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Extra dimensions prefer large tanb
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Assuming that the recent result obtained from Monte Carlo simulations on the nonperturbative existence of
pure SU(2) Yang-Mills theory in five dimensions can be applied to a more general class of higher-dimensional
gauge theories, we derive the conditions imposed by the nontriviality requirement on the theories. We find that
the supersymmetric grand unified theories with extra dimensions prefer a large value (*2) of tanb of the
minimal supersymmetric standard model, in accordance with today’s possible observation of the Higgs particle
at CERN LEP2.
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I. INTRODUCTION

In recent years a variety of theories having large ex
space-time dimensions have been considered@1–7#. It has
been found that certain theoretical problems such as the
erarchy problem may be solved by introducing large ex
dimensions~see Refs.@8,9# for review!. So far it is only
theoretical speculation that we live in more than four dime
sions, and experimental indications for the existence of e
dimensions are currently being searched for@8,10#.

It is widely believed that any interacting gauge theory
more than four dimensions, being perturbatively unrenorm
izable, is a cutoff theory, and that for a certain range
energy scale it can be an effective theory of a more fun
mental theory such as string theory. Is it possible to con
the quantum corrections in gauge theories in more than
dimensions? Is it ensured that massive Kaluza-Klein exc
tions below the compactification scale really decouple so
its effective theory below that scale becomes a fo
dimensional renormalizable theory? How can we ans
these questions? Investigation of the nonperturbative e
tence of gauge theories in higher dimensions is, theref
not only an academic problem, but also a fundamental pr
lem if the fundamental theory of particle physics is form
lated in more than four dimensions. Recently, pure SU
lattice gauge theory in five dimensions was investigated@11#,
where the extra dimension is assumed to be compactifie
a circle with radiusR. It has been found there that the scali
behavior of the Creutz ratio measured in the fo
dimensional subspace indicates that the compactified th
with a nonvanishing string tension can exist nonpertur
tively. That is, the investigation indicates that the theory i
cutoff-free theory. Interestingly, this observation is cons
tent with the existence of the nontrivial ultraviolet fixed poi
that can be found analytically in thee-expansion method
@12#.

It is quite conceivable that not only the pure SU(2) Yan
Mills theory in five dimensions can exist nonperturbative
but also a more general class of higher-dimensional Ya
Mills theories containing bosonic and fermionic matter fie
in various representations. Unfortunately, because of the
of computer power, these investigations based on lat
gauge theories are limited, and phenomenologically inter
ing higher-dimensional unified gauge models will not be
0556-2821/2001/63~11!/116011~9!/$20.00 63 1160
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cessible within the framework of lattice gauge theory in t
near future. We therefore assume that the fact@11# that the
latticeb function of the gauge coupling can be well approx
mated by the one-loop form can be extended to other ca
and that the existence of an ultraviolet fixed point can
investigated on the basis of the one-loopb functions. In
doing so we would like to derive the conditions imposed
the requirement of the nontriviality of the highe
dimensional unified gauge theories. We expect phenome
logical consequences from this requirement, as the up
bound of the Higgs boson mass of the standard model~SM!
can be obtained from the nontriviality requirement of t
model @13#.

In Sec. II we start by summarizing the results from t
Monte Carlo simulations in the pure SU(2) Yang-Mil
theory in five dimensions to make clear our assumptio
about the nontriviality of a more general class of high
dimensional Yang-Mills theories. In Sec. III we will deriv
the conditions for a supersymmetric grand unified the
~SUSY GUT! to be nontrivial and apply in Sec. IV this resu
to a concrete model based on the gauge group SU(5)
1d dimensions. We will find that the nonperturbative ex
tence of the model requires a large value (*2) of tanb of
the minimal supersymmetric standard model~MSSM! and
that this is a general feature of SUSY GUTs with extra
mensions, suggesting that today’s possible observation o
Higgs particle with mass;115 GeV at the CERNe1e2

collider LEP2@14# could be an indication for the existence
extra dimensions.

