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We study the chiral properties of quenched domain wall fermions with several gauge actions. We demon-
strate that the residual chiral symmetry breaking, which is present for a finite number of lattice sites in the fifth
dimension (), can be substantially suppressed using improved gauge actions. In particular the Symanzik
action, the lwasaki action, and a renormalization group improved gauge action, called the doubly blocked
Wilson (DBW2) action, are studied and compared to the Wilson action. All improved gauge actions studied
show a reduction in the additive residual quark mags. Remarkably, in the DBW2 cags,esis roughly two
orders of magnitude smaller than the Wilson gauge actien 42 GeV andL=16. Significant reduction in
M,esis also realized at stronger gauge coupling correspondirag te=1.3 GeV. As our numerical investiga-
tion indicates, this reduction is achieved by reducing the number of topological lattice dislocations present in
the gauge field configurations. We also present detailed results for the quenched light hadron spectrum and the
pion decay constant using the DBW2 gauge action.

DOI: 10.1103/PhysRevD.69.074504 PACS nuntderll.15.Ha, 11.30.Rd, 12.38.Gc, 12.38.Aw

[. INTRODUCTION wall fermion operator may increase the computational cost
by more than the reduction in; reduces ij. Another method
Domain wall fermiong1-4] are expected to provide an of improving domain wall fermions is proposed in Refs.
implementation of lattice fermions with exact chiral symme-[14,15. The basic idea behind these proposals is to project
try, even at a finite lattice spacing. To achieve this exacbut the zero modes of the four-dimensional Hamiltonian de-
symmetry, an infinite fifth dimension must be introduced andscribing the propagation in the fifth dimension. As a result,
simulations have been done to explore the limit of a largehe localization on the boundaries of the fermionic light
fifth dimension for both full and quenched Q@b-10]. The  modes is enhanced.
finite size of the fifth dimensiort, s, used in numerical simu- In this paper we systematically examine a different op-
lations, produces a small amount of chiral symmetry breaktion: the modification of the gauge action to suppress the
ing, which should go to zero in the limits—o. In practical finite L¢ explicit chiral symmetry breakinfl6]. Note that in
implementations the aim is to achieve the smallest chiraprinciple this is a different criteria from improving the gauge
symmetry breaking possible at a giveg, thus minimizing  action to achieve better scaling, in lattice spacing, of physical
the cost of the simulation. Further information about domainobservables. We will investigate the scaling of observables as
wall fermions and their applications is given in recent re-well, to check that while reducing the explicit chiral symme-
views[11,12. try breaking we do not distort the approach to the continuum
There have now been several suggestions on how to minlimit. It is worth noting that methods which improve the
mize the computational cost of domain wall fermions. Andomain wall fermion operator, such as those suggested by
obvious way to achieve this is to make the five-dimensionaShamir and the one investigated here are likely independent
eigenvectors of the domain wall fermion operator, which forof each other, so a combination of both techniques may lead
small eigenvalues should be localized on the fourto even greater efficiency in domain wall fermion simula-
dimensional boundaries of the fifth dimension, decay fastetions. However, as we will see, our approach obviates the
in the fifth dimension. This reduces the mixing between theneed of separately treating the near unit eigenvectors of the
opposite chirality modes, which are bound to opposite endsransfer matrix, as gauge configurations for which these oc-
of the fifth dimension. Shamirl3] has calculated the fifth- cur are suppressed. This has also been studied in[ Réf.
dimensional decay of the eigenfunctions with zero eigenval- The observation that the gauge action can affect signifi-
ues using perturbation theory, suggesting a modification ofantly the chiral symmetry of domain wall fermions is not
the four-dimensional component of the domain wall fermionnew. Both the RB(18] and CP—PAC$6,19] collaborations
operator to increase the decay. This interesting perturbativieave observed that the use of the Ilwasaki acf@® sub-
result may explain some of the features seen in nonperturbatantially improves chiral symmetry in quenched simula-
tive simulations.(Of course, modifications to the domain tions. Also in Ref.[21] it was observed that the one-loop
Symanzik[22] improved gauge action improves chiral sym-
metry to a lesser degree. Here we extend these results and
*On leave from Institute of Theoretical Physics, Kanazawa Uni-explore the reason behind the observed improvement.
versity, Ishikawa, Japan. This paper is organized as follows. In Sec. Il we give a

0556-2821/2004/69)/07450418)/$22.50 69 074504-1 ©2004 The American Physical Society



AOKI et al. PHYSICAL REVIEW D 69, 074504 (2004

brief description of the gauge actions under study. In Sec. Il In addition to the above actions we also studied the
we introduce the observables used for studying chiral symiwasaki [20] action and the DBW2 actiof23,24]. These
metry breaking and also present the standard Wilson actioactions are both renormalization groGRG) improved ac-
results to provide a reference point. Section IV contains retions in a truncated, two-parameter space. They can be writ-
sults for the different actions we studied. We find that theten down as

doubly blocked Wilson(DBW2) action [23,24] gives re-

sidual chiral symmetry breaking two orders of magnitude SG[U]=——((1—8c ) 2 P[U]

smaller than the Wilson gauge action at comparable lattice 3 1 X<y s

spacings and values a&f;. In Sec. V we discuss the domi-

nant mechanism of explicit chiral symmetry breaking in do- e S R[U] ) 3)
main wall fermions, which we find is driven by lattice arti- 1X;M¢V X pv

facts, or dislocations, at the lattice spacings considered.

These dislocations occur as the topological charge of theith c;=—0.331 for the Iwasaki action anch=—1.4069
gauge field configuration changes during Monte Carlo evofor the DBW2 action. In the case of the Iwasaki action the
lution. Given this large improvement in residual chiral sym- coefficient c; is computed in weak coupling perturbation
metry breaking and the fact that the DBW2 action has notheory. For the DBW?2 action, is computed 23] nonpertur-
been used before with domain wall fermions, in Sec. VI webatively using Swendsen’s blocking and the Schwinger-
present results for some hadronic observables in order tbyson method. QCD-TARO has studigit] the RG flow in
confirm consistency with quenched simulations using othethe two parameter space of the plaquette and the rectangle
gauge actions, to check scaling with lattice spacing and teouplings and concluded that DBW2 is a good approxima-

lay a foundation for future work25]. tion to the RG flow in this plane at least for a range of coarse
lattice spacings.
Il. PURE GAUGE LATTICE ACTIONS Although the Iwasaki and DBW2 actions are motivated

by the desire to remain on the RG trajectory for quenched
As mentioned, we study the chiral properties of quenche@CD, the truncation to the explicit form used is an approxi-
domain wall fermions with Symanzik, Iwasaki, and DBW2 mation. The accuracy with which these truncated actions pre-
gauge actions. These actions are built from closed loops aferve the RG trajectory must be investigated numerically.
up to six links and provide a sample of typical lattice actionsSimulations with the lwasaki actidi27] and the DBW?2 ac-
used to improve scaling of observables. As a baseline fotion [24] show improved scaling of the heavy quark potential
comparisons we start with the Wilson actif26] which is  and the critical temperature for the finite temperature phase
defined by transition, compared to the Wilson gauge action. These ac-
tions serve as useful starting points for studying the effects of
B the gauge action on residual chiral symmetry breaking in
SelUl=-3 X_Mz<v PLU s (1) domain wall fermions.

