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We study the chiral properties of quenched domain wall fermions with several gauge actions. We demon-
strate that the residual chiral symmetry breaking, which is present for a finite number of lattice sites in the fifth
dimension (Ls), can be substantially suppressed using improved gauge actions. In particular the Symanzik
action, the Iwasaki action, and a renormalization group improved gauge action, called the doubly blocked
Wilson ~DBW2! action, are studied and compared to the Wilson action. All improved gauge actions studied
show a reduction in the additive residual quark massmres. Remarkably, in the DBW2 casemres is roughly two
orders of magnitude smaller than the Wilson gauge action ata2152 GeV andLs516. Significant reduction in
mres is also realized at stronger gauge coupling corresponding toa2151.3 GeV. As our numerical investiga-
tion indicates, this reduction is achieved by reducing the number of topological lattice dislocations present in
the gauge field configurations. We also present detailed results for the quenched light hadron spectrum and the
pion decay constant using the DBW2 gauge action.

DOI: 10.1103/PhysRevD.69.074504 PACS number~s!: 11.15.Ha, 11.30.Rd, 12.38.Gc, 12.38.Aw
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I. INTRODUCTION

Domain wall fermions@1–4# are expected to provide a
implementation of lattice fermions with exact chiral symm
try, even at a finite lattice spacing. To achieve this ex
symmetry, an infinite fifth dimension must be introduced a
simulations have been done to explore the limit of a la
fifth dimension for both full and quenched QCD@5–10#. The
finite size of the fifth dimension,Ls , used in numerical simu
lations, produces a small amount of chiral symmetry bre
ing, which should go to zero in the limitLs→`. In practical
implementations the aim is to achieve the smallest ch
symmetry breaking possible at a givenLs , thus minimizing
the cost of the simulation. Further information about dom
wall fermions and their applications is given in recent
views @11,12#.

There have now been several suggestions on how to m
mize the computational cost of domain wall fermions. A
obvious way to achieve this is to make the five-dimensio
eigenvectors of the domain wall fermion operator, which
small eigenvalues should be localized on the fo
dimensional boundaries of the fifth dimension, decay fas
in the fifth dimension. This reduces the mixing between
opposite chirality modes, which are bound to opposite e
of the fifth dimension. Shamir@13# has calculated the fifth
dimensional decay of the eigenfunctions with zero eigenv
ues using perturbation theory, suggesting a modification
the four-dimensional component of the domain wall fermi
operator to increase the decay. This interesting perturba
result may explain some of the features seen in nonpertu
tive simulations.~Of course, modifications to the doma

*On leave from Institute of Theoretical Physics, Kanazawa U
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wall fermion operator may increase the computational c
by more than the reduction inLs reduces it.! Another method
of improving domain wall fermions is proposed in Ref
@14,15#. The basic idea behind these proposals is to pro
out the zero modes of the four-dimensional Hamiltonian
scribing the propagation in the fifth dimension. As a resu
the localization on the boundaries of the fermionic lig
modes is enhanced.

In this paper we systematically examine a different o
tion: the modification of the gauge action to suppress
finite Ls explicit chiral symmetry breaking@16#. Note that in
principle this is a different criteria from improving the gaug
action to achieve better scaling, in lattice spacing, of phys
observables. We will investigate the scaling of observable
well, to check that while reducing the explicit chiral symm
try breaking we do not distort the approach to the continu
limit. It is worth noting that methods which improve th
domain wall fermion operator, such as those suggested
Shamir and the one investigated here are likely independ
of each other, so a combination of both techniques may l
to even greater efficiency in domain wall fermion simul
tions. However, as we will see, our approach obviates
need of separately treating the near unit eigenvectors of
transfer matrix, as gauge configurations for which these
cur are suppressed. This has also been studied in Ref.@17#.

The observation that the gauge action can affect sign
cantly the chiral symmetry of domain wall fermions is n
new. Both the RBC@18# and CP–PACS@6,19# collaborations
have observed that the use of the Iwasaki action@20# sub-
stantially improves chiral symmetry in quenched simu
tions. Also in Ref.@21# it was observed that the one-loo
Symanzik@22# improved gauge action improves chiral sym
metry to a lesser degree. Here we extend these results
explore the reason behind the observed improvement.

This paper is organized as follows. In Sec. II we give
-
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brief description of the gauge actions under study. In Sec
we introduce the observables used for studying chiral s
metry breaking and also present the standard Wilson ac
results to provide a reference point. Section IV contains
sults for the different actions we studied. We find that t
doubly blocked Wilson~DBW2! action @23,24# gives re-
sidual chiral symmetry breaking two orders of magnitu
smaller than the Wilson gauge action at comparable lat
spacings and values ofLs . In Sec. V we discuss the dom
nant mechanism of explicit chiral symmetry breaking in d
main wall fermions, which we find is driven by lattice art
facts, or dislocations, at the lattice spacings conside
These dislocations occur as the topological charge of
gauge field configuration changes during Monte Carlo e
lution. Given this large improvement in residual chiral sym
metry breaking and the fact that the DBW2 action has
been used before with domain wall fermions, in Sec. VI
present results for some hadronic observables in orde
confirm consistency with quenched simulations using ot
gauge actions, to check scaling with lattice spacing and
lay a foundation for future work@25#.

II. PURE GAUGE LATTICE ACTIONS

As mentioned, we study the chiral properties of quench
domain wall fermions with Symanzik, Iwasaki, and DBW
gauge actions. These actions are built from closed loop
up to six links and provide a sample of typical lattice actio
used to improve scaling of observables. As a baseline
comparisons we start with the Wilson action@26# which is
defined by

SG@U#52
b

3 (
x;m,n

P@U#x,mn , ~1!

whereP@U#x,mn is the real part of the trace of the path o
dered product of links around the 131 plaquette in them,n
plane at pointx and b;1/g0

2 with g0 the bare gauge cou
pling. This is the original non-Abelian gauge action intr
duced by Wilson, which hasO(a2) errors (a is the lattice
spacing!.

To begin, we study the Symanzik one loop improved
tion @22# where bothO(a2) and O(g2a2) errors are re-
moved. This action is defined as

SG@U#52
b

3 S c0 (
x;m,n

P@U#x,mn1c1 (
x;mÞn

R@U#x,mn

1c2 (
x;m,n,s

C@U#x,mnsD , ~2!

whereR@U#x,mn and C@U#x,mns denote the real part of th
trace of the ordered product of SU~3! link matrices along 1
32 rectangles in them,n plane and them,n,s,2m,2n,
2s paths, respectively. The coefficientsc0 , c1, andc2 are
computed in tadpole improved one loop perturbation the
@22#. For this action and the remaining ones,b;1/g0

2 as for
the Wilson action, but the precise numerical factors diffe
07450
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In addition to the above actions we also studied
Iwasaki @20# action and the DBW2 action@23,24#. These
actions are both renormalization group~RG! improved ac-
tions in a truncated, two-parameter space. They can be w
ten down as

SG@U#52
b

3 S ~128c1! (
x;m,n

P@U#x,mn

1c1 (
x;mÞn

R@U#x,mnD ~3!

with c1520.331 for the Iwasaki action andc1521.4069
for the DBW2 action. In the case of the Iwasaki action t
coefficient c1 is computed in weak coupling perturbatio
theory. For the DBW2 actionc1 is computed@23# nonpertur-
batively using Swendsen’s blocking and the Schwing
Dyson method. QCD–TARO has studied@24# the RG flow in
the two parameter space of the plaquette and the recta
couplings and concluded that DBW2 is a good approxim
tion to the RG flow in this plane at least for a range of coa
lattice spacings.