II. LATTICE RESULT AND ITS GENERALIZATION

As mentioned in the Introduction, the pure SU(2) latti
gauge theory in five dimensions has been investigated in
@11#, where an extra dimension is compactified on a cir
with the radiusR. There, anisotropic lattices@15–18# have
been insensitively used to extract maximally the compac
cation effects, and it has been observed that the first o
phase transition which exists in the uncompactified c
@19–21# changes its nature at a certain compactification
dius and becomes of second order. Moreover, it has bec
possible@11#, through compactification, to compute theb
function of the gauge coupling, which in turn shows
©2001 The American Physical Society11-1
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power-law running, and it has been found that the obser
power-law behavior fits well to the one-loop form sugges
in perturbation theory@22,6#. Of course, the nonperturbativ
existence of a theory or the existence of an nontrivial ult
violet fixed point in the theory should not depend on whet
some extra dimensions are compactified or not. We there
believe that the compactification that has been assume
the above-mentioned investigations based on the lattice r
larization is only technically indispensable and that t
theory exists nonperturbatively whether the extra dimens
is compactified or not.

It is natural to assume that not only the pure SU(2) Ya
Mills theory in five dimensions can exist nonperturbative
but also a wide class of higher-dimensional Yang-Mills the
ries. Throughout this paper we assume that the fact that
lattice b function of the gauge coupling in pure SU(2
Yang-Mills theory in five dimensions can be well approx
mated by its one-loop form can be extended to other high
dimensional Yang-Mills theories and that the existence of
ultraviolet fixed point can be investigated on the basis of
one-loopb functions in these theories.

Let us explain more in detail our assumption in the ca
of pure SU(NC) Yang-Mills theory inD dimensions, where
we assume thatd5D24 dimensions are compactified on
circle with radiusR. Let gDY M be the gauge coupling of th
theory. Then the dimensionless, four-dimensional gauge c
pling of the compactified theory is defined as

g5~2pR!2d/2gDY M . ~2.1!

The compactified theory has an infinite tower of mass
Kaluza-Klein states~at least at the classical level!. We think
of integrating out these massive modes down to the cu
energyL and define an effective theory atL. So, at the
quantum level, the dimensionless gauge couplingg is the
effective gauge coupling and is a function ofL. Theb func-
tion of g,

L
dg

dL
5bg

(1)1•••, ~2.2!

takes in the one-loop order the form@6#

bg
(1)52

1

16p2
b0~RL!dXdg3, b05

2221

6
NC . ~2.3!

The coefficientXd is a regularization-dependent consta
@22–24#, and in the proper time regularization scheme e
ployed in Ref.@6# it is given by

Xd5
pd/2

G~11d/2!
. ~2.4!

We have added tob0 the contribution@2(1/6)NC in b0#
coming from the scalar in the adjoint representation. T
power law (RL)d expresses the fact that the larger the cut
L, the more states are circulating in a loop. This power-l
growing of the number of states can be absorbed into a
definition of the coupling
11601
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ĝ5~2pRL!d/2g5Ld/2gDY M , ~2.5!

whoseb function becomes

L
dĝ

dL
5b̂g

(1)1•••5
d

2
ĝ2

1

16p2
b0

Xd

~2p!d
ĝ31•••.

~2.6!

We see now that theb function of ĝ can have a nontrivial
ultraviolet fixed point at1

~ ĝ* !25
d

2

16p2

b0

~2p!d

Xd
. ~2.7!

The data obtained from the Monte Carlo simulations for
pure SU(2) gauge theory in five dimensions@11# indicate
that the ultraviolet fixed point~2.7! in this case is indeed a
real one. Equation~2.6! suggests that the redefined, dime
sionless gauge couplingĝ, rather thang, can be regarded a
the effective expansion parameter. Our central assumptio
thus that one can decide on the nonperturbative existenc
a higher-dimensional Yang-Mills theory from investigatio
of the ultraviolet fixed points in the space of the effecti
expansion parameters at the one-loop level.