IIl. EXPLICIT CHIRAL SYMMETRY BREAKING WITH

whereP[U], ,, is the real part of the trace of the path or-
’ DOMAIN WALL FERMIONS

dered product of links around thexll plaquette in thes,v

plane at pointx and 8~ 1/g5 with g, the bare gauge cou-  The central idea behind domain wall fermions is that four-
pling. This is the original non-Abelian gauge action intro- dimensional fermionic states of opposite chirality are local-
duced by Wilson, which ha&)(a?) errors @ is the lattice  jzed dynamically on opposite boundaries of an extra fifth
spacing. dimension. The domain wall fermions are coupled to four-
To begin, we study the Symanzik one loop improved acdimensional gauge fields replicated in the fifth direction, so
tion [22] where both©O(a®) and O(g%a®) errors are re- the light states can be used to simulate a vector gauge theory
moved. This action is defined as like QCD. The five-dimensional fermion action is a generali-
zation of the Wilson fermion actiof26] with open boundary
B conditions in the fifth dimensiofi3]. In the free field limit,
SelU]=~ §(COX.MZ<V P[U]X,W+Clx_%v AL localization of a single fermionic flavor on the four-
' ' dimensional boundaries occurs if the five-dimensional fer-
mion massM; is in the interval(0,2). This interval is shifted
' 2 when interactions are switched on. For an infinite fifth di-
mension [s—), chiral symmetry of the light states is
whereR[U]y ., and C[U] .., denote the real part of the manifest_sihce they have no overlap. Four-(_jimer?siona_l light
trace of the ordered product of ) link matrices along 1 quarkq,q fields are constructed from the five-dimensional

X2 rectangles in thew,v plane and thew,v,o,—u,— v, fermionsW¥,¥ by
— o paths, respectively. The coefficientg, c,, andc, are

+CZ E C[U]X,,uvu'

Xsu<v<o

computed in tadpole improved one loop perturbation theory q(x)=PL¥(x,0)+Pr¥(x,Ls—1), (4)
[22]. For this action and the remaining on¢gs;- llgg as for . o o
the Wilson action, but the precise numerical factors differ. g(x)=¥(x,Ls—1)P +W¥(x,0)Pg, 5)
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wherePg, =3(1+ ys) are the right-handed and left-handed 0.00 T T T T T T T
projection operators. Hence a four-dimensional mass term |

m;qq can be introduced if the fifth dimension boundaries are
coupled directly with a parameten; [3]. For finite L ex-

plicit chiral symmetry breaking is induced by the mixing of
the light states which now extend across the fifth dimension.
Our conventions throughout this paper are the same as those
in Ref.[5]. ®

0.015 —

g

In order to quantify the explicit chiral symmetry breaking \‘g 0:010 B
induced at finiteLg, we define the residual massnty g i
through the Ward-Takahashi identi]: -

AL (AL(X)O(y))=2m(I5(X)O(y)) +2(I5(X)O(Y)) 0,008~

+i(5*0(y)), (6) I
where 0.000

Le-1 L1 10
A= 2 sigr(s— 5 Jiuxs @

FIG. 1. The residual mass normalized by the square root of the

is a four-dimensional partially conserved axial current whichstring tension ¢) as function of the for the Wilson gauge action
is constructed from the five-dimensional conserved vectoft 8=6.0 (results are from Refl5]). The solid line is a fit to a

current, double exponential. At large, the decay is rather weak.
2 1 — - t e which, fort greater than somg,;, should be independent of
Ju(%,8)= SV (X+1,8)(1+7,)Uy 15V (X,5) t and equal to the residual mass, giving
—W(x,5)(1—y,)Uy W (X+u,s)]. (8 Xzy (32,(y,1)I2(x,0)
The flavor matrices are normalized to obey tftf) = 52°, Myes=— : (12)
A, f(x)=F(x)—f(x— ) is a simple finite difference opera- > (33(y,1)I2(x,0))
tor, and the pseudoscalar densifi(x) is i =t
J3(x)= —\I_f(x L—1)P_t*¥ (x,0) As we will see, in our numerical simulatiori&(t) is essen-
> s tially t independent fot=5 and thet dependence for<5
+@(X,o)pRtaq,(X,|_s_ 1). (99  Will be discussed in Sec. IV. To calculate.s, we average

over a suitable plateau wheR{t) is constant. In the subse-
Note thatJZ(x) is a four-dimensional pseudoscalar densityquent discussiom,.s serves as our basic measure of chiral
constructed from fields on the boundaries of the fifth dimensymmetry breaking. In addition, it is useful to define the ratio
sion. The identity(6) differs from the continuum expression

by the presence of th&f (x) term. J5,(x) is analogous to 2 (v D) IZ(x.0
J2(x), but is built from fields in the bulk ak.y/2 andLy/2 Zy (Jsqly:11I5(x 0w
1 ruy(t) = : 13

> (J2(y.HIEx0) )
J2, ()= —W(x,Lg2—1)P t*W(x,L42) Y

— d
FU(LJ2PRY (X, LJ2—1). (10 o

We refer to this term as the “midpoint” contribution to T[U]:Z Moy (t) (14)
the divergence of the axial current. The effect of the explicit t

chiral symmetry breaking can be described by the so-called _ _
residual mass term,.s[5]. From the midpoint term we de- which are both measures of chiral symmetry breaking on a
fine the ratio given gauge configuratiod.

Before presenting results for the improved gauge actions,
we discuss what is known about the Wilson actioraat

XZy (J54(y,1)J5(x,00) ~2 GeV (8=6.0). In Fig. 1 we show the residual mass as a
R(t)= — , (11)  function of L (the data are from Ref5]). While in pertur-

D (J3(y,1)33(x,0)) bation theorym,.s is expected to decay exponentially, as

Xy stated in Ref[5] the data do not support this. However, its
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behavior can be fit with two exponentials with a rather weak
decay in the largé ¢ limit. Thus, to decrease,¢sby an order

of magnitude we need to increakg by a large factor, per-
haps ofO(10).

Sincem, is determined by the fifth-dimensional falloff
of the boundary states, decreasimg. requires improving
the falloff. Analytic arguments have shown that for gauge
field satisfying a smoothness condition, exponential falloffis  =%4F~ | |, %3 T
assured[28,29. It is expected that at weak enough cou- _3 _2 1 0 _3 _2 _1 o
plings, such a smoothness condition is satisfied, which is no —Ms —Ms
the case for Wilson gauge lattices@t 6.0. Since the falloff

eigenvalue
o
)

eigenvalue
]lllllllllllllllllllr

IIIIIIIIIII.I: IIIIIIIIIIIII'I—

in the fifth dimension can be related to eigenvalues of an o o~
appropriately defined transfer matri¥, in the fifth dimen- '." E . s
sion, studie$30] of the spectrum of thd for Wilson gauge % PR v N
action have been done. They find a nonvanishing density 0£ = L ,é;-' ' —
unit or near unit eigenvalues & showing that undamped oI N mﬁ“" " 3
propagation in the fifth dimension occurs. We will also study ¢ " ® "
the spectrum of; using gauge configurations generated with " “
the Wilson, Symanzik, lwasaki and DBW?2 actions. I S L= P I P
The transfer matrix@ [31] is defined by -3 -2 ™ -1 0 -3 -2 T, -1 °

- 1-H (15) FIG. 2. Spectral flows of the Hermitian Wilson Dirac operator

1+H; vsDy for four typical gauge configurations generated with the Wil-

son gauge action g8=6.0. There are many crossings in the neigh-

with borhood ofMs= 1.8 which induce explicit chiral symmetry break-

ing for domain wall fermions. The size of the would-be gap in the
region of the five-dimensional fermion makk~1.8 is also rela-
Ht:m ¥sDw(—Ms) (16) tively small compared to the obvious gap above the critical Wilson
w 5 massMs~0.8. Both effects enhance mixing of the light domain
being the Hamiltonian for propagation in the fifth dimensionWall fermion modes and hence the value of thgs.
andD,,(m) being the four-dimensional Wilson Dirac opera-
tor. Following[30] we calculate the eigenvalue spectrum of
the Hermitian Wilson Dirac operatorD,,(—M5) as a func-
tion of Mg (the so-called spectral flowFrom Eq.(16) one

son fermions where chiral symmetry is restored at this gauge
coupling (8=6.0). As we will see, this picture leads to a
relatively large value oin, for the Wilson gauge action,

sees that a zero eigenvalueygD,,(—Ms) corresponds di- thpugh we emphasize that the chiral s_ymmetry _breaking_is
rectly to a unit eigenvalue of tk\{ve transfer matrix. i.e theSt'” very small compared to standard Wilson fermions at this

existence of a five-dimensional mode that is not damped igauge coupling. In Fig. 3 the ratigy(t) defined in Eq(13)

the fifth dimension. In addition, the number of zeros in the!S Plottéd for the same configurations as in Fig. 2. The panels

spectral flow determines the index of the domain wall fer-N Fig. 2 and F|'g. 3 are in one to one correspondence. In the
mion operator and hence serves as a definition of topolog _gures,r[u](_t) is quite dependent of W'.th large fluctua-

on the lattice. Thus, if one is working at a fixed value Kbg lons occurring over a small range bemce_ we can see
and a gauge field is generated via Monte Carlo which has ultiple Crossings in the spectral. flow, wh|ch_|mpl|e§ un-
unit eigenvalue off, an undamped mode in the fifth dimen- amped modes in the fifth dimension, and multiple spikes of

sion occurs on that configuration. This configuration is onJ[U](t) itis natural to investigate whether these are different

where we informally say that topology is changifig the ~manifestations of the same phenomena.