Although the Iwasaki and DBW2 actions are motivat
by the desire to remain on the RG trajectory for quench
QCD, the truncation to the explicit form used is an appro
mation. The accuracy with which these truncated actions p
serve the RG trajectory must be investigated numerica
Simulations with the Iwasaki action@27# and the DBW2 ac-
tion @24# show improved scaling of the heavy quark potent
and the critical temperature for the finite temperature ph
transition, compared to the Wilson gauge action. These
tions serve as useful starting points for studying the effect
the gauge action on residual chiral symmetry breaking
domain wall fermions.

III. EXPLICIT CHIRAL SYMMETRY BREAKING WITH
DOMAIN WALL FERMIONS

The central idea behind domain wall fermions is that fo
dimensional fermionic states of opposite chirality are loc
ized dynamically on opposite boundaries of an extra fi
dimension. The domain wall fermions are coupled to fo
dimensional gauge fields replicated in the fifth direction,
the light states can be used to simulate a vector gauge th
like QCD. The five-dimensional fermion action is a genera
zation of the Wilson fermion action@26# with open boundary
conditions in the fifth dimension@3#. In the free field limit,
localization of a single fermionic flavor on the fou
dimensional boundaries occurs if the five-dimensional f
mion massM5 is in the interval~0,2!. This interval is shifted
when interactions are switched on. For an infinite fifth d
mension (Ls→`), chiral symmetry of the light states i
manifest since they have no overlap. Four-dimensional li
quark q,q̄ fields are constructed from the five-dimension

fermionsC,C̄ by

q~x!5PLC~x,0!1PRC~x,Ls21!, ~4!

q̄~x!5C̄~x,Ls21!PL1C̄~x,0!PR , ~5!
4-2
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wherePR/L5 1
2 (16g5) are the right-handed and left-hande

projection operators. Hence a four-dimensional mass t
mfq̄q can be introduced if the fifth dimension boundaries
coupled directly with a parametermf @3#. For finite Ls ex-
plicit chiral symmetry breaking is induced by the mixing
the light states which now extend across the fifth dimens
Our conventions throughout this paper are the same as t
in Ref. @5#.

In order to quantify the explicit chiral symmetry breakin
induced at finiteLs , we define the residual mass (mres)
through the Ward-Takahashi identity@4#:

Dm^A m
a ~x!O~y!&52mf^J5

a~x!O~y!&12^J5q
a ~x!O~y!&

1 i ^daO~y!&, ~6!

where

A m
a ~x!5 (

s50

Ls21

signS s2
Ls21

2 D j m
a ~x,s! ~7!

is a four-dimensional partially conserved axial current wh
is constructed from the five-dimensional conserved vec
current,

j m
a ~x,s!5

1

2
@C̄~x1m̂,s!~11gm!Ux,m

† taC~x,s!

2C̄~x,s!~12gm!Ux,mtaC~x1m̂,s!#. ~8!

The flavor matrices are normalized to obey Tr(tatb)5dab,
Dm f (x)5 f (x)2 f (x2m̂) is a simple finite difference opera
tor, and the pseudoscalar densityJ5

a(x) is

J5
a~x!52C̄~x,Ls21!PLtaC~x,0!

1C̄~x,0!PRtaC~x,Ls21!. ~9!

Note thatJ5
a(x) is a four-dimensional pseudoscalar dens

constructed from fields on the boundaries of the fifth dim
sion. The identity~6! differs from the continuum expressio
by the presence of theJ5q

a (x) term. J5q
a (x) is analogous to

J5
a(x), but is built from fields in the bulk atLs/2 andLs/2

21.

J5q
a ~x!52C̄~x,Ls/221!PLtaC~x,Ls/2!

1C̄~x,Ls/2!PRtaC~x,Ls/221!. ~10!

We refer to this term as the ‘‘midpoint’’ contribution t
the divergence of the axial current. The effect of the expl
chiral symmetry breaking can be described by the so-ca
residual mass termmres @5#. From the midpoint term we de
fine the ratio

R~ t !5

(
x,y

^J5q
a ~y,t !J5

a~x,0!&

(
x,y

^J5
a~y,t !J5

a~x,0!&

, ~11!
07450
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which, for t greater than sometmin should be independent o
t and equal to the residual mass, giving

mres5

(
x,y

^J5q
a ~y,t !J5

a~x,0!&

(
x,y

^J5
a~y,t !J5

a~x,0!&
U

t>tmin

. ~12!

As we will see, in our numerical simulationsR(t) is essen-
tially t independent fort*5 and thet dependence fort&5
will be discussed in Sec. IV. To calculatemres, we average
over a suitable plateau whereR(t) is constant. In the subse
quent discussionmres serves as our basic measure of chi
symmetry breaking. In addition, it is useful to define the ra

r [U]~ t !5

(
x,y

^J5q
a ~y,t !J5

a~x,0!& [U]

(
x,y

^J5
a~y,t !J5

a~x,0!& [U]

, ~13!

and

r̄ [U]5(
t

r [U]~ t ! ~14!

which are both measures of chiral symmetry breaking o
given gauge configurationU.

Before presenting results for the improved gauge actio
we discuss what is known about the Wilson action ata21

'2 GeV (b56.0). In Fig. 1 we show the residual mass as
function of Ls ~the data are from Ref.@5#!. While in pertur-
bation theorymres is expected to decay exponentially, a
stated in Ref.@5# the data do not support this. However, i

FIG. 1. The residual mass normalized by the square root of
string tension (s) as function of theLs for the Wilson gauge action
at b56.0 ~results are from Ref.@5#!. The solid line is a fit to a
double exponential. At largeLs the decay is rather weak.
4-3
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behavior can be fit with two exponentials with a rather we
decay in the largeLs limit. Thus, to decreasemresby an order
of magnitude we need to increaseLs by a large factor, per-
haps ofO(10).

Sincemres is determined by the fifth-dimensional fallo
of the boundary states, decreasingmres requires improving
the falloff. Analytic arguments have shown that for gau
field satisfying a smoothness condition, exponential fallof
assured@28,29#. It is expected that at weak enough co
plings, such a smoothness condition is satisfied, which is
the case for Wilson gauge lattices atb56.0. Since the falloff
in the fifth dimension can be related to eigenvalues of
appropriately defined transfer matrix,T, in the fifth dimen-
sion, studies@30# of the spectrum of theT for Wilson gauge
action have been done. They find a nonvanishing densit
unit or near unit eigenvalues ofT, showing that undamped
propagation in the fifth dimension occurs. We will also stu
the spectrum ofT, using gauge configurations generated w
the Wilson, Symanzik, Iwasaki and DBW2 actions.

The transfer matrixT @31# is defined by

T5
12Ht

11Ht
~15!

with

Ht5
1

21Dw
† ~2M5!

g5Dw~2M5! ~16!

being the Hamiltonian for propagation in the fifth dimensi
andDw(m) being the four-dimensional Wilson Dirac oper
tor. Following @30# we calculate the eigenvalue spectrum
the Hermitian Wilson Dirac operatorg5Dw(2M5) as a func-
tion of M5 ~the so-called spectral flow!. From Eq.~16! one
sees that a zero eigenvalue ing5Dw(2M5) corresponds di-
rectly to a unit eigenvalue of the transfer matrix, i.e., t
existence of a five-dimensional mode that is not damped
the fifth dimension. In addition, the number of zeros in t
spectral flow determines the index of the domain wall f
mion operator and hence serves as a definition of topol
on the lattice. Thus, if one is working at a fixed value forM5
and a gauge field is generated via Monte Carlo which ha
unit eigenvalue ofT, an undamped mode in the fifth dimen
sion occurs on that configuration. This configuration is o
where we informally say that topology is changing~in the
Monte Carlo update!.