The generic form of theb function b̂g
(1) @see Eq.~2.6!# is

shown in Fig. 1, in which two phases are indicated by I a
II. The renormalization group~RG! flow of the gauge cou-
pling g in two phases are different, as shown in Fig. 2. As t
energy scaleL decreases from a higher value, the flow of t
phase II develops into a ‘‘Landau’’ pole near the compac
fication scale;R21, while the coupling in phase I has n
such singularity near;R21. That is, the theory in phase I
will become strongly interacting near;R21, and it will be
unlikely that the massive Kaluza-Klein excitations~which
seem to exist at the classical level! decouple.2 Only if the
theory is in phase I will there be a chance for the mass

1This is the critical value in investigating whether or not the d
namical electroweak symmetry breaking by the top quark cond
sation in higher dimensions@25# can occur@26#.

2Presumably, the notion of the massive Kaluza-Klein excitatio
is not a good one in phase II. Moreover, it is unclear that
low-energy effective theory in phase II is a gauge theory.

FIG. 1. The generic form ofb̂g
(1) .
1-2
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Kaluza-Klein excitations to decouple and hence to hav
renormalizable, low-energy effective theory below;R21.
We regard this as a constraint on the gauge coupling. So
theory should be in phase I, in the decoupling phase.

III. NONTRIVIALITY OF SUSY GUTs
WITH EXTRA DIMENSIONS

We assume thatd5D24 dimensions are compactified o
an orbifold S1/Z2 of a fixed radiusR. We denote the
D-dimensional coordinates byzM (M51, . . . ,D), while the
four-dimensional ones byxm (m51, . . . ,4) and the
d-dimensional ones byya (a51, . . . ,d). A generic field
f(z), bosonic or fermionic, satisfying the periodic bounda
condition

f~x,y!5f~x,y12pR! ~3.1!

with the parity property underya→2ya ,

f5fuya→2ya
for aPE1 and

~3.2!

f52fuya→2ya
for aPE2 ,

can be expanded as

f~x,y!5 (
n50

`

(
m51

`

fn,m~x!

3PaPE1
cos~naya /R!PbPE2

sin~mbyb /R!, ~3.3!

where we have dividedE5$a51, . . . ,d% into E1 and E2

corresponding to the parity property off. The coefficients
fn,m(x) exhibit the Kaluza-Klein tower, andf0,0(x) is the
zero mode, which is absent iff has an odd parity. The
Kaluza-Klein modes other than the zero mode are mas
;O(R21) in four dimensions. Since we consider GUTs,
certain set of the zero modes also becomes massive af
spontaneous symmetry breaking of the unifying gauge gr
G. Their masses are of the order of the spontaneous sym
try breaking or of the GUT scaleMG . The presence of fields

FIG. 2. The evolution of the gauge coupling in two phas
Phase I is the decoupling phase, while phase II is the stron
interacting phase.
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that exist only at a lower-dimensional boundary, the bou
ary fields, is allowed in the case of orbifold compactificatio
Here we restrict ourselves only to the boundary fields that
located at our four-dimensional Minkowski space. They ha
no Kaluza-Klein massive partners, and they count among
zero modes.

Our main assumptions in considering SUSY GUTs a
that ~i! in the zero-mode sector of the Kaluza-Klein towe
softly broken, four-dimensionalN51 supersymmetry is re
alized and~ii ! the massive Kaluza-Klein modes formN52
supermultiplets. The first assumption can be simply satis
thanks to the orbifold compactification, and the second o
can also be easily satisfied because a simple supersymm
in higher dimensions always contains more than one su
symmetry in four dimensions. Correspondingly, the mat
supermultiplets of the zero-mode sector areN51 chiral su-
permultiplets:

F I5~f I ,c I !, ~3.4!

where f I(c I) is the scalar~fermionic! component, andI
stands for color and flavor. The most general~cubic! form of
the Yukawa term of the zero-mode sector at the fo
dimensional boundary takes the form

S0
Y5E d4x

1

2 (
I ,J,K

YIJKc IcJfK1H.c., ~3.5!

where the Yukawa couplingsYIJK are assumed to be com
pletely symmetric in the indices. Although we have to add
set of certain terms to the above actionS0

Y to make the
boundary theory supersymmetric and gauge invariant,
complete space of the dimensionless couplings of the bou
ary theory, by virtue ofN51 supersymmetry, is spanned b
the gauge couplingg and the Yukawa couplingsYIJK: That
is, no additional dimensionless couplings are present.