Monte Carlo update In Fig. 4@ we presenty; as a function of configuration
When studying the spectral flow on a given configuration,number. It is clear that;, fluctuates widely, indicating that
if the flow approaches th¥lg axis, we expect the left and there are configurations with larger chiral symmetry breaking
right domain wall modes to become delocalized leading tand others with relatively small breaking. The number of
mixing and attendant chiral symmetry breaking. On the otheconfigurations with enhanced chiral symmetry breaking is
hand, if there is a large vertical gap in the spectral flow forsignificant (~50%), consistent with the known result that
values of Mg we use in our simulations, the chiral modes the transfer matrix has an appreciable number of near unit
should remain localized on the boundaries. In Fig. 2 weeigenvalueg30]. In addition, Fig. 3 suggests a close corre-
present the spectral flow of the lowest 15 eigenvalues folation between configurations showing these spikes and those
some representative Wilson gauge action configurationsvith crossings in the spectral flow nellrs=1.8.
Many crossings of theM s axis are evident and even the In order to further examine the nature of chiral symmetry
modes that do not cross are not far away from the axisbreaking on a given configuration we take a closer look at
compared with the large gap that appearsNoy<0.8. Note  the ratior(t) defined in Eq.(13). In Fig. 3 and Fig. &)
that M5~ 0.8 corresponds to the usual critical mass for Wil-we present this ratio for typical Wilson gauge action configu-
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FIG. 3. The ratio of Eq(13) for four Wilson gauge configura-
tions. The bare quark mass is 0.02 anig=1.8. The configurations
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ruyt)
ruyt)
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0 5 10 15 20 (4] 5 10 15
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[
o

FIG. 5. The ratio of Eq(13) for a single configuration ofa) the
Wilson gauge action g8=6.0, (b) the Symanzik gauge action at
B=8.4, (c) the Iwasaki gauge action @=2.6, (d) and the DBW2

used are the same as those in Fig. 2 and the panels are in one to ayeuge action aB=1.04. The spikes are quite localized in Euclid-

correspondence with the panels in Fig. 2.

ean timet. Examination of the eigenvectors of ttidomain wall
fermion or Wilsor) Dirac operator confirms the zero modes are

rations, again ah~'~2 GeV. As we can see the dominant localized in space as well.
part of chiral symmetry breaking comes from localized re-

gions in time. In particular for the configuration of Figah

ues whose eigenvectors are localized around the peaks of

the Hermitian Wilson Dirac operator has two small eigenval-r{uj(t). In addition, we have computed the topological

0.0020 T | T TT | T T T 0.0012_....I....l....l....l...._
L 1  o.0010 — (b) —
0.0015 —] E E
C ] 0.0008 — —
s 0 1 s E
|2 0.0010 - |2 0.0008 e
C ] 0.0004 3
0.0005 — —
L ] 0.0002
0.oooo-llllllllllllll_ ohoooo:lllllllllllllIllllllllll:
0 20 40 60 10 20 30 40 50
conf # conf #
000006_IllllIIII|IIII|III |IIII_ °~°°06_IllllllllIIIIIIIIIIlIIII_
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0.0004 — — 0.0004 — —
= 0.0003 — — 1= 0.0003 — —
0.0002 F— — 0.0002 F— —
0.0001 — 0.0001 F— —
= 7 RPN el ]
0.0000_IllllllllIllllllllllllll_ o.oooo-llll[llllrlllllllllmll_
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FIG. 4. The quantityr_[u] defined in Eq.(14) vs configuration
number for(a) the Wilson gauge action #@= 6.0, (b) the Symanzik
gauge action aB= 8.4, (c) the lwasaki gauge action g=2.6, (d)

charge density using 20 APE smearings with smearing coef-
ficient 0.45, as described in Reff32,33. A classically
O(a*) improved[34,35 topological charge density on APE
smeared lattices produced results almost identical with the
ones computed using the method[82,33. In order to ex-
amine if localized peaks of the topological charge density
correlate with the chiral symmetry breaking, we have com-

puted the correlation functioﬁ(F) of the topological charge
density with the lowest eigenvector of the Wilson Dirac op-
erator,

> [r FR)||o(x+1)]

o= — = (17)
> rFEXI2 [¢o(y)]
X y

In Fig. 6 we present an one-dimensional slice of this corre-
lation function for the configurations used in Fig. 2 and Fig.
3. The observed enhancement of the correlation araund
=0 is an indication that peaks of the topological charge den-
sity coincide with peaks of the eigenvector. Since we know
that the low eigenvectors generate chiral symmetry breaking

and the DBW2 gauge action gt=1.04. All four cases correspond N the region of space-time that they have support, we can
toa~l~2 GeV. The large spikes seen in the Wilson case are siginfer that enhanced chiral symmetry breaking., a peak of
nificantly reduced for the Iwasaki action and almost eliminated forf uj(t)] is also localized around these localized peaks of
the DBW?2 action. These spikes corresponded to zero eigenvectofepological charge density. Similar conclusions and more de-
of ysDy and are a significant source of chiral symmetry breakingtailed discussion can be found in Ref3,9,36. This is a

for domain wall fermions.

crucial observation in understanding why improved gauge

074504-5



AOKI et al. PHYSICAL REVIEW D 69, 074504 (2004

(2 e e e e L L figurations where topology is changing, i.e., where the spec-
F ] - ] tral flow has a zero. Suppression of lattice artifact topology
0.08 — — 008 — = changing configurations should decreasg..
S o 32 on - -
© » 1° - . IV. CHIRAL SYMMETRY WITH IMPROVED GAUGE
o ] C 7] ACTIONS
0.02 — —] 0.02 — .
C . u ] In order to study the effects of the choice of the gauge
0.00 - : 0.00 action on the residual chiral symmetry breaking we per-
-5 0 5 . . . . .
z formed a series of quenched simulations using the Symanzik,
008 0.08 Iwasaki and DBW?2 actions. In all cases the lattices were
e S R D D e S L R DR 16°x 32 with inverse lattice spacing” '~2 GeV. We used
E ] C ] the p mass to set the scale but also confirmed consistency
0.06 — — 0.06 — — . . . .
C ] C 3 with the scale set from the string tension; both yield equal
= E 1= - 3 lattice spacings to within a few percent. The maés was
< 0.04 — — < 0.04 — — . . .
= C 1= C ] tuned to be optimum with an accuracy of about 5%. Simu-
s0aF— I [~ ] lations on a few configurations at several value$/afwere
C 3 M: all that were needed for this determination. It turns out that
] - i iriricid PR ] for all actions ata~1~2 GeV the optimum value is roughly

0.00

-5 0 5 -5 0 5 1.8, except for the DBW2 for which it is 1.7. In the free field
z z limit, the optimum value isMg=1 [3]. The bare quark

FIG. 6. The correlation function between the lowest eigenvectofmasses in our study ranged fram=0.010 to 0.060. A sum-
of the Wilson Dirac operator and topological charge density as demary of the simulation parameters is presented in Table I.
fined in[17]. The configurations used are the same as those in Fig. The residual mass was extracted by fitting to a constant at
2 and the panels are in one to one correspondence with the panelsl&rge time separations the ratio defined in B@). Errors are
Fig. 2 determined by the jackknife method. As it can be seen in Fig.