When studying the spectral flow on a given configuratio
if the flow approaches theM5 axis, we expect the left and
right domain wall modes to become delocalized leading
mixing and attendant chiral symmetry breaking. On the ot
hand, if there is a large vertical gap in the spectral flow
values ofM5 we use in our simulations, the chiral mod
should remain localized on the boundaries. In Fig. 2
present the spectral flow of the lowest 15 eigenvalues
some representative Wilson gauge action configuratio
Many crossings of theM5 axis are evident and even th
modes that do not cross are not far away from the a
compared with the large gap that appears forM5,0.8. Note
that M5;0.8 corresponds to the usual critical mass for W
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son fermions where chiral symmetry is restored at this ga
coupling (b56.0). As we will see, this picture leads to
relatively large value ofmres for the Wilson gauge action
though we emphasize that the chiral symmetry breaking
still very small compared to standard Wilson fermions at t
gauge coupling. In Fig. 3 the ratior [U] (t) defined in Eq.~13!
is plotted for the same configurations as in Fig. 2. The pan
in Fig. 2 and Fig. 3 are in one to one correspondence. In
figures, r [U] (t) is quite dependent ont, with large fluctua-
tions occurring over a small range oft. Since we can see
multiple crossings in the spectral flow, which implies u
damped modes in the fifth dimension, and multiple spikes
r [U] (t) it is natural to investigate whether these are differe
manifestations of the same phenomena.

In Fig. 4~a! we presentr̄ [U] as a function of configuration
number. It is clear thatr̄ [U] fluctuates widely, indicating tha
there are configurations with larger chiral symmetry break
and others with relatively small breaking. The number
configurations with enhanced chiral symmetry breaking
significant (;50%), consistent with the known result th
the transfer matrix has an appreciable number of near
eigenvalues@30#. In addition, Fig. 3 suggests a close corr
lation between configurations showing these spikes and th
with crossings in the spectral flow nearM551.8.

In order to further examine the nature of chiral symme
breaking on a given configuration we take a closer look
the ratior [U] (t) defined in Eq.~13!. In Fig. 3 and Fig. 5~a!
we present this ratio for typical Wilson gauge action config

FIG. 2. Spectral flows of the Hermitian Wilson Dirac operat
g5DW for four typical gauge configurations generated with the W
son gauge action atb56.0. There are many crossings in the neig
borhood ofM551.8 which induce explicit chiral symmetry break
ing for domain wall fermions. The size of the would-be gap in t
region of the five-dimensional fermion massM5'1.8 is also rela-
tively small compared to the obvious gap above the critical Wils
massM5'0.8. Both effects enhance mixing of the light doma
wall fermion modes and hence the value of themres.
4-4
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rations, again ata21'2 GeV. As we can see the domina
part of chiral symmetry breaking comes from localized
gions in time. In particular for the configuration of Fig. 5~a!,
the Hermitian Wilson Dirac operator has two small eigenv

FIG. 3. The ratio of Eq.~13! for four Wilson gauge configura
tions. The bare quark mass is 0.02 andM551.8. The configurations
used are the same as those in Fig. 2 and the panels are in one
correspondence with the panels in Fig. 2.

FIG. 4. The quantityr̄ [U] defined in Eq.~14! vs configuration
number for~a! the Wilson gauge action atb56.0, ~b! the Symanzik
gauge action atb58.4, ~c! the Iwasaki gauge action atb52.6, ~d!
and the DBW2 gauge action atb51.04. All four cases correspon
to a21'2 GeV. The large spikes seen in the Wilson case are
nificantly reduced for the Iwasaki action and almost eliminated
the DBW2 action. These spikes corresponded to zero eigenve
of g5DW and are a significant source of chiral symmetry break
for domain wall fermions.
07450
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-
ues whose eigenvectors are localized around the peak
r [U] (t). In addition, we have computed the topologic
charge density using 20 APE smearings with smearing c
ficient 0.45, as described in Refs.@32,33#. A classically
O(a4) improved@34,35# topological charge density on APE
smeared lattices produced results almost identical with
ones computed using the method of@32,33#. In order to ex-
amine if localized peaks of the topological charge dens
correlate with the chiral symmetry breaking, we have co
puted the correlation functionC(rW) of the topological charge
density with the lowest eigenvector of the Wilson Dirac o
erator,

C~rW !5

(
xW

utr FF̃~xW !uuc0~xW1rW !u

(
xW

utr FF̃~xW !u(
yW

uc0~yW !u
. ~17!

In Fig. 6 we present an one-dimensional slice of this cor
lation function for the configurations used in Fig. 2 and F
3. The observed enhancement of the correlation arounrW
50 is an indication that peaks of the topological charge d
sity coincide with peaks of the eigenvector. Since we kn
that the low eigenvectors generate chiral symmetry break
in the region of space-time that they have support, we
infer that enhanced chiral symmetry breaking@i.e., a peak of
r [U] (t)] is also localized around these localized peaks
topological charge density. Similar conclusions and more
tailed discussion can be found in Refs.@7,9,36#. This is a
crucial observation in understanding why improved gau

one

-
r
rs

g

FIG. 5. The ratio of Eq.~13! for a single configuration of~a! the
Wilson gauge action atb56.0, ~b! the Symanzik gauge action a
b58.4, ~c! the Iwasaki gauge action atb52.6, ~d! and the DBW2
gauge action atb51.04. The spikes are quite localized in Eucli
ean timet. Examination of the eigenvectors of the~domain wall
fermion or Wilson! Dirac operator confirms the zero modes a
localized in space as well.
4-5
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actions that suppress localized peaks of the topolog
charge density can reduce chiral symmetry breaking for
main wall fermions.

If an improved action can reduce lattice artifact config
rations which are undergoing topology change, thenmres can
be reduced. The effect of the gauge action on dislocati
can be understood by examining its effects on the class
minima of the action, i.e., instantons. Using the results
Ref. @37# we can see that for the Iwasaki and the DBW
action theO(a2/r2) correction to the action of an isolate
lattice instanton is positive, hence instantons of small sizr
are suppressed. On the contrary for the Wilson action
O(a2/r2) correction is negative, consequently the small l
tice instantons are enhanced. This suggests that for
Iwasaki and the DBW2 actions, gauge configurations w
very localized concentrations of topological charge den
are suppressed. If in addition, there is a suppression of
figurations where localized topology change is occurri
there will be a reduction of explicit chiral symmetry brea
ing. In conclusion, configurations of nonzero topology do n
produce large residual chiral symmetry breaking, only c

FIG. 6. The correlation function between the lowest eigenvec
of the Wilson Dirac operator and topological charge density as
fined in @17#. The configurations used are the same as those in
2 and the panels are in one to one correspondence with the pan
Fig. 2
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figurations where topology is changing, i.e., where the sp
tral flow has a zero. Suppression of lattice artifact topolo
changing configurations should decreasemres.