If the contributions of the massive Kaluza-Klein modes
the RG functions (b functions and anomalous dimensionsg)
are suppressed, we have the well-known four-dimensio
formulas@27#

bg
(1)5

g3

16p2 F(
a

l ~Ra!23C2~G!G ~3.6!

at one loop, wherel (Ra) is the Dynkin index of the repre
sentationRa andC2(G) is the quadratic Casimir of the ad
joint representation of the gauge groupG. Theb functions of
YIJK are related to the anomalous dimensionsg I

(1)J as @27#

bY
(1)IJK5(

P
YIJPgP

(1)K1~K↔I !1~K↔J!, ~3.7!

.
ly
1-3
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g I
(1)J5

1

16p2 F1

2 (
P,Q

YIPQYJPQ22d I
Jg2C2~ I !G ,

~3.8!

whereC2(I ) is the quadratic Casimir of the representati
RI , andYIJK5(YIJK)* .

The Kaluza-Klein tower modifies the RG functions to t
form that describes the power-law behavior of the couplin
The inclusion of the contribution of the massive Kaluz
Klein modes to the RG functions is straightforward, beca
they formN52 supermultiplets by assumption and we m
use the nonrenormalization theorem forN52 supersymme-
try @28#. Among the zero modes, there are those that have
massive partner modes, and they do not contribute to
power-law behavior of the couplings. Therefore, their con
butions to the RG functions in theL→` limit are much
smaller compared with those coming from the infinite tow
of the massive modes, i.e.,

bg
(1).

g3

16p2 F(
a8

l ~Ra8!22C2~G!GXd~LR!d, ~3.9!

bY
(1)IJK.

1

16p2 F1

2 ( 8

P,L,M
YIJPYPLMYKLM

22( 8
P

YIJPdP
Kg2C2~K !1~K↔I !

1~K↔J!GXd~LR!d, ~3.10!

whereXd is given in Eq.~2.4!. Here (a8 denotes the sum
overN52 hypermultiplets, and(8 denotes the sum in which
only the possibilities that contribute to the power-law beh
ior are included. In deriving theb functions~3.9! and~3.10!,
we have used the fact that the contributions of each exc
Kaluza-Klein state to the anomalous dimension has the s
form as a massless mode contribution@6#.

Now according to the discussion in the previous secti
we go over to the effective expansion parameters: As for
gauge coupling, it is defined in Eq.~2.5!, and similarly we
can find them for the Yukawa couplings. It is, however, mo
convenient to work with

ỸIJK5
YIJK

g
5

YIJK~2pRL!d/2

g~2pRL!d/2
5

ŶIJK

ĝ
, ~3.11!

which yields the following system of theb functions at large
L:
11601
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b̂g5L
dĝ

dL

5
d

2
ĝ2

ĝ3

16p2 F2C2~G!(
a8

2 l ~Ra8!G Xd

~2p!d
1•••,

~3.12!

b̃Y
IJK5L

dỸIJK

dL

5
ĝ2

16p2 F2ỸIJKS~ IJK !1S 1

2 ( 8

P,L,M
ỸIJPỸPLMỸKLM D

1~K↔I !1~K↔J!G Xd

~2p!d
1•••, ~3.13!

where the elipses stands for higher-order contributions, a

ỸIJKS~ IJK !5ỸIJKS (
a8

l ~Ra8!22C2~G!D
1F2( 8

P
ỸIJPdP

KC2~K !G1@K↔I #1@K↔J#.

~3.14!

Note that the sum in Eq.~3.14! ~though it is proportional to
ỸIJK) is not equal to 2ỸIJK@C2(I )1C2(J)1C2(K)#, be-
cause the sum(P

8 is taken over only the possibilities tha
contribute to the power-law behavior.