7, this ratio exhibits a fairly stable plateau at time separations

actions that suppress localized peaks of the topologicdhrger than five or six, so we chose a fitting range of 7—16 in
charge density can reduce chiral symmetry breaking for doall cases. All data in this figure are far,=16 and for bare
main wall fermions. quark mass 0.020. The quark mass dependence of the re-

If an improved action can reduce lattice artifact configu-sidual mass is mild as seen in Fig. 8. Since we have also
rations which are undergoing topology change, thgacan  matched the lattice spacings, it is safe to compare all the
be reduced. The effect of the gauge action on dislocationactions at the same bare quark mass ignoring renormalization
can be understood by examining its effects on the classicaldffects. Because the numbers we are comparing differ by
minima of the action, i.e., instantons. Using the results oforders of magnitude these effects can be safely neglected. In
Ref. [37] we can see that for the Iwasaki and the DBW2fact the multiplicative quark mass renormalization constants
action the(a?/p?) correction to the action of an isolated have been computd@®8] and shown to be equal within 5%.
lattice instanton is positive, hence instantons of small gize In order to eliminate some of the effects of the remaining
are suppressed. On the contrary for the Wilson action themall mismatch of the lattice spacings, we have plotted the
O(a?/p?) correction is negative, consequently the small lat-residual mass scaled by the square root of the string tension.
tice instantons are enhanced. This suggests that for the In Fig. 9 and Table Il we present our measurements of
Iwasaki and the DBW2 actions, gauge configurations withm,.s for each action for several values bf. In the case of
very localized concentrations of topological charge densitythe lwasaki action we only performed the measurement at
are suppressed. If in addition, there is a suppression of cor-;= 16, and our result agrees with that of CP—PAGE The
figurations where localized topology change is occurringremaining lwasaki points are from the CP—PACS publication
there will be a reduction of explicit chiral symmetry break- [6]. As one can see dt,=16, the DBW2 residual mass is
ing. In conclusion, configurations of nonzero topology do notabout two orders of magnitude smaller than the residual mass
produce large residual chiral symmetry breaking, only con-of the Wilson action while the Iwasaki residual mass is about

TABLE I. Simulation parameters for each gauge action testedpTin@ssm, , is given in the chiral limit for the largest; in each case.
As usualﬁ~1/g§, wheregg is the bare gauge couplindyls is the five-dimensional fermion mads, the size of the fifth dimensiom); the
bare quark mass, and is the string tension computed from the heavy quark potential.

Action B Mg L m m, Jo
Wilson [5] 6.00 1.8 12-24 0.015-0.040 0.48% 0.2276) [52]
Symanzik 8.40 1.8 8-16 0.020-0.060 0.4 0.227818) [42]
Iwasaki 2.60 18 16 0.020-0.060 0.419 0.2316) [53]
DBW?2 1.04 1.7 8-16 0.020-0.060 0.329) 0.224616)
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FIG. 7. The ratio defined in Eq11) ata™*~2 GeV. The fancy FIG. 9. Dependence of the residual mass on the size of the fifth
squares correspond to the Wilson gauge action, the diamonds {§mension ag~t~2 GeV. The octagons correspond to DBW2, the

Symanzik, the squares to Iwa§aki, and the octagons to DBW?2. Th§quares(CP—PACS[6]) and diamond(RBC [5]) to Iwasaki, the

bare quark mass in all cases is 0.020 aget 16. bursts to Symanzik, and the fancy squares to Wilson. All but the
Wilson action fit a simple exponential decay reasonably well. Note

an order of magnitude smaller than that of the Wilson actionthe Iwasaki results use different gauge field ensembles at each value

Finally, the residual mass of the Symanzik action is roughlyof Ls. In the case of the Wilson action, the results are fit to a double

a factor of 3 smaller than that of the Wilson action. In this &ponential function.

figure the solid lines represent fits to simple exponentials in

all cases except the Wilson action where a fit to two expo-Shamir has computed perturbativéha]. His one loop result

nentials is shown. For the Symanzik data a small deviatioris that the light fermion wave functiog(s) decays exponen-

from the simple exponential fit is observedlat=16 while tially away from the wall, i.e,x(s)~q°® with q=3. The re-

the Wilson action shows a very clear deviation. On the considual mass also behaves mg.~q"s. In the case of the

trary, both the Iwasaki and DBW2 data can be fit well with aWilson and possibly the Symanzik action, the fact that no

simple exponential for the same rangelqQf For that reason good fit to a single exponential is obtained may be a signal

it is interesting to quote a value for the parametethat thatm,sscales as a power laf64] andg~1. Such behav-
ior is consistent with the spectral flows observed for the Wil-

0.0004 —r—r—r— I I . son gauge action. For the Iwasaki and DBW2 actions
L | | | . ~0.7 andq~0.6, respectively, which is consistent with a
gap in the spectral flow afl;=1.7—1.8 that is well defined

TABLE II. The residual massn,.s at a~1~2 GeV for the ac-
tions tested. In the construction of this table, for the Symanzik
action we used 51 configurations, for the lwasaki 45, and for the

0.0003

DBW?2 89.
£ 0.0002 — — : .
g i = | my Ly  Symanzik Iwasaki DBW2
S — I T ] 0.020 8 3.04(5x10°° 7.54(5)x 104
- I T . 0.020 12 8.2(4x10* 9.92(20)x 10 °
00001 — 1 T\ﬁ 0.020 16 3.3(3x10°% 1.4(4)x10%  1.60(5)x10°®
- . 0.040 8 2.90(4x10°3 7.49(5)x 1074
a o— ] 0.040 12 7.4(3x10* 9.9(4)x10°°
0.0000 D P 0040 16 2 73((2?;; 107 12(4)x104 1 56((3))>< 10°5
0.00 0.02 0.04 0.06 ' ' ' '
m
! 0.060 8 2.82(3x10°° 7.50(8)x10°*
FIG. 8. The residual mass at ~2 GeV as a function of the 0.060 12 6.95(23%x10 * 1.00(6)x 10 *

bare quark mass. The octagons correspond to DBW2, the squares@m60 16 2.44(18x10 * 1.15(27)x10 4 1.565(23)x 10 °
Iwasaki, and the diamonds to Symanzik. In each dasel6.
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Wilson

Tree level Symanzik

Twasaki

=18

-0.14

E | Double peak plaquette distribution

FIG. 10. The phase diagram of actions with positive plaquette

(B11) and negative rectangles(,) coefficients.

on most configurations. We come back to this point in the ,
following where we investigate the spectral flow for each

gauge action.
Given the dramatic improvement im,. for the DBW2

action, it is natural to wonder whether further improvement
is possible. We have explored simulations where the coeffi

cients of the plaquette and rectangle term in &j.take on
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FIG. 11. The same as Fig. 2, but for the Symanzik gauge action
at 3=8.4. The number of crossings in the neighborhoodvbf
=1.8 appears slightly smaller and the would-be gap slightly larger
than in the Wilson case.

various ratios. Our understanding of the phase diagram of
actions with negative rectangle and positive plaquette coefq large number of spikes in Fig(a}. In configurations

ficients is shown in Fig. 10. We choogh to be the coeffi-
cient of the plaquette term in the action agg, to be the
coefficient of the rectangle term. For ratigs,/B,1>—1/8
the continuum QCD limit is taken g8,;— o with B1,/81;
fixed. For B4,/ B11=—1/8 there is no continuum QCD limit
as B1;— with B1,/84; fixed. This is numerically mani-

where a spike does not occur, i.e. no crossing closkl o
=1.8, the chiral symmetry breaking is controlled by the size
of the gap of the bulk modes in the spectral flow. Here we are
separating the small Wilson Dirac eigenvalues into two
groups: those that cross zero ndéég and those that form a
more continuum band which we refer to as bulk modes. In

fested in bad scaling behavior and the fact that for thesghe case of the Wilson action and configurations with no
ratios, arbitrarily small lattice spacings could not be crossings close tMs, the bulk mode gap is rather small and

achieved. If B1,/8B1; is taken to be around-0.2 then a

not very well defined; thus even on these configurations the

double peak_ed_ plaguette dist_ribution can be found. Thu_s, furzhiral symmetry breaking is relatively large for a givish,.
ther dramatic improvement im; does not seem possible The relation between in the eigenvectors of the Wilson Dirac

with an action which involves only plaquette plus rectanglegperator and the chiral symmetry breaking has also been ex

terms.