IV. CHIRAL SYMMETRY WITH IMPROVED GAUGE
ACTIONS

In order to study the effects of the choice of the gau
action on the residual chiral symmetry breaking we p
formed a series of quenched simulations using the Syman
Iwasaki and DBW2 actions. In all cases the lattices w
163332 with inverse lattice spacinga21'2 GeV. We used
the r mass to set the scale but also confirmed consiste
with the scale set from the string tension; both yield eq
lattice spacings to within a few percent. The massM5 was
tuned to be optimum with an accuracy of about 5%. Sim
lations on a few configurations at several values ofM5 were
all that were needed for this determination. It turns out t
for all actions ata21'2 GeV the optimum value is roughly
1.8, except for the DBW2 for which it is 1.7. In the free fie
limit, the optimum value isM551 @3#. The bare quark
masses in our study ranged frommf50.010 to 0.060. A sum-
mary of the simulation parameters is presented in Table

The residual mass was extracted by fitting to a constan
large time separations the ratio defined in Eq.~12!. Errors are
determined by the jackknife method. As it can be seen in F
7, this ratio exhibits a fairly stable plateau at time separati
larger than five or six, so we chose a fitting range of 7–16
all cases. All data in this figure are forLs516 and for bare
quark mass 0.020. The quark mass dependence of the
sidual mass is mild as seen in Fig. 8. Since we have a
matched the lattice spacings, it is safe to compare all
actions at the same bare quark mass ignoring renormaliza
effects. Because the numbers we are comparing differ
orders of magnitude these effects can be safely neglecte
fact the multiplicative quark mass renormalization consta
have been computed@38# and shown to be equal within 5%
In order to eliminate some of the effects of the remaini
small mismatch of the lattice spacings, we have plotted
residual mass scaled by the square root of the string tens

In Fig. 9 and Table II we present our measurements
mres for each action for several values ofLs . In the case of
the Iwasaki action we only performed the measuremen
Ls516, and our result agrees with that of CP–PACS@6#. The
remaining Iwasaki points are from the CP–PACS publicat
@6#. As one can see atLs516, the DBW2 residual mass i
about two orders of magnitude smaller than the residual m
of the Wilson action while the Iwasaki residual mass is ab

r
e-
g.
s in
TABLE I. Simulation parameters for each gauge action tested. Ther mass,mr , is given in the chiral limit for the largestLs in each case.
As usualb;1/g0

2, whereg0 is the bare gauge coupling,M5 is the five-dimensional fermion mass,Ls the size of the fifth dimension,mf the
bare quark mass, ands is the string tension computed from the heavy quark potential.

Action b M5 Ls mf mr As

Wilson @5# 6.00 1.8 12–24 0.015–0.040 0.404~8! 0.227~6! @52#

Symanzik 8.40 1.8 8–16 0.020–0.060 0.411~14! 0.2278~18! @42#

Iwasaki 2.60 1.8 16 0.020–0.060 0.415~13! 0.231~6! @53#

DBW2 1.04 1.7 8–16 0.020–0.060 0.399~11! 0.2246~16!
4-6
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an order of magnitude smaller than that of the Wilson acti
Finally, the residual mass of the Symanzik action is roug
a factor of 3 smaller than that of the Wilson action. In th
figure the solid lines represent fits to simple exponentials
all cases except the Wilson action where a fit to two ex
nentials is shown. For the Symanzik data a small devia
from the simple exponential fit is observed atLs516 while
the Wilson action shows a very clear deviation. On the c
trary, both the Iwasaki and DBW2 data can be fit well with
simple exponential for the same range ofLs . For that reason
it is interesting to quote a value for the parameterq that

FIG. 7. The ratio defined in Eq.~11! at a21'2 GeV. The fancy
squares correspond to the Wilson gauge action, the diamond
Symanzik, the squares to Iwasaki, and the octagons to DBW2.
bare quark mass in all cases is 0.020 andLs516.

FIG. 8. The residual mass ata21'2 GeV as a function of the
bare quark mass. The octagons correspond to DBW2, the squa
Iwasaki, and the diamonds to Symanzik. In each caseLs516.
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Shamir has computed perturbatively@13#. His one loop result
is that the light fermion wave functionx(s) decays exponen
tially away from the wall, i.e,x(s);qs with q5 1

2 . The re-
sidual mass also behaves asmres;qLs. In the case of the
Wilson and possibly the Symanzik action, the fact that
good fit to a single exponential is obtained may be a sig
that mres scales as a power law,@54# andq;1. Such behav-
ior is consistent with the spectral flows observed for the W
son gauge action. For the Iwasaki and DBW2 actionsq
'0.7 andq'0.6, respectively, which is consistent with
gap in the spectral flow atM551.7–1.8 that is well defined

to
he

s to

FIG. 9. Dependence of the residual mass on the size of the
dimension ata21'2 GeV. The octagons correspond to DBW2, t
squares~CP–PACS@6#! and diamond~RBC @5#! to Iwasaki, the
bursts to Symanzik, and the fancy squares to Wilson. All but
Wilson action fit a simple exponential decay reasonably well. N
the Iwasaki results use different gauge field ensembles at each v
of Ls . In the case of the Wilson action, the results are fit to a dou
exponential function.

TABLE II. The residual massmres at a21'2 GeV for the ac-
tions tested. In the construction of this table, for the Syman
action we used 51 configurations, for the Iwasaki 45, and for
DBW2 89.

mf Ls Symanzik Iwasaki DBW2

0.020 8 3.04(5)31023 7.54(5)31024

0.020 12 8.2(4)31024 9.92(20)31025

0.020 16 3.3(3)31024 1.4(4)31024 1.60(5)31025

0.040 8 2.90(4)31023 7.49(5)31024

0.040 12 7.4(3)31024 9.9(4)31025

0.040 16 2.73(24)31024 1.2(4)31024 1.56(3)31025

0.060 8 2.82(3)31023 7.50(8)31024

0.060 12 6.95(23)31024 1.00(6)31024

0.060 16 2.44(18)31024 1.15(27)31024 1.565(23)31025
4-7
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on most configurations. We come back to this point in
following where we investigate the spectral flow for ea
gauge action.

Given the dramatic improvement inmres for the DBW2
action, it is natural to wonder whether further improveme
is possible. We have explored simulations where the coe
cients of the plaquette and rectangle term in Eq.~3! take on
various ratios. Our understanding of the phase diagram
actions with negative rectangle and positive plaquette c
ficients is shown in Fig. 10. We chooseb11 to be the coeffi-
cient of the plaquette term in the action andb12 to be the
coefficient of the rectangle term. For ratiosb12/b11.21/8
the continuum QCD limit is taken atb11→` with b12/b11
fixed. Forb12/b11<21/8 there is no continuum QCD limi
as b11→` with b12/b11 fixed. This is numerically mani-
fested in bad scaling behavior and the fact that for th
ratios, arbitrarily small lattice spacings could not
achieved. If b12/b11 is taken to be around20.2 then a
double peaked plaquette distribution can be found. Thus,
ther dramatic improvement inmres does not seem possibl
with an action which involves only plaquette plus rectan
terms.

V. TOPOLOGY AND CHIRAL SYMMETRY BREAKING

In this section we take a closer look at how the differe
gauge actions affect explicit chiral symmetry breaking in d
main wall fermions. As mentioned before, in Fig. 4~a! the
quantity r̄ [U] defined in Eq.~14! is presented as a function o
the configuration number. The large fluctuations~spikes! in-
dicate that there are configurations with relatively large c
ral symmetry breaking and configurations with relative
small breaking. The configurations with large spikes
those for which the transfer matrix in the fifth dimension h
a near unit eigenvalue, or a corresponding~near! zero eigen-
value of the Hermitian Wilson Dirac operator. In those ca
that we have checked for the Wilson gauge action, a spik
always accompanied by a localized~near! zero eigenvector
of the Wilson Dirac operator. In addition, the fact that t
spectral flows presented in Fig. 2 have so many cross
very close to the simulation pointM551.8 is consistent with

FIG. 10. The phase diagram of actions with positive plaque
(b11) and negative rectangle (b12) coefficients.
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the large number of spikes in Fig. 4~a!. In configurations
where a spike does not occur, i.e. no crossing close toM5
51.8, the chiral symmetry breaking is controlled by the s
of the gap of the bulk modes in the spectral flow. Here we
separating the small Wilson Dirac eigenvalues into t
groups: those that cross zero nearM5 and those that form a
more continuum band which we refer to as bulk modes.
the case of the Wilson action and configurations with
crossings close toM5, the bulk mode gap is rather small an
not very well defined; thus even on these configurations
chiral symmetry breaking is relatively large for a givenM5.
The relation between in the eigenvectors of the Wilson Di
operator and the chiral symmetry breaking has also been
plored in Refs.@7,9,15,36,39#, and the picture presented
consistent with the one described above.