From theb functions~3.12! and ~3.13! we see that

ỸIJK50 ~3.15!

is an ultraviolet stable fixed point, if

S~ IJK !,0 for all I ,J,K and

2C2~G!2(
a8

l ~Ra8!.0 ~3.16!

are satisfied. According to our assumption, the theory ex
nonperturbatively if the conditions~3.16! are satisfied. If
S(IJK).0, on the other hand, there will be a certain set
infrared fixed points. That is, the stable manifold@the set of
points in the space ofỸIJK that can be initial points of a RG
flow approaching the ultraviolet fixed point~3.15!# must be a
subspace of the space ofỸIJK. Therefore, the requirement o
the nonperturbative existence implies that the Yukawa c
plings at the GUT scaleMG should be in the stable manifold
If all the Yukawa couplings are small compared with t
unified gauge coupling, this condition can be easily satisfi
If however some of the Yukawa couplings, e.g., the t
quark Yukawa coupling, are comparable with the unifi
gauge coupling in the magnitude, this condition can be
severe condition. The situation depends on the model c
1-4
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sidered, of course. In the next section we consider a conc
gauge model based on the gauge group SU(5) and dis
how the requirements coming from the nontriviality can
satisfied.

IV. APPLICATION TO THE MINIMAL SUSY SU „5… GUT

A. Model and its nontriviality

The three generations of quarks and leptons
accommodated3 by six chiral N51 superfieldsC i(10) and
F i(5̄), where i runs over the three generations. The sup
field S(24) is used to break SU(5) down to SU(3)C

3SU(2)L3U(1)Y , andH(5) and H̄(5̄) ~which form anN
52 hypermultiplet! are two Higgs superfields appropria
for electroweak symmetry breaking. We assume that
matter superfieldsC i(10) andF i(5̄) are boundary fields so
that they have no Kaluza-Klein excitations, and that the
1d)-dimensional bulk theory is anN52 supersymmetric
Yang-Mills theory based onG5SU(5) that contains a hy
permultiplet in the fundamental representation ofG. The cu-
bic part of the boundary superpotential is given by

W5(
i , j

3 GU
i j

4
eabgdtCab

( i ) Cgd
( j )Ht1(

i , j

3

A2GD
i j F ( i )aCab

( j ) H̄b

1
gs

3
Sa

bSb
gSg

a , ~4.1!

wherea,b, . . . are the SU(5) indices, andGU
i j andGD

i j are

the Yukawa couplings. TheH̄SH term is a part of theN
52 gauge interaction and belongs to the bulk action.
make the theory realistic, we have to have the correct pat
of spontaneous symmetry breaking of gauge symmetr
soft-supersymmetry-breaking~SSB! terms, and neutrino
masses and their mixing. Note that only operators with
mensions fewer than four are responsible for satisfying th
phenomenologically important requirements. Since howe
the contribution of these low-dimensional operators to
high-energy behavior of the theory decreases with an
creasing energy scaleL, we ignore them in the following
discussions.

Given the model, it is straightforward to compute the on
loop RG functions. We find that the one-loop anomalo
dimensions of the chiral superfields are given by

16p2g105F2
36

5
g213GU

† GU12GD
† GDGXd~RL!d,

~4.2!

16p2g 5̄5F2
24

5
g214GD

† GDGXd~RL!d, ~4.3!

16p2gH53 TrGUGU
† , ~4.4!

3We use four-dimensional language for supersymmetry.
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16p2g H̄54 TrGDGD
† , ~4.5!

16p2g245F21

5
gs

229g2GXd~RL!d, ~4.6!

whereXd is defined in Eq.~2.4!. Using Eqs.~3.9! and~3.10!
we then obtain the one-loopb functions of the Yukawa cou-
plings, where we use the fact that the anomalous dimens
of the Higgs supermultiplets vanish thanks toN52 super-
symmetry. Since we are interested in theL→` limit, only
leading contributions in the limit,

16p2bg.29g3Xd~RL!d, ~4.7!

16p2bU.GUF2
72

5
g216GU

† GU14GD
† GDGXd~RL!d,

~4.8!

16p2bD.GD@212g213GU
† GU16GD

† GD#Xd~RL!d,
~4.9!

