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Catalytic Asymmetric Dialkynylation Reaction of -Dinitrone 

by Utilizing Tartaric Acid Ester as a Chiral Auxiliary

Masakazu Serizawa, Shuhei Fujinami, Yutaka Ukaji,* and Katsuhiko Inomata*

Division of Material Sciences, Graduate School of Natural Science and Technology,

          Kanazawa University, Kakuma, Kanazawa, Ishikawa, 920-1192 Japan

Abstract––The asymmetric addition of alkynylzinc reagents, prepared in situ from dimethylzinc and 

1-alkynes, to -dinitrones derived from glyoxal and N-(4-isopropylbenzyl)hydroxylamine was 

investigated by utilizing dicyclohexyl (R,R)-tartrate as a chiral auxiliary.  Addition reaction of 

methyl(2-phenylethynyl)zinc afforded the corresponding optically active C2-symmetric 

(R,R)-bis(hydroxylamine) derivative with enantioselectivities of 90% and 81% ee by utilizing a 

stoichiometric and a catalytic amount of the tartrate, respectively.  Furthermore, the catalytic 

addition reaction of several alkynylzinc reagents also furnished the corresponding 

bis(hydroxylamine)s with moderate to good enantioselectivities.

1. Introduction

Optically active 1,2-diamine frameworks, which are contained in the numerous biologically active 

compounds and used as chiral auxiliaries, have been attracting a great deal of attention in organic

synthesis.1,2  The catalytic asymmetric C-C bond formation via nucleophilic addition of a 

C-nucleophile to imine functions provides one of the most important method for synthesizing

optically active amines.3 Especially, the addition of alkynyl nucleophile has a strategic advantage 

to produce more functionalized nitrogen-containing substances.4  Recently, we have reported an

enantioselective nucleophilic addition of alkynylzinc reagents to acyclic nitrones by utilizing tartaric 

acid ester as a chiral auxiliary.5  Herein, we describe a catalytic asymmetric dialkynylation of

-dinitrone, derived from glyoxal, by utilizing tartaric acid ester as a chiral auxiliary to afford the 

corresponding optically active C2-symmetric (R,R)-bis(hydroxylamine) derivatives, which are

versatile building blocks for the chiral 1,2-diamino compounds.

2. Results and discussion

First, the addition reaction of an alkynylzinc reagent to an -dinitrone 2a, derived from glyoxal and 

N-(4-isopropylbenzyl)hydroxylamine, was examined in toluene at 