For the Symanzik action@Fig. 4~b!# the number of spikes
is slightly smaller than in the case of the Wilson action, a
also the number of crossings in the spectral flow~Fig. 11! is
correspondingly reduced. Also, the bulk mode gap is larg
As a result the baseline, or level of the troughs betwe
peaks inr̄ [U] , is lower than in the case of the Wilson actio
contributing to the reduction in the residual mass.

The above picture becomes much clearer with the Iwas
@Fig. 4~c!# and DBW2 actions@Fig. 4~d!#. The number of
spikes is significantly smaller, and the baseline is well d
fined ~especially for the DBW2 action!. The typical spectral
flows presented in Fig. 12 and Fig. 13 again support the
that the Iwasaki action, and to a larger degree the DB
action, significantly suppress the near unity eigenvalues
the domain wall fermion transfer matrix. In both cases t
gap of the bulk modes in the spectral flow becomes sign
cantly larger. As a result the explicit domain wall fermio
chiral symmetry breaking is significantly reduced.

e

FIG. 11. The same as Fig. 2, but for the Symanzik gauge ac
at b58.4. The number of crossings in the neighborhood ofM5

51.8 appears slightly smaller and the would-be gap slightly lar
than in the Wilson case.
4-8
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DOMAIN WALL FERMIONS WITH IMPROVED GAUGE ACTIONS PHYSICAL REVIEW D69, 074504 ~2004!
In Fig. 5 we present the ratior [U] (t) defined in Eq.~13!
for a typical configuration of each action. In all cases it
evident that the dominant contribution to chiral symme
breaking comes from very localized objects, and thus as
argued before, it is not very surprising that localO(a2)
modifications of the gauge action can have a very signific

FIG. 12. The same as Fig. 2, but for the Iwasaki gauge actio
b52.6. The number of crossings neighborhood ofM551.8 is sig-
nificantly smaller and the gap clearly larger than in the Wilson ca

FIG. 13. The same as Fig. 2, but for the DBW2 gauge action
b51.04. There are no crossings neighborhood ofM551.8 and the
gap is quite large, roughly comparable to the gap at the corresp
ing mass above the critical Wilson mass. Note that this is also
for the region beyond the next critical Wilson mass,M5'2.3,
where the four flavor Wilson fermion doublers become light.
07450
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effect on explicit residual chiral symmetry breaking.
It is important to recognize that the above mechanism

explicit chiral symmetry breaking is related to topolog
changing configurations~see Ref.@36# and references therei
for a more complete discussion!. The connection is made
through the index theorem: the domain wall fermion opera
in the limit Ls→` has an index@4,40# equal to the number
of right-handed minus the number of left-handed ze
modes, which corresponds to the topological charge of
background gauge field configuration—a quantity which b
comes precise in the continuum limit. This integer depen
on the value ofM5 used and is given by the net number
crossings in the spectral flow of the Wilson Dirac operator
the Wilson mass varies between a value above the crit
Wilson mass and2M5. While this index is well defined
only in the limit Ls→`, our simulations show that the nea
zero eigenvectors of the finite-Ls operator obey the index
theorem to a high degree of accuracy@5,41#. In particular, for
an Iwasakia21'2 GeV ensemble, when compared to t
topological charge computed using the smoothing met
described in Refs.@32,33#, the index agrees very well. In
those cases where the topological charge is not close t
integer, we also find a crossing in the spectral flow, a spike
r [U] (t), and a complex structure of eigenvectors that is
expected from simple chiral symmetry arguments@41#. If M5
sits exactly on a crossing, then the index is not defined, e
the limit Ls→`. A crossing in the spectral flow that occu
away from the critical Wilson mass corresponds to a confi
ration with indistinct topology. Put differently, if the particu
lar gauge field in question is in the midst of changing
topology, which must happen if the update algorithm is
godic and updates the configuration smoothly, then suc
gauge field must give rise to a crossing. It is also sens
that such a tunneling from one topological sector to anot
proceeds through local changes in the gauge field which h
a characteristic size of one to two lattice spacings. In
continuum limit, if the density of these dislocations is ze
then all crossings happen at the critical mass and corresp
to physical topological charge. Thus the index as compu
from the spectrum of the domain wall operator Dirac ope
tor is well defined in this case.

Consequently, when the Iwasaki action or the DBW2 a
tion is used, the question arises whether the topolo
changes efficiently. We have measured the topological ch
using the smoothing method described in Refs.@32,33,55#
We used 20 APE smearing steps with smearing coeffic
0.45 followed by the extended loop definition of the top
logical charge density used in Refs.@32,33#. Our data are
presented in Fig. 14. The configurations shown in this fig
are separated by 1000 sweeps of Cabibo-Marinari pseu
heatbath with a Kennedy–Pendleton accept/reject step@56#.
We can see that there is a significant slow down in the to
logical charge fluctuations for the DBW2 action. Both th
Symanzik and the Iwasaki action also show a mild reduct
in the frequency of change of the topological charge. A
though the problem seems severe for the DBW2 action,
can tackle it with brute force. For that reason we have p
duced a library of DBW2 lattices fora21 1.3 GeV and 2
GeV to be used for several domain wall fermion projec
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e.

t

d-
e
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For generating this library we used overrelaxed Cabi
Marinari pseudo-heatbath with a Kennedy–Pendleton acc
reject step. Each sweep consisted of one pseudo-hea
step and some overrelaxation hits. The saveda21 1.3 GeV
configurations are separated by 1000 sweeps with no ove
laxation while thea21 2 GeV configurations are separate
1000 sweeps each sweep containing four overrelaxation
Given the considerable cost of measuring domain wall
mionic observables, this higher cost of producing DBW2 l
tices at 2 GeV is negligible. However, it is clear that th
brute force approach will become less practical for sma
lattice spacing since topology change is likely to be rapi
suppressed as we approach the continuum limit@57#.

VI. HADRONIC OBSERVABLES FOR THE DBW2 ACTION

In this section we discuss various hadronic observab
calculated with the DBW2 gauge action atb50.87 and 1.04
which correspond toa21'1.3 and 2 GeV, respectively.

A. The heavy quark potential

We measure the heavy quark potential as in Ref.@42# by
fixing to Coulomb gauge and then computing the two-po
correlation function of products of temporal links. More pr
cisely,

FIG. 14. The configuration history of the topological chargeQ.
The configurations are separated by 1000 sweeps of Cab
Marinari pseudo-heatbath with a Kennedy–Pendleton accept/r
step. At the top is the Symanzik action with lattice size 163332 and
couplingb58.4. In the middle is the Iwasaki action with size 14

and b52.6. At the bottom is the DBW2 action with size 163

332, andb51.04. All cases correspond to roughly the same sc
a21'2 GeV. The DWB2 action, which suppresses configuratio
with small instantons, shows a significant reduction of the tunne
between topological charge sectors.
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Ae2V(r )T5(
t0 ,xW

^Tr@Lt0 ,T~xW !Lt0 ,T
† ~xW1rW !#&, ~18!

with

Lt0 ,T~xW !5 )
t5t0

t01T

Ut~xW ,t !, ~19!

and V(r ) the heavy quark potential. The potential is e
tracted by taking ratios of the correlation function in Eq.~18!
at T andT11. The systematics involved in choosingT were
carefully studied and the optimalT was chosen. For the 1.
GeV latticesT was 4 while for the 2 GeV lattices it was 7
The potentialV(r ) is fit to

V~r !5C2
a

r
1sr . ~20!

The above formula gave very good fits for spatial d
tancesr .A2. The upper range ofr was determined by the

o–
ct

,
s
g

FIG. 15. The heavy quark potential for DBW2,b50.87. The
solid line denotes the fit to Eq.~20! from which the string tension is
determined.