V. TOPOLOGY AND CHIRAL SYMMETRY BREAKING

plored in Refs[7,9,15,36,39 and the picture presented is
consistent with the one described above.

For the Symanzik actiofFig. 4(b)] the number of spikes
is slightly smaller than in the case of the Wilson action, and

In this section we take a closer look at how the differentalso the number of crossings in the spectral fléig. 11) is
gauge actions affect explicit chiral symmetry breaking in do-correspondingly reduced. Also, the bulk mode gap is larger.
main wall fermions. As mentioned before, in Figajthe As a result the baseline, or level of the troughs between

quantityry; defined in Eq(14) is presented as a function of peaks inry;, is lower than in the case of the Wilson action,
the configuration number. The large fluctuatidepikes in-  contributing to the reduction in the residual mass.

dicate that there are configurations with relatively large chi- The above picture becomes much clearer with the lwasaki
ral symmetry breaking and configurations with relatively[Fig. 4(c)] and DBW?2 actiondFig. 4(d)]. The number of
small breaking. The configurations with large spikes arespikes is significantly smaller, and the baseline is well de-
those for which the transfer matrix in the fifth dimension hasfined (especially for the DBW2 actign The typical spectral

a near unit eigenvalue, or a correspondinga) zero eigen-  flows presented in Fig. 12 and Fig. 13 again support the fact
value of the Hermitian Wilson Dirac operator. In those caseshat the Iwasaki action, and to a larger degree the DBW2
that we have checked for the Wilson gauge action, a spike iaction, significantly suppress the near unity eigenvalues of
always accompanied by a localizédea) zero eigenvector the domain wall fermion transfer matrix. In both cases the
of the Wilson Dirac operator. In addition, the fact that thegap of the bulk modes in the spectral flow becomes signifi-
spectral flows presented in Fig. 2 have so many crossingsantly larger. As a result the explicit domain wall fermion
very close to the simulation poitMis= 1.8 is consistent with  chiral symmetry breaking is significantly reduced.
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effect on explicit residual chiral symmetry breaking.

o4 J_ o4 J_g It is important to recognize that the above mechanism for
g 02 _.-" “ ..-'—; g 02 —; explici.t chiral _symmetry breaking is related to topology-
t . I - y = changing configuration&ee Ref[36] and references therein
g R 3 for a more complete discussipnThe connection is made
T _o2be” a “—° -0z ‘ " through the index theorem: the domain wall fermion operator
" in the limit Lg—c0 has an index4,40] equal to the number
oA M E ) T of right-handed minus the number of left-handed zero
-3 -2 -1 0 -3 -2 -1 0 modes, which corresponds to the topological charge of the

M, M, background gauge field configuration—a quantity which be-
comes precise in the continuum limit. This integer depends
on the value oM used and is given by the net number of
crossings in the spectral flow of the Wilson Dirac operator as
the Wilson mass varies between a value above the critical
Wilson mass and-Mg. While this index is well defined
only in the limit L¢—o0, our simulations show that the near-
zero eigenvectors of the finiles operator obey the index
theorem to a high degree of accurdby41]. In particular, for
an lwasakia '~2 GeV ensemble, when compared to the
M, topological charge computed using the smoothing method
described in Refs[32,33, the index agrees very well. In

FIG. 12. The same as Fig. 2, but for the Iwasaki gauge action athose cases where the topological charge is not close to an
B=2.6. The number of crossings neighborhoodvbf=1.8 is sig-  integer, we also find a crossing in the spectral flow, a spike in
nificantly smaller and the gap clearly larger than in the Wilson caser[u](t), and a complex structure of eigenvectors that is not

expected from simple chiral symmetry argumdwuts]. If Mg

In Fig. 5 we present the ratig,(t) defined in Eq(13)  sits exactly on a crossing, then the index is not defined, even
for a typical configuration of each action. In all cases it isthe limit Ls—. A crossing in the spectral flow that occurs
evident that the dominant contribution to chiral symmetryaway from the critical Wilson mass corresponds to a configu-
breaking comes from very localized objects, and thus as weation with indistinct topology. Put differently, if the particu-
argued before, it is not very surprising that loda(a?) lar gauge field in question is in the midst of changing its
modifications of the gauge action can have a very significantopology, which must happen if the update algorithm is er-
godic and updates the configuration smoothly, then such a
gauge field must give rise to a crossing. It is also sensible
that such a tunneling from one topological sector to another
proceeds through local changes in the gauge field which have
a characteristic size of one to two lattice spacings. In the
continuum limit, if the density of these dislocations is zero,
then all crossings happen at the critical mass and correspond
to physical topological charge. Thus the index as computed
from the spectrum of the domain wall operator Dirac opera-
tor is well defined in this case.

Consequently, when the lwasaki action or the DBW2 ac-
tion is used, the question arises whether the topology
changes efficiently. We have measured the topological charge
using the smoothing method described in R¢82,33,55
We used 20 APE smearing steps with smearing coefficient
0.45 followed by the extended loop definition of the topo-
logical charge density used in Ref82,33. Our data are
presented in Fig. 14. The configurations shown in this figure
are separated by 1000 sweeps of Cabibo-Marinari pseudo-
heatbath with a Kennedy—Pendleton accept/reject [§&p
We can see that there is a significant slow down in the topo-
logical charge fluctuations for the DBW2 action. Both the

FIG. 13. The same as Fig. 2, but for the DBW2 gauge action apymanzik and the Iwasaki action also show a mild reduction
=1.04. There are no crossings neighborhood/igf=1.8 and the  IN the frequency of change of the topological charge. Al-
gap is quite large, roughly comparable to the gap at the correspondbough the problem seems severe for the DBW2 action, we
ing mass above the critical Wilson mass. Note that this is also tru€an tackle it with brute force. For that reason we have pro-
for the region beyond the next critical Wilson maddg~2.3,  duced a library of DBW?2 lattices foa ! 1.3 GeV and 2
where the four flavor Wilson fermion doublers become light. GeV to be used for several domain wall fermion projects.
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10 . 1 T T | 1 T 1 1 T 1 1 T T T T 1 1 1 1 L= !
sF = 0.2
o o
V3 0.0
-5 = —
-10 Fy 1 =
0 10 20 30 40 50 > 02
4 T T T T T T T T T T T T T T T T T T T L=
g I I | 3
2F —
E 8 3 -0.4 |
—2E- —
—a ‘ 3 -0.6 | -
_6 E 1 1 1 1 | 1 1 1 1 | 1 1 1 1 | 1 1 1 1 | 1 1 1 1 E
0 10 20 30 40 50 : * *
6 T T T T | T T T T T T T T T T T T T T L= 0 1 2 3 4 5 6
= = r
2 oo 3
@ 0f- sy [ —3 FIG. 15. The heavy quark potential for DBWB=0.87. The
-2 od —3 solid line denotes the fit to E20) from which the string tension is
-4 E— —3 determined.
—gE1L 1 11 [ | | [ | I [ T | 1111
0 10 20 30 40 50
f _ - - -
cont # Ae V=3 (Ti[Ly 70L{ +(x+N)]), (18
FIG. 14. The configuration history of the topological chate tox
The configurations are separated by 1000 sweeps of CabiboWi
Marinari pseudo-heatbath with a Kennedy—Pendleton accept/reject
step. At the top is the Symanzik action with lattice sizé282 and to+T
coupling 3=8.4. In the middle is the Iwasaki action with size*16 L, )= T] Uux.b), (19
and B=2.6. At the bottom is the DBW2 action with size %16 o t=tg

X 32, andB=1.04. All cases correspond to roughly the same scale, . o

a 1~2 GeV. The DWB2 action, which suppresses configurations2nd V(r) the heavy quark potential. The potential is ex-

with small instantons, shows a significant reduction of the tunnelingracted by taking ratios of the correlation function in Etp)

between topological charge sectors. atTandT+1. The systematics involved in choosifigvere
carefully studied and the optimal was chosen. For the 1.3

For generating this library we used overrelaxed CabiboCeV latticesT was 4 while for the 2 GeV lattices it was 7.

