
gauge theories. The first nontrivial requirement is that the
theory should be in phase | of Fig. 1, because otherwise the
massive Kaluza-Klein excitations would not decouple at low
energies. Then we have derived the conditi¢8s6 im-
posed by the nontriviality requirement on the supersymmet-
ric gauge theories containing matter superfields, where we
have also considered relaxing the nontriviality requirement.
These results have been applied to a concrete SUSY GUT
based on S(b), and wehave found, comparing Fig. 4 with
Figs. 5, 6, and 7 that the model prefers a large vata@) of
tan3. Moreover, it has been argued that this is not a model-
specific feature, but a general feature of SUSY GUTs with

RG evolution develops into a Landau_ pole @smcreases. extra dimensions.
Moreover, the more there exist extra dimensions, the faster is
the evolution, and hence the closer to the stable manifold is
the region satisfying the relaxed nontriviality requirement
(see Fig. 4. From this observation we conclude that the pres-
ence of extra dimensions prefers a large vak@] of tans. This work is supported partially by the Ministry of Edu-
As is known[37], the mass of the MSSM Higgs boson de- cation, Science and Culture and by the Japan Society for the
pends on taf. The search for the Higgs particle at LEP2 hasPromotion of Science. We would like to thank H. Nakano,
already excluded the range of 2f33,38: D. Suematsu, and H. Terao for useful discussions.
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