FIG. 16. The same as Fig. 15 but forb51.04.
4-10
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distance where the error on the potential became unacc
ably large. The maximum distance used wasr 56 and 7 for
the 1.3 and 2 GeV lattices, respectively. Figures 15 and
show the heavy quark potential as a function of distance.
results for the string tensions and the Sommer paramete
@43,44# r 0 are tabulated in Table III. These results are used
our subsequent discussion of the scaling of hadronic obs
ables.

B. Simulation and analysis

For each set of gauge configurations, domain wall f
mion propagators are computed with two types of sourc
~1! a local point source and~2! a Coulomb gauge fixed ex
tended source which is either a wall source forb51.04 or
box source with 83 volume forb50.87. ~We set the source
to one at each site inside the box and zero elsewhere.! The
local source is used for the determination of the decay c
stants and also the axial current renormalization factorZA
(b50.87 only!. The extended source is used for all oth
purposes.

In Table IV we givemres in the chiral limit for the same
ensemble of configurations used for the hadronic observa
to be discussed in this section. We have fittedmres(mf) with
a linear function ofmf to obtainmres(0) for which the chiral
limit of low energy physics is defined asmf52mres(0). All

TABLE III. Parameters and resulting scales for the DBW
gauge action used for the spectrum analysis. The quantityar is the
lattice spacing determined by ther meson mass taken from Tab
VIII. The jackknife errors are quoted for the string tensions and
the Sommer parameterr 0.

b M5 Ls Statistics As r 0 ar
21 (GeV)

0.87 1.8 16 100 0.324~6! 3.58~4! 1.31~4!

1.04 1.7 16 405 0.2246~16! 5.24~3! 1.98~3!
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data are used to extrapolate tomf→0 for b51.04. On the
other hand, the largest valuemf50.09 for b50.87 is not
used for the extrapolation.

We take the chiral limitmf→2mres(0) as the physical
point for u, d quarks. This determines the physicalr meson
massmr . With the inputmr5770 MeV, the lattice spacing
a is determined. The kaon physical pointmf

K , which roughly
corresponds to half the strange quark mass, forf K andmK*
is defined bymp(mf5mf

K)/mr(mf52mres)50.645 using
only degenerate quark masses. We do this procedure for
ery jackknife sample to estimate the error for values at
physical kaon point.

C. Chiral property of pseudoscalar mass

Because of the almost exact chiral symmetry of dom
wall fermions and the use of the quenched approximati
the pion two-point function suffers contamination from top

TABLE IV. The residual mass for the DBW2 gauge action ca
culated on the same configurations used to evaluate the had
observables. The values formf50 have been obtained from a linea
fit in mf . The value formf50.09 atb50.87 is excluded from the
fit.

b50.87 b51.04

mf mres mf mres

0.01 5.44 (23)31024 0.01 1.80 (9)31025

0.02 5.16 (22)31024 0.015 1.80 (11)31025

0.03 4.84 (21)31024 0.02 1.77 (11)31025

0.04 4.55 (19)31024 0.025 1.74 (11)31025

0.05 4.30 (18)31024 0.03 1.71 (10)31025

0.06 4.08 (16)31024 0.035 1.69 (8)31025

0.09 3.52 (13)31024 0.04 1.67 (7)31025

0 5.69 (26)31024 0 1.86 (11)31025
al
TABLE V. Hadron masses computed using the DBW2 gauge action. The superscriptsPP and AA refer to the pseudoscalar and axi
vector correlation functions, respectively. All masses are obtained with degenerate quarks.

b mf mp
PP mp

AA mr mN

0.01 0.2248~25! 0.2179~31! 0.607~22! 0.790~75!

0.02 0.2997~19! 0.2966~23! 0.640~17! 0.871~23!

0.03 0.3603~16! 0.3590~20! 0.662~11! 0.921~14!

0.87 0.04 0.4128~15! 0.4118~19! 0.685~8! 0.975~10!

0.05 0.4601~14! 0.4589~18! 0.709~6! 1.021~8!

0.06 0.5037~13! 0.5021~17! 0.732~5! 1.067~7!

0.09 0.6192~13! 0.6170~15! 0.803~4! 1.197~6!

0.01 0.1794~22! 0.1759~21! 0.413~6! 0.546~13!

0.015 0.2098~17! 0.2075~18! 0.424~4! 0.575~9!

0.02 0.2377~15! 0.2359~16! 0.435~4! 0.602~7!

1.04 0.025 0.2631~13! 0.2617~15! 0.447~3! 0.628~6!

0.03 0.2868~12! 0.2857~14! 0.4586~29! 0.652~5!

0.035 0.3090~12! 0.3081~13! 0.4705~26! 0.676~4!

0.04 0.3300~11! 0.3293~12! 0.4825~24! 0.699~4!
4-11
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logical near zero modes, which causes a shift in fitted ma
from their infinite volume values@5#. The effect is expected
to be inversely proportional to the square root of the volum
Because we used different physical volumes for the two
ferent gauge couplings@V.(2.4 fm)3 for b50.87,
(1.6 fm)3 for b51.04], the size of the effect on the pseud
scalar mass should be different in our two lattice ensemb
To study zero mode effects we examine the pseudosc
mass from two different two-point functions. One is th
pseudoscalar-pseudoscalar correlator~PP!

^pa~x!pa~0!&5^ iJ5
a~x!iJ5

a~0!&

52^q̄tag5q~x!q̄tag5q~0!&, ~21!

and the other is the correlator of the temporal component
axial-vector current~AA!

^A0
a~x!A0

a~0!&5^q̄tag5g0q~x!q̄tag5g0q~0!&, ~22!

FIG. 17. The quenched pion mass squared as a function omf

for b50.87. Masses extracted from the pseudoscalar~PP! and axial
vector~AA! correlation functions are shown. They agree quite w
except for the point atmf50.01 where there is a small differenc
outside of statistical errors. The physical volume is roug
(2.4 fm)3, so contamination from topological zero modes whi
can induce such splittings~see text! is suppressed. The line is a fit t
a simple linear function. The extrapolation slightly overshoots
expected chiral limit pointmf52mres ~see inset!, suggesting a
quenched chiral log.

TABLE VI. Results from fittingmp
2 to the linear functionc0

1c1mf . The columnmf shows the fitting range.

b Correlator mf c0 c1 x2 dof

0.87 PP 0.01–0.06 0.0090~14! 4.057~29! 2.8 ~1.2! 4
0.87 AA 0.01–0.06 0.0063~16! 4.090~37! 0.17 ~35! 4
1.04 PP 0.01–0.04 0.0056~9! 2.566~21! 3.4 ~8! 5
1.04 PP 0.015–0.04 0.0047~9! 2.597~19! 1.10 ~25! 4
1.04 AA 0.01–0.04 0.0044~9! 2.585~21! 2.6 ~7! 5
1.04 AA 0.015–0.04 0.0035~9! 2.615~20! 0.86 ~23! 4
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whereq and q̄ are four-dimensional quark fields defined
Eq. ~5!. As discussed in Ref.@5#, the two types of correlators
suffer differently from topological zero modes. The leadi
contribution to the pseudoscalar correlator is;1/(mf

2AV)
while it is ;1/(mfAV) for the axial correlator. Although the
relative contribution from the pole compared to the physi
one is the same for both, the prefactor of the 1/(mfAV) term
is expected to be suppressed@5#. Thus, the mass extracte
from the PP correlator is expected to have a stronger fin
volume effect from zero modes than theAA correlator. The
observed effect on the meson mass calculated for light qu
masses is to shift it above a linear extrapolation from
region of heavier quark mass.