16p2bs.gsF227g21
63

5
gs

2 GXd~RL!d, ~4.10!

should be considered. According to the discussion of
previous section, we now go over to the tide couplings@de-
fined in Eq.~3.11!# and find that the corresponding one-loo
b functions in theL→` limit can be written as

16p2b̃U /ĝ25G̃UF2
27

5
16G̃U

† G̃U14G̃D
† G̃DG Xd

~2p!d
,

~4.11!

16p2b̃D /ĝ25G̃D@2313G̃U
† G̃U16G̃D

† G̃D#
Xd

~2p!d
,

~4.12!

16p2b̃s /ĝ25g̃sF2181
63

5
g̃s

2 G Xd

~2p!d
, ~4.13!

whereĝ is defined in Eq.~2.5!. Moreover, the phenomeno
logical requirements from the mass of leptons and quark
well as from the proton decay@29,30# imply that the Yukawa
couplings for the top and bottom quarks,GU

335Gt and GD
33

5Gb , are the largest couplings compared with the oth
Yukawa couplings, and therefore, to investigate appro
mately the high-energy behavior of the theory, it is sufficie
to consider the following set ofb functions:

16p2
b̃ t

ĝ2
5G̃tF2

27

5
16G̃t

214G̃b
2G Xd

~2p!d
, ~4.14!

16p2
b̃b

ĝ2
5G̃b@2313G̃t

216G̃b
2#

Xd

~2p!d
. ~4.15!
1-5
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We thus have arrived at a simple system defined by E
~4.14! and ~4.15! that has four fixed points,

~G̃t*
2 ,G̃b*

2!5~0,0!, S 17

20
,

3

40D , S 9

10
,0D , S 0,

1

2D ,

~4.16!

in the two-dimensional space of couplingsG̃t
2 and G̃b

2 ,
which are shown in Fig. 3. As we have seen in the previ
section, the origin (0,0) is an ultraviolet-stable fixed poi
The point (17/20,3/40) is an infrared-stable fixed point~the
Pendleton-Ross fixed point4 @31#!, while for the other two
points there exist attractive as well as repulsive directio
We find that the direction perpendicular to theG̃b

2 axis is the
infrared-attractive direction for the fixed point (9/10,0), a
similarly, the direction perpendicular to theG̃t

2 axis is the
one for (0,1/2). In Fig. 3 we show some representative
flows, and as we can see from the figure, the stable man
is a finite region in the space ofG̃t

2 andG̃b
2 . The critical lines

that go from the infrared-stable point (17/20,3/40) towa
the end points (9/10,0) and (0,1/2) define the boundary
the stable manifold. We emphasize that the result abov
independent of the number of the extra dimensionsd and the
scaleL.

The nontriviality requirement above could be too stron
it is a requirement in theL→` limit. It can be relaxed so as
to require for the couplings not to develop into a Landau p
before the Planck scaleM P . Since the above result on th
fixed points ~4.16! is independent of the energy scaleL,
especially of the actual value of the unification scaleMG ,
the ratio M P /MG can take any value greater than;103.
Clearly, the smaller the ratio is, the milder is the relax

4The last three nontrivial fixed points of the right-hand side~RHS!

of Eq. ~4.16! can be used to expressG̃t
2 and G̃b

2 in terms of the
unified gauge couplingg ~reduction of couplings@32#!.

FIG. 3. RG flows in the space ofG̃t
2 andG̃b

2 . The fixed points
are denoted by solid squares.
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nontriviality requirement. In Fig. 4 we show how the allowe
region is extended by relaxing of the nontriviality requir
ment in the case ofM P /MG5103. The relaxed condition
depends on the number of the extra dimensionsd. We have
considered three casesd50, 1, and 2 in Fig. 4, where the
stable manifold is bounded by the bold line. As we can s
from Fig. 4, the extensions ford51 and 2 are very small
This is a consequence of the power-law running of the c
plings; the couplings evolve faster in extra dimensions as
energy scale varies, and so the Landau pole can be rea
faster compared with the case of logarithmic running. The
fore, the initial point cannot be very far from the stable ma
fold. As for the logarithmic running (d50),5 we found that
the whole region of Fig. 4 satisfies the relaxed nontrivial
requirement (M P /MG5103), justifying our statement
above. In the next subsection we would like to investig
phenomenological consequences from the nontriviality
quirement.