Marinari pseudo-heatbath with a Kennedy—Pendleton accepl/N€ potentiaV(r) is fit to

reject step. Each sweep consisted of one pseudo-heatbath

step and some overrelaxation hits. The sased 1.3 GeV V(r)=C— 3+Ur_ (20)
configurations are separated by 1000 sweeps with no overre- r

laxation while thea ! 2 GeV configurations are separated , : .
1000 sweeps each sweep containing four overrelaxation hits. The above formula gave very good fits fo'r spatial dis-
Given the considerable cost of measuring domain wall fer!ancesr=> V2. The upper range af was determined by the
mionic observables, this higher cost of producing DBW?2 lat-
tices at 2 GeV is negligible. However, it is clear that this
brute force approach will become less practical for smaller
lattice spacing since topology change is likely to be rapidly
suppressed as we approach the continuum [iB¥. 0

0.2

VI. HADRONIC OBSERVABLES FOR THE DBW2 ACTION 5

In this section we discuss various hadronic observables -0.2 |
calculated with the DBW2 gauge action@t0.87 and 1.04
which correspond t@ '~1.3 and 2 GeV, respectively.

-04 |
A. The heavy quark potential

We measure the heavy quark potential as in [R&Z] by 0 1 2 3
fixing to Coulomb gauge and then computing the two-point
correlation function of products of temporal links. More pre-
cisely, FIG. 16. The same as Fig. 15 but f8e=1.04.
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TABLE Ill. Parameters and resulting scales for the DBW2  TABLE IV. The residual mass for the DBW2 gauge action cal-
gauge action used for the spectrum analysis. The quaayfity the  culated on the same configurations used to evaluate the hadronic
lattice spacing determined by thhemeson mass taken from Table observables. The values for;=0 have been obtained from a linear
VIII. The jackknife errors are quoted for the string tensierand  fit in m;. The value form;=0.09 at3=0.87 is excluded from the

the Sommer parametey,. fit.

B Ms L, Statistics Jo ro a,'(Gev) B=0.87 B=1.04

087 1.8 16 100 0.326) 3584)  1.314) my Mres my Myes

104 17 16 405 0.22466) 5.243)  1.9473) 0.01 5.44 (23K 10 * 001 1.80 (9K 10 5
0.02 5.16 (22x 104 0.015 1.80 (11x10°°

-4 -5

distance where the error on the potential became unaccepﬁ'-o3 4.84 (21x 1074 0.02 177 (11x 1075

ably large. The maximum distance used was6 and 7 for -0 4.55 (19 1074 0.025 1.74 (11x 1075

the 1.3 and 2 GeV lattices, respectively. Figures 15 and 18-9° 4.30 (18x o 0.03 1.71 (10K 10

show the heavy quark potential as a function of distance. Th8-06 4.08 (16X 10_4 0.035 1.69 (8x 10_5

results for the string tensionr and the Sommer parameter 0-09 3.52 (13K 10_4 0.04 1.67 (7x 10_5

[43,44 r, are tabulated in Table Ill. These results are used ir? 5.69 (26)<10 0 1.86 (11)x10

our subsequent discussion of the scaling of hadronic observ=

ables.

data are used to extrapolate ig—0 for S=1.04. On the
B. Simulation and analysis other hand, the largest value;=0.09 for 3=0.87 is not
) ) ) used for the extrapolation.

_For each set of gauge conflgur_atlons, domain wall fer- \ve take the chiral limitm;— —m,.40) as the physical
mion propagators are computed with two types of sourcesygint for u, d quarks. This determines the physigameson
(1) a local point source an(2) a Coulomb gauge fixed ex- massm, . With the inputm, =770 MeV, the lattice spacing
tended source which is either a wall source g+ 1.04 or ais determined. The kaon physical po'm'f, which roughly

box source with 8 volume for 3=0.87. (We set the source
o corresponds to half the strange quark massffoand my«
to one at each site inside the box and zero elsewhé&he is defined bymw(mfzm}()/mp(mﬁ M) =0.645 using

local source is used for the determination of the decay con- .
. L only degenerate quark masses. We do this procedure for ev-
stants and also the axial current renormalization fazipr

- . ery jackknife sample to estimate the error for values at the
éﬁr;gfez only. The extended source is used for all Otherphysical kaon point,

In Table IV we givem,in the chiral limit for the same

ensemble of configurations used for the hadronic observables C. Chiral property of pseudoscalar mass

to be discussed in this section. We have fitbegdd{ m;) with Because of the almost exact chiral symmetry of domain
a linear function oim; to obtainm,{0) for which the chiral wall fermions and the use of the quenched approximation,
limit of low energy physics is defined as;= —m,4{0). All the pion two-point function suffers contamination from topo-

TABLE V. Hadron masses computed using the DBW2 gauge action. The super&dpigiisd AA refer to the pseudoscalar and axial
vector correlation functions, respectively. All masses are obtained with degenerate quarks.

B m; mPP mAiA m, my
0.01 0.224825) 0.2179(31) 0.607(22) 0.790(75)
0.02 0.2997(19 0.2966(23) 0.640(17) 0.871(23)
0.03 0.360316) 0.3590(20) 0.662(11) 0.921(14)

0.87 0.04 0.412815) 0.4118(19) 0.685(8) 0.975(10)
0.05 0.4601(14) 0.4589(18) 0.709(6) 1.021(8)
0.06 0.5037(13 0.5021(17) 0.732(5) 1.067(7)
0.09 0.619213 0.6170(15) 0.803(4) 1.197(6)
0.01 0.1794(22) 0.1759(21) 0.413(6) 0.546(13)
0.015 0.209817) 0.2075(18) 0.424(4) 0.575(9)
0.02 0.2377(15) 0.2359(16) 0.435(4) 0.602(7)

1.04 0.025 0.263113) 0.2617(15) 0.447(3) 0.628(6)
0.03 0.286812) 0.2857(14) 0.4586(29) 0.652(5)
0.035 0.309012) 0.3081(13) 0.4705(26) 0.676(4)
0.04 0.330011) 0.3293(12 0.4825(24) 0.699(4)
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TABLE VII. Fit results for the quenched chiral log contribution

i to the pion mass determined from tA& correlator using Eq(23).
The symbol “—” indicates that the parameter is constrained to be
zero.

04

03 |

B m a, b 8 x>  dof

0.87 0.01-0.06 4.086) — 0.031(14 1.6(1.5 4
0.87 0.01-0.09 3.4(23) 6.41.6) 0.107(39) 0.19(25 4
1.04 0.015-0.04 2.5828 — 0.049(14 2.0(5) 4

0.1

whereq and g are four-dimensional quark fields defined in
] Eq. (5). As discussed in Ref5], the two types of correlators
‘ ‘ ‘ suffer differently from topological zero modes. The leading
0 0.02 0.04 0.06 0.08 0.1 contribution to the pseudoscalar correlator~iSL/(mf2\/V)
L while it is ~1/(m; V) for the axial correlator. Although the

FIG. 17. The quenched pion mass squared as a function; of relative contribution from the pole compared to the physical
for B=0.87. Masses extracted from the pseudosc&lBy and axial  one is the same for both, the prefactor of thm/{N) term
vector (AA) correlation functions are shown. They agree quite well,jg expected to be suppressgsl. Thus, the mass extracted
except for the point am;=0.01 where there is a small difference from the PP correlator is expected to have a stronger finite
outside of statistical errors. The physical volume is roughlyyglume effect from zero modes than thé correlator. The
(2.4 fm)*, so contamination from topological zero modes which ghserved effect on the meson mass calculated for light quark

can induce such splittingsee textis suppressed. The lineis afitto 1 55es is to shift it above a linear extrapolation from the
a simple linear function. The extrapolation slightly overshoots the,

AR ) . region of heavier quark mass.
expected chiral limit pointm; =~ M (see inset suggesting a The pseudoscalar mass extracted from both types of cor-
quenched chiral log.