The pseudoscalar mass extracted from both types of
relators is presented in Table V. Figure 17 shows the ps
doscalar mass squared as a function ofmf for b50.87. Both
values of the pion mass are consistent with each other
mf>0.02. However, atmf50.01 the mass extracted from th
PP correlator lies above theAA one, outside of their statisti
cal errors. Because the axial correlator is expected to h
smaller finite volume effects from zero modes, we use t
correlator for further analysis.

The linear fit of the pion mass squared inmf is quite good
in the region 0.01<mf<0.06 as indicated by thex2/do f,
which is tabulated in Table VI. Note, we are using the sa
set of gauge configurations for all values ofmf but employ

,

e

TABLE VII. Fit results for the quenched chiral log contributio
to the pion mass determined from theAA correlator using Eq.~23!.
The symbol ‘‘—’’ indicates that the parameter is constrained to
zero.

b mf ap b d x2 dof

0.87 0.01–0.06 4.04~5! — 0.031~14! 1.6 ~1.5! 4
0.87 0.01–0.09 3.40~23! 6.4~1.6! 0.107~38! 0.19 ~25! 4
1.04 0.015–0.04 2.583~28! — 0.049~14! 2.0 ~5! 4

FIG. 18. The same as Fig. 17, but forb51.04. Here the physi-
cal volume is roughly (1.6 fm)3, so zero mode effects in the mass
are visible, and the simple linear fit clearly overshoots the ch
limit point mf52mres.
4-12
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FIG. 19. Vector meson and baryon masses as functions ofmf for
b50.87. Line is a linear fit to the data. The physical nucleon a
K* mass are shown as solid points wheremr is used to fix the scale

FIG. 20. Vector meson and baryon masses as functions ofmf for
b51.04. The line is a linear fit to the data. The physicalK* mass
is also shown.

FIG. 21. Scaling of ther meson mass with the lattice spacin
set by the Sommer parameterr 0. The Wilson data are from Ref.@5#.
07450
an uncorrelated fit. One can reliably extract the physi
kaon mass; however, the fit overshoots the pointmf
52mres where the pion mass should vanish. This is a sig
of nonlinearity for the pion mass at smallmf . Instead of a
linear function we should employ the quenched chiral l
@45# formula with the constraint that the pion mass vanish
at mf52mres,

mp
2 5ap~mf1mres!F12d logS ap~mf1mres!

LQxPT
2 D G

1b~mf1mres!
2, ~23!

where we have introduced the quadratic term in addition
the expression used in Ref.@46#. As is discussed in Ref.@46#,
Eq. ~23! has a form suggested by chiral perturbation theo
Note that the explicit chiral perturbation theory formula, e.
Eq. ~90! of Ref. @46#, involves three parametersa, d, and
LQxPT and additional terms. However, within our parame
range and numerical accuracy these additional terms have
effect of adding an undetermined,mf-independent constan
to the expression within the square brackets. Our choice
zero for this unknown constant represents a rescaling of
parametersd andLQxPT from those that appear in the chira
perturbation theory prediction.

The data fit this formula well with a reasonable value
the chiral log coefficientd as listed in Table VII, where the
scale is set asLQxPT51 GeV. If the coefficient of the qua
dratic termb is not set to zero in the fit, a somewhat larg
value of d results. This is because the two terms tend
cancel each other. Note that the value ofb is the same order
as ap . Ultimately, a proper covariant fit with reliablex2

should be used to distinguish the two fits. At present we
not have enough statistics to do this.

Figure 18 shows the pion mass squared forb51.04. The
results for the larger value ofmf agree with each other, bu
deviations appear asmf decreases. In fact, pronounced u

d

FIG. 22. Scaling of the nucleon andK* masses with lattice
spacing. The experimental mass of nucleon andK* are shown on
the vertical axis. The Wilson data are from Ref.@5#.
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TABLE VIII. Results from fitting the vector meson mass to a linear function,c01c1mf . Values at the physical points and theJ parameter
are also listed.

b mf c0 c1 x2 dof mr mK* /mr J

0.87 0.01–0.06 0.590~19! 2.37 ~28! 0.14 ~50! 4 0.589~19! 1.138~11! 0.377~37!

1.04 0.01–0.04 0.389~6! 2.34 ~12! 0.08 ~20! 5 0.388~6! 1.136~5! 0.387~16!
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ward curvature of the data, which was not observed for
axial correlator forb50.87, result in large values ofx2/do f
listed in Table VI for both correlators. The lines in the Fi
18 show the results of the fit excluding the lightest po
mf50.01, which makesx2/do f smaller. Thus we can as
sume that the pion mass formf>0.015 does not suffer muc
from zero mode effects. As this fit reproduces the data in
range 0.015<mf<0.04 very well, we use it for the interpo
lation of the kaon point. Also using this region ofmf , one
can fit data with the quenched chiral log without the qu
dratic term forx2/do f50.5(1). Theresultingd is consistent
to that forb50.87. Since our range ofmf for b51.04 is not
wide enough to disentangle the quadratic term and the
term, we do not list a result for nonzerob.

D. Hadron spectrum

We list the results for the vector meson and nucle
masses in Table V. Figures 19 and 20 show the vector me
and nucleon masses as functions ofmf for b50.87 and 1.04,
respectively. Physical nucleon, rho, andK* masses are indi
cated on the figure.

Figure 21 presents the rho meson mass versus la
spacing squared, both normalized withr 0. We also plot the
results obtained with the Wilson gauge action from Ref.@5#.
We have selected values obtained at (b,V,Ls)
5(6,163,24),(5.85,123,20),(5.7,83,48). These lattices hav
almost the same physical volume, andLs is the largest avail-
able in each case. We observe consistency between DB
and Wilson actions. The flatness of the data reflects the s
size of the scaling violation.

Figure 22 is a scaling plot for the nucleon andK* masses
normalized by ther meson mass. Again good scaling is o
served. TheK* appears to be lighter than experiment, whi
is consistent with other quenched simulations. For
nucleon mass, there is an observed discrepancy betwee
results with Wilson type fermions and staggered fermio
~see comparison by Aoki@47#!. The former gives a lighter
nucleon mass while the latter is consistent with the exp
ment. The nucleon mass for domain-wall fermion~see Fig.
20 and Table IX! is slightly larger than experiment for th
lattice spacings we examined. We need to perform sim
tions for larger physical volume ata21.2 GeV, as well as
simulations at smaller lattice spacings to do the continu
extrapolation needed to compare with conventional fermio
For the comparison within the domain-wall fermions, giv
the statistics and the fact that the physical volumes of
ensembles are not the same, we cannot say if the DB
action exhibits better scaling than the Wilson gauge ac
though it seems that the scaling is at least as good.
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TABLE IX. Results from fitting the baryon mass to a linea
function,c01c1mf . Values at the physical point are also listed.

b mf c0 c1 x2 dof mN

0.87 0.01–0.06 0.783~27! 4.76 ~44! 0.5 ~1.6! 4 0.780~27!

1.04 0.01–0.04 0.502~12! 4.96 ~26! 0.5 ~8! 5 0.502~12!

FIG. 23. Scaling of the quenchedJ parameter with lattice spac
ing. The experimental point is shown on the vertical axis. The la
discrepancy with experiment is due to quenching.

TABLE X. The axial current renormalization factor and pseud
scalar decay constants.

b mf ZA f PS
AA f PS

PP

0.02 0.78199~37! 0.1084~31! 0.1078~34!

0.03 0.78404~31! 0.1121~27! 0.1110~27!

0.87 0.04 0.78612~28! 0.1165~26! 0.1145~24!

0.05 0.78824~26! 0.1208~26! 0.1192~24!

0.06 0.79042~25! 0.1247~26! 0.1237~24!

0.01 0.84142~17! 0.0703~22! 0.0697~21!

0.015 0.84191~14! 0.0716~17! 0.0720~17!

0.02 0.84244~12! 0.0732~14! 0.0743~15!