B. Model betweenRÀ1 and M G

To satisfy the proton decay constraint, we find thatR21

*1(3)31014 GeV for d51(2) should be satisfied. And fo
energies belowR21 the MSSM is assumed to be the effe
tive theory. For an energy scale betweenR21 and MG , the
effective theory is exactly the one proposed in Ref.@6#, in
which only the gauge boson and Higgs supermultiplets of
MSSM have a tower of Kaluza-Klein states and the lep
and quark supermultiplets have no tower of Kaluza-Kle

5Here we are interested only in the qualitative nature. So to de
the allowed region in the case of the logarithmic running, we ha

used the RG equations~4.14! and ~4.15! for G̃t andG̃b , while for
the gauge coupling we have used Eq.~4.7! with Xd(RL)d51.

FIG. 4. The stable manifold~bounded by the bold line! in the

space ofG̃t
2 andG̃b

2 . The regions extended by the relaxed nontriv
ality requirement are also shown; the dotted, straight boundary l
correspond tod51,2, respectively. As ford50, the whole region
in Fig. 4 satisfies the relaxed nontriviality requirement.
1-6
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states. Correspondingly, the one-loopb functions for the en-
ergy scales betweenR21 andMG become@6#

16p2b15g1
3F61

6

5
~Xd/2!~LR!dG , ~4.17!

16p2b25g2
3@426~Xd/2!~LR!d#, ~4.18!

16p2b35g3
3@3212~Xd/2!~LR!d#, ~4.19!

16p2b t5GtF3Gt
22

3

10
g1

22
3

2
g2

21~Xd/2!~LR!d

3S 6Gt
212Gb

22
17

15
g1

223g2
22

32

3
g3

2D G ,
~4.20!

16p2bb5GbF3Gb
21Gt

22
3

10
g1

22
3

2
g2

21~Xd/2!~LR!d

3S 2Gt
216Gb

22
1

3
g1

223g2
22

32

3
g3

2D G ,
~4.21!

16p2bt5GtF3Gb
21Gt

22
3

10
g1

22
3

2
g2

2

1~Xd/2!~LR!d~6Gt
223g1

223g2
2!G ,

~4.22!

where g1,2,3 are the gauge couplings, andGt,b,t are the
Yukawa couplings for the top, bottom, and tau, in t
MSSM, respectively. We have neglected other Yukawa c
plings, and use has been made of the fact that the anoma
dimensions of the Higgs supermultiplets due toN52 super-
symmetry in the excited sector vanish betweenR21 andMG
@28#.

C. Lower bound of tanb

In what follows we will consider only the case withd
51. Moreover, to simplify the situation, we assume th
there exists a uniform SUSY thresholdMSUSY. We study the
evolution of the couplings belowR21 at the two-loop level,6

along with the experimental inputs@33#: the tau massM t
51.777 GeV, theZ gauge boson massMZ591.187 GeV,
the effective electromagnetic couplingaEM

21(MZ)5127.9 at
MZ , and the Weinberg mixing angle sin2uW(MZ)50.2312 in
the modified minimal subtraction scheme. The experime
value of the physical top quark mass is given by@33#

Mt5~174.365.1! GeV. ~4.23!

6See Ref.@30# for more details on the method of the present ana
ses.
11601
-
us
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At the SUSY thresholdMSUSYwe require that the match
ing conditions

Gt
SM5Gt sinb, Gb

SM5Gb cosb, Gt
SM5Gt cosb,

l5
1

4 S 3

5
g1

21g2
2D cos22b ~4.24!

should be satisfied, whereGi
SM ( i 5t,b,t) are the SM

Yukawa couplings andl is the Higgs self-coupling. This is
our definition of tanb. ~There are MSSM threshold correc
tions to this matching condition@34,35#, which we ignore in
the following discussion.! For a given set of the initial value
of Gt andGb at MG , the topquark massMt is no longer a
free parameter and can be computed, where we use the
mula @36,34#

Mt5mt~Mt!F11
4

3

a3~Mt!

p
110.95S a3~Mt!

p D 2

20.3
a t~Mt!

p G . ~4.25!