relators is presented in Table V. Figure 17 shows the pseu-
doscalar mass squared as a functiomefor 8=0.87. Both

from their infinite volume valuefS]. The effect is expected Slues of the pion mass are consistent with each other for
I infinite volume vaiu : IS €xp m;=0.02. However, am;=0.01 the mass extracted from the

to be inversely proportional to the square root of the vqumePP correlator lies above th8A one, outside of their statisti-

Because we used different physical volumes for the two dif- : :
ferent gauge couplings[V~(2.4 fm)® for B=0.87, cal errors. Because the axial correlator is expected to have

X ller finit I ffects f des, thi
(1.6 fm)® for B=1.04], the size of the effect on the pseudo- smatier finfte Voume Cliects from zero modes, we use tis

| hould be diff ti Wwo latti bl correlator for further analysis.
Scajar mass shou € dierent in our two latlice enSembIes. 1o inagr fit of the pion mass squarednm is quite good

To study zero mo_de effects we_examine_ the pseuqloscalzfﬁ the region 0.0£m;=<0.06 as indicated by thg?/dof
msaess d;rsoc';'l;:_VOSS'Z%;eCr:I;;’VS(;ErZ'I%l;nCt'OnS' One is the which is tabulated in Table VI. Note, we are using the same
pseu pseu set of gauge configurations for all valuesraf but employ

(72(x)7(0)) = (1J4(x)iJ%(0))

= —(qmysa(x)q72y5q(0)),  (21)

logical near zero modes, which causes a shift in fitted mass

0.1
and the other is the correlator of the temporal component the

axial-vector currentAA) 0.08 ]
a a ~.a — a N 0.06 i
(AG(X)A5(0)) =(a7¥570a(X)a7*¥5700(0)), (22) c
0.04 | 1
TABLE VI. Results from fittingm?2 to the linear functionc,
+c,m;. The columnm; shows the fitting range. 0.02 1
B Correlator  my Co cy x>  dof 0
0.87 PP 0.01-0.06 0.009014) 4.057(29) 2.8(1.2 w w s s
087 AA  0.01-0.06 0.006816) 4.090(37) 0.17(35) -

1.04 PP 0.01-0.04 0.00569) 2.566(21) 3.4(8)
1.04 PP  0.015-0.04 0.00479) 2.597(19) 1.10(25)
1.04 AA 0.01-0.04 0.00449) 2.585(21) 2.6(7)
1.04 AA 0.015-0.04 0.003%9) 2.615(20) 0.86(23)

FIG. 18. The same as Fig. 17, but 8= 1.04. Here the physi-
cal volume is roughly (1.6 fnf) so zero mode effects in the masses
are visible, and the simple linear fit clearly overshoots the chiral
limit point M;= — M.

O~ OEA D
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FIG. 22. Scaling of the nucleon and* masses with lattice
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an uncorrelated fit. One can reliably extract the physical
kaon mass; however, the fit overshoots the point

= —m,esWhere the pion mass should vanish. This is a signal
of nonlinearity for the pion mass at smail;. Instead of a
linear function we should employ the quenched chiral log
[45] formula with the constraint that the pion mass vanishes
atme= — Mg,

m2=a,.(m;+md| 1— log

2
QxPT

aw( my + mres) )

+b(ms+ Myeg)?, (23)
where we have introduced the quadratic term in addition to
the expression used in R¢#6]. As is discussed in Ref46],

Eq. (23) has a form suggested by chiral perturbation theory.
Note that the explicit chiral perturbation theory formula, e.qg.,
Eqg. (90) of Ref. [46], involves three parameters, 5, and
Aqypt and additional terms. However, within our parameter
range and numerical accuracy these additional terms have the
effect of adding an undeterminedy-independent constant

to the expression within the square brackets. Our choice of
zero for this unknown constant represents a rescaling of the
parameterss and A g, p1 from those that appear in the chiral
perturbation theory prediction.

The data fit this formula well with a reasonable value of
the chiral log coefficien® as listed in Table VII, where the
scale is set ad o,pr=1 GeV. If the coefficient of the qua-
dratic termb is not set to zero in the fit, a somewhat larger
value of § results. This is because the two terms tend to
cancel each other. Note that the valueba$ the same order
as a,. Ultimately, a proper covariant fit with reliablg?
should be used to distinguish the two fits. At present we do
not have enough statistics to do this.

Figure 18 shows the pion mass squared@er1.04. The

FIG. 21. Scaling of thep meson mass with the lattice spacing results for the larger value afi; agree with each other, but

set by the Sommer parametgr The Wilson data are from Reb].

deviations appear a%; decreases. In fact, pronounced up-
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TABLE VIII. Results from fitting the vector meson mass to a linear functay; c;m; . Values at the physical points and thparameter
are also listed.

B m Co c; e dof m, My« /m,, J
0.87 0.01-0.06 0.59Q19) 2.37(28 0.14(50) 4 0.589(19) 1.138(11) 0.377(37)
1.04 0.01-0.04 0.386) 2.34(12) 0.08(20) 5 0.388(6) 1.136(5) 0.387(16)

ward curvature of the data, which was not observed for the
axial correlator for3=0.87, result in large values gf/dof
listed in Table VI for both correlators. The lines in the Fig.
18 show the results of the fit excluding the lightest pointg m; Co cy Y2 dof my
m¢=0.01, which makes¢?/dof smaller. Thus we can as-

sume that the pion mass for;=0.015 does not suffer much 0.87 0.01-0.06 0.78®7) 4.76(44) 0.5(1.6) 4 0.780(27)
from zero mode effects. As this fit reproduces the data in thé.04 0.01-0.04 0.50212) 4.96(26) 0.5(8) 5 0.502(12)
range 0.015m;=<0.04 very well, we use it for the interpo-
lation of the kaon point. Also using this region of;, one
can fit data with the quenched chiral log without the qua-
dratic term fory?/dof=0.5(1). Theresultings is consistent

to that for3=0.87. Since our range of; for 3=1.04 is not

TABLE IX. Results from fitting the baryon mass to a linear
function, cy+c;m; . Values at the physical point are also listed.

wide enough to disentangle the quadratic term and the log ~ %°
term, we do not list a result for nonzeo +
0.45 | R
D. Hadron spectrum
) o 04Ff .
We list the results for the vector meson and nucleon §
masses in Table V. Figures 19 and 20 show the vector mesor 035 | |
and nucleon masses as functionsmgffor 3=0.87 and 1.04, '
respectively. Physical nucleon, rho, akd masses are indi-
cated on the figure. , 030 002 o004 006 008 01 012 o014
Figure 21 presents the rho meson mass versus lattice (arr )2
spacing squared, both normalized with We also plot the 0
results obtained with the Wilson gauge action from R&f. FIG. 23. Scaling of the quenchedparameter with lattice spac-

We have selected values obtained atB,\(,Ls)  ing. The experimental point is shown on the vertical axis. The large
=(6,16°,24),(5.85,12,20),(5.7,8,48). These lattices have discrepancy with experiment is due to quenching.

almost the same physical volume, dngdis the largest avail-
able in each case. We observe consistency between DBW2
and Wilson actions. The flatness of the data reflects the small
size of the scaling violation.