1.04 0.025 0.84300~11! 0.0751~12! 0.0767~14!

0.03 0.84358~10! 0.0771~11! 0.0790~13!

0.035 0.84417~9! 0.0790~11! 0.0813~12!

0.04 0.84478~9! 0.0809~10! 0.0835~12!
4-14
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The J parameter, which is introduced in Ref.@48# to ex-
amine the effect of quenching on the mass spectrum, is
fined by

J5mK*
dmr

dmp
2

, ~24!

wheremK* (mf) is evaluated atmr(mf)/mp(mf)5mK* /mK

51.8 by definition. The slope ofmr with respect tomp
2 is

determined with the data in 0.01<mf<0.06 forb50.87 and
0.015<mf<0.04 for b51.04, using pion mass determine
with AA. An approximate phenomenological value calcula
from the experimental mass spectrum is

J5mK*
mK* 2mr

mK
2 2mp

2
50.48. ~25!

Our lattice results for theJ parameter, listed in Table VIII
and plotted in Fig. 23, show a significant difference from t
phenomenological value. However, these results are con
tent with other quenched results~see a summary given b
Kaneko @49#!. Note that we have used degenerate qu
masses which could explain some of the difference betw
our result and experiment, but the largest source of the
crepancy is likely to be due to quenching.

FIG. 24. The local axial current renormalization factor as
function ofmf for b50.87. The lines correspond to fits to Eq.~27!
~lower! and the first term only~upper!. The difference arises from
lattice spacing errors that are proportional tomf .
07450
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E. Pseudoscalar decay constants

The pseudoscalar decay constants are calculated from
amplitude of the point-point two-point function of the tem
poral component of local axial vector current,

f p
2

ZA
2

mp

2
e2mpt5(

xW
^A0

a~xW ,t !A0
a~0!&, ~26!

for t@1. This simple local current is not partially conserve
unlikeAm @Eq. ~7!# which obeys the Ward-Takahashi identi
@Eq. ~6!#, so the local current receives a multiplicative reno
malization. We can calculate the renormalization factorZA
from the ratio of the correlation functions of the two cu
rents. Here we employ a ratio designed to remove som
the lattice spacing error@5#

R~ t !5
1

2 FC~ t11/2!1C~ t21/2!

2L~ t !
1

2C~ t11/2!

L~ t !1L~ t11!G ,
~27!

whereC andL are the correlators of the pseudoscalar den
with the partially conserved and local axial currents, resp
tively,

C~ t11/2!5(
xW

^A 0
a~xW ,t !Pa~0!&, ~28!

L~ t !5(
xW

^A0
a~xW ,t !Pa~0!&. ~29!

The first and second terms on the right-hand side of Eq.~27!
remove theO(a) scaling error, and suppress theO(a2) error
in the sum. The value ofZA is determined by fittingR(t) to
a constant for the interval 6<t<26, whereR(t) is flat to a
very good approximation. The results are given in Table
and plotted in Fig. 24. An estimate ofZA with only the first
term is also plotted to demonstrate that the complex ratio
Eq. ~27! actually works. Although linear dependence onmf
in R remains for both cases, it is very small for the fu
expression of Eq.~27!. We use the valueZA obtained in the
chiral limit mf→2mres for the calculation of the pseudo
scalar decay constant, which is given in Table XI.

Another method to calculate the decay constant is to
the Ward-Takahashi identity to derive its relation with t
pseudoscalar to vacuum matrix element of the pseudosc
density,

f p

~mf1mres!

mp
2

2
5^0uJ5

aup,pW 50W &. ~30!
V.
TABLE XI. The axial current renormalization factor atmf52mres and the pseudoscalar decay constants at physical points in Me

b ZA(mf52mres) f p
AA f p

PP f K
AA f K

PP f K
AA/ f p

AA f K
PP/ f p

PP

0.87 0.77759~45! 130.4~6.7! 129.0~7.3! 148.9~5.2! 147.3~5.4! 1.142~26! 1.141~30!

1.04 0.84018~18! 130.8~4.9! 129.0~5.0! 147.4~3.3! 149.7~3.6! 1.139~24! 1.118~25!
4-15
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This matrix element is determined from thePP correlator.
Results with each correlator forb50.87 are shown in Fig
25. For both methods we use the results ofmp extracted
from the AA correlator with the extended source qua
propagator since it is our most precise determination.

Consistency between both results shows that we h
good control over the chiral symmetry breaking through o
determination ofmres. Also, possible zero mode effect
which influence the two correlators differently, appear to
small at least formf>0.02, which is consistent with th
absence of zero mode effects in the pion mass over the s
range ofmf .

Figure 26 is the same plot but forb51.04. The results
from the two determinations are also in good agreem
Results for decay constants at the physical points are g

FIG. 25. The quenched pseudoscalar decay constant as a
tion of mf for b50.87. The results from the two techniques d
scribed in the text agree quite well. The data are fit to simple lin
functions, and extrapolated~pion! or interpolated~kaon! to the
physical points~filled symbols!.

FIG. 26. The same as Fig. 25, but forb51.04. Although the
results agree within statistical errors, the agreement is not as g
as that atb50.87.
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in Table XI and plotted in Fig. 27 against lattice spaci
squared. They are consistent with those reported for the W
son action@5#. We observe good scaling both forf p and f K .
The result forf p is in good agreement with the experiment
value. However, the ratiof K / f p appears to be smaller tha
the experimental value 1.22, which is an expected effec
quenching@45#.

VII. CONCLUSIONS

In this paper we have demonstrated that the DBW2 ac
significantly improves the chiral properties of domain w
fermions. The main reason for this improvement is the s
pression of gauge configurations which support unit eig
values of the transfer matrix in the fifth dimension and hen
allow significant mixing of the light chiral modes that a
localized on opposite boundaries of the fifth dimensio
These problematic configurations are also those which oc
as the topological charge of the gauge field changes du
Monte Carlo evolution. One key to improving the doma
wall fermion chiral symmetry is to use an improved gau
action which suppresses these small dislocations. This
pression works so well in the case of the DBW2 action t
at a2152 GeV andLs516 the residual chiral symmetr
breaking is roughly two orders of magnitude smaller co
pared to the Wilson action case and therefore is comple
negligible. Even at strong coupling (a21'1.3 GeV)mres is
about three times smaller in physical units than for the W
son action at 2 GeV. In both cases the value ofLs is 16.

In addition to the suppression of these small topologi
dislocations associated with zero crossings of the spec
flow of the four-dimensional Wilson Dirac operator, we ha
also observed an increased gap in the spectral flow. Co
quently, the light boundary mode wavefunctions decay fas
in the fifth dimension. For the DBW2 action this leads to

nc-

r

od

FIG. 27. A scaling plot for the pion and kaon decay constan
The DBW2 results appear to preserve the good scaling that
observed with the use of the Wilson gauge action~data from Ref.
@5#!.
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residual mass dependence onLs proportional to 0.6Ls. This
dependence is close to Shamir’s perturbative prediction@13#.
Approaches based on the proposals made by Shamir in@13#
may be effective in further reducing this perturbative ba
line. Work along these lines is currently underway.

In the second part of this paper we presented results
some quenched hadronic observables obtained with
DBW2 gauge action. Our conclusion is that these obse
ables scale very well witha, i.e., the good scaling of domai
wall fermions seen in quenched simulations with the Wils
gauge action is preserved@5#.

Using these improved actions, we also observed that
topological charge of the gauge fields evolves much m
slowly using standard Monte Carlo algorithms. In futu
simulations with smaller lattice spacings, improved alg
rithms will be needed to efficiently sample topology. W
note, however, that this is a generic feature of all latt
calculations which is not specific to the DBW2 action, a
. B

5.

.

. D

B.
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though the DBW2 action will always suffer more than th
other actions explored in this paper.
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