Herea35g3
2/4p, a t5(Gt

SM)2/4p, andmt(m) is the running
top quark mass in the modified minimal subtraction sche
and given by

mt~m!5
1

A2
Gt

MS~m!v~m! with v~MZ!5246.22 GeV,

~4.26!

wherev is the vacuum expectation value of the SM Hig
field which is made of the two Higgs fields of the MSSM
The mass of the bottom quark can suffer from a large c
rection from the SSB terms@34,35#. But we do not take them
into account in the present analysis, because we do not
sider the SSB terms.

-

FIG. 5. kt as a function of tanb for R2151014 ~straight line! and
105 ~dotted line! GeV with MSUSY51 TeV.
1-7
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Given all the facilities for the RG evolution of the cou
plings, we choose a value for tanb with the topquark mass
varying from 170 to 180 GeV and let evolve the couplin
from MZ to MG ~at which gauge coupling unification an
b-t unification are realized!. We then calculate the ratio

kt5
Gt

2

gG
2

5G̃t
2 ~4.27!

at MG as a function of tanb, wheregG is the unified gauge
coupling. The results are shown in Figs. 5, 6, and 7. In F
5 we vary tanb from 1 to 60 withMSUSY51 TeV, where
the straight~dotted! line stands forR2151014 (105) GeV.
The ranges of smaller tanb are plotted in Figs. 6 and 7; Fig
7 shows theR dependence forMSUSYfixed at 1 TeV, while
Fig. 6 shows theMSUSY dependence forR21 fixed at
1014 GeV. We see from these figures that the value ofkt
increases rapidly as tanb approaches;2 from larger values
and that this feature does not depend very much onR and
MSUSY. Comparing this result with Fig. 4~which shows the
region in theG̃t

2-G̃b
2 plane satisfying the nontriviality re

quirement!, we see that for a small value (&2) of tanb,
leading to a large value ofkt , the theory cannot be mad
nontrivial.

As we have seen in Sec. IV B above, the difference
tween the power-law and logarithmic running is how fast
RG evolution develops into a Landau pole asL increases.
Moreover, the more there exist extra dimensions, the fast
the evolution, and hence the closer to the stable manifol
the region satisfying the relaxed nontriviality requireme
~see Fig. 4!. From this observation we conclude that the pr
ence of extra dimensions prefers a large value (*2) of tanb.
As is known@37#, the mass of the MSSM Higgs boson d
pends on tanb. The search for the Higgs particle at LEP2 h
already excluded the range of tanb @33,38#:

FIG. 6. The same as Fig. 5 near tanb52.
11601
.

-
e

is
is
t
-

H 0.5–2.3

0.7–1.9
for Mt5H 175

180
GeV. ~4.28!

So today’s possible observation of the Higgs particle@14#
might be an indication of the existence of extra dimensio

V. CONCLUSION

Our starting point was to assume that the result obtai
from Monte Carlo simulations on the nonperturbative ex
tence of Yang-Mills theory in five dimensions@11# can be
applied to a more general class of higher-dimensional uni
gauge theories. The first nontrivial requirement is that
theory should be in phase I of Fig. 1, because otherwise
massive Kaluza-Klein excitations would not decouple at l
energies. Then we have derived the conditions~3.16! im-
posed by the nontriviality requirement on the supersymm
ric gauge theories containing matter superfields, where
have also considered relaxing the nontriviality requireme
These results have been applied to a concrete SUSY G
based on SU(5), and wehave found, comparing Fig. 4 with
Figs. 5, 6, and 7 that the model prefers a large value (*2) of
tanb. Moreover, it has been argued that this is not a mod
specific feature, but a general feature of SUSY GUTs w
extra dimensions.
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FIG. 7. TheMSUSY dependence ofkt near tanb52 with R21
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