Figure 22 is a scaling plot for the nucleon akd masses TABLE X. The axial current renormalization factor and pseudo-
normalized by thep meson mass. Again good scaling is ob- scalar decay constants.
served. Th&K* appears to be lighter than experiment, which
is consistent with other quenched simulations. For thes m; Za foa o8
nucleon mass, there is an observed discrepancy between the
results with Wilson type fermions and staggered fermions

0.02 0.7819937)  0.1084(31)  0.1078(34)

(see comparison by AoKi47]). The former gives a lighter 0.03  0.7840431)  0.1121(27)  0.1110(27)
nucleon mass while the latter is consistent with the experi9-87 0.04 07861228  0.1165(26)  0.1145(24)
ment. The nucleon mass for domain-wall fermi@ee Fig. 0.05  0.7882426)  0.1208(26)  0.1192(24)
20 and Table IX is slightly larger than experiment for the 0.06  0.7904225  0.1247(26)  0.1237(24)
lattice spacings we examined. We need to perform simula-

tions for larger physical volume at *=2 GeV, as well as 0.01  0.8414217)  0.0703(22)  0.0697(21)
simulations at smaller lattice spacings to do the continuum 0.015 0.8419114)  0.0716(17)  0.0720(17)
extrapolation needed to compare with conventional fermions. 0.02 0.8424412)  0.0732(14)  0.0743(15
For the comparison within the domain-wall fermions, given1.04 0.025  0.8430011) 0.0751(12  0.0767(14)
the statistics and the fact that the physical volumes of our 0.03 0.8435810) 0.0771(11)  0.0790(13)
ensembles are not the same, we cannot say if the DBW2 0.035 0.844179) 0.0790(11)  0.0813(12
action exhibits better scaling than the Wilson gauge action 0.04 0.8447809) 0.0809(10)  0.0835(12)

though it seems that the scaling is at least as good.
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0.82 E. Pseudoscalar decay constants
The pseudoscalar decay constants are calculated from the
0.81 o full 1 amplitude of the point-point two-point function of the tem-
o 1st term only poral component of local axial vector current,
Z'm
1 | e M= (AXDAY0), (@29
N Za x
oy | for t>1. This simple local current is not partially conserved,
unlike A, [Eq. (7)] which obeys the Ward-Takahashi identity
078 | | [Eq. (6)], so the local current receives a multiplicative renor-
malization. We can calculate the renormalization fadigr
from the ratio of the correlation functions of the two cur-
0.77 ‘ ‘ ‘ rents. Here we employ a ratio designed to remove some of
0 ooz 0 0.06 0.08 the lattice spacing errd5]
f
FIG. 24. The local axial current renormalization factor as a R(t)= E C(t+1/2+C(t—-1/2) I 2C(t+1/2)
function of m; for 8=0.87. The lines correspond to fits to Eg§7) 2 2L (1) L(t)+L(t+1)|
(lower) and the first term onlyuppe). The difference arises from (27

lattice spacing errors that are proportionainte.
whereC andL are the correlators of the pseudoscalar density

The J parameter, which is introduced in R§48] to ex- with the partially conserved and local axial currents, respec-

amine the effect of quenching on the mass spectrum, is adively,
fined by
i C(t+1/2)= 2 (AJ(x,1)PF(0)), (28)
X

_ 4
J=my« d_i_ ) (24)

L(t)=2 (A3(X,)PX(0)). (29)
wheremyx(my) is evaluated atm,(mg)/m_(mg) = mys /my §
= 1.8 by definition. The slope ai, with respect tomf, is The first and second terms on the right-hand side of(Zdg.
determined with the data in 0.6Im;=<0.06 for3=0.87 and  remove the?(a) scaling error, and suppress tta?) error
0.015=m;=0.04 for =1.04, using pion mass determined in the sum. The value d, is determined by fittingR(t) to
with AA. An approximate phenomenological value calculateda constant for the interval6t<26, whereR(t) is flat to a
from the experimental mass spectrum is very good approximation. The results are given in Table X
and plotted in Fig. 24. An estimate df, with only the first
term is also plotted to demonstrate that the complex ratio in
Micx —M,, Eq. (27) actually works. Although linear dependence on
JZ”‘K*WZOAS- (25 in R remains for both cases, it is very small for the full
K & expression of Eq(27). We use the valu&, obtained in the
chiral limit m;— —m,¢ for the calculation of the pseudo-

Our lattice results for the parameter, listed in Table VIl scrleI\ar dhecay c%nsotlant, Wlhiclh is gr]]ivec? in Table XI. .
and plotted in Fig. 23, show a significant difference from the_AnOther method to calculate the decay constant is to use

phenomenological value. However, these results are consi%Ije Ward-Takahashi identity to derive its relation with the
tent with other quenched resultsee a summary given by pseudoscalar to vacuum matrix element of the pseudoscalar

Kaneko [49]). Note that we have used degenerate quarlgens'ty’

masses which could explain some of the difference between

our result and experiment, but the largest source of the dis- fr m_:
crepancy is likely to be due to quenching. (Mi+Meg 2

2
" = (0|32 7,p=0). (30)

TABLE Xl. The axial current renormalization factor at;= —m,s and the pseudoscalar decay constants at physical points in MeV.

B Zp(mp=—myed fon for fi fi” FRAEA fi/E5F
0.87 0.7775@45) 130.46.7) 129.07.3) 148.95.2) 147.35.4) 1.14226) 1.14130)
1.04 0.84018L9) 130.84.9) 129.05.0) 147.43.3 149.73.6) 1.13924) 1.11825)
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FIG. 25. The quenched pseudoscalar decay constant as a func- FIG. 27. A scaling plot for the pion and kaon decay constants.

t|oq of m for 5=0.87. The_ results from the two_techr_uques_de The DBW?2 results appear to preserve the good scaling that was
scribed in the text agree quite well. The data are fit to simple linear . )

. : . observed with the use of the Wilson gauge actidata from Ref.
functions, and extrapolatetpion) or interpolated(kaon to the

physical pointgfilled symbols. [5D-

This matrix element is determined from tiRP correlator, " Table XI and plotted in Fig. 27 against lattice spacing
Results with each correlator fg@=0.87 are shown in Fig. squared. They are consistent with those reported for the Wil-

25. For both methods we use the resultsnof extracted SON actior{5]. We observe good scaling both fby andf .

from the AA correlator with the extended source quarkThe result forf . is in good agreement with the experimental

propagator since it is our most precise determination. value. However, the ratié. /f, appears to be smaller than
Consistency between both results shows that we havéhe experimental value 1.22, which is an expected effect of

good control over the chiral symmetry breaking through ourquenching45].

determination ofm,. Also, possible zero mode effects,

which influence the two correlators differently, appear to be

small at least form;=0.02, which is consistent with the VII. CONCLUSIONS
absence of zero mode effects in the pion mass over the same ) ]
range ofm;. In this paper we have demonstrated that the DBW?2 action

Figure 26 is the same plot but f@8=1.04. The results Significantly improves the chiral properties of domain wall
from the two determinations are also in good agreemenf€rmions. The main reason for this improvement is the sup-
Results for decay constants at the physical points are givepression of gauge configurations which support unit eigen-
values of the transfer matrix in the fifth dimension and hence
allow significant mixing of the light chiral modes that are
localized on opposite boundaries of the fifth dimension.
These problematic configurations are also those which occur
as the topological charge of the gauge field changes during
Monte Carlo evolution. One key to improving the domain
wall fermion chiral symmetry is to use an improved gauge
action which suppresses these small dislocations. This sup-
pression works so well in the case of the DBW2 action that
at a '=2 GeV andL =16 the residual chiral symmetry
breaking is roughly two orders of magnitude smaller com-
O AA correlator pared to the Wilson action case and therefore is completely
o PP correlator negligible. Even at strong couplinga{1~1.3 GeVIm, is
about three times smaller in physical units than for the Wil-
son action at 2 GeV. In both cases the valud gfs 16.

In addition to the suppression of these small topological
dislocations associated with zero crossings of the spectral
flow of the four-dimensional Wilson Dirac operator, we have

FIG. 26. The same as Fig. 25, but f8=1.04. Although the also observed an increased gap in the spectral flow. Conse-
results agree within statistical errors, the agreement is not as goaguently, the light boundary mode wavefunctions decay faster
as that atB=0.87. in the fifth dimension. For the DBW?2 action this leads to a

ps

0.07

0 0.01 0.02 0.03 0.04 0.05
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residual mass dependence loniproportional to 0.6s. This  though the DBW2 action will always suffer more than the
dependence is close to Shamir’s perturbative predi¢ti@h  other actions explored in this paper.

Approaches based on the proposals made by Sharir3in

may be effective in further reducing this perturbative base- ACKNOWLEDGMENTS

line. Work along these lines is currently underway. The calculations reported here were done on the 400
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wall fermions seen in quenched simulations with the Wilsonthe facilities essential for the completion of this work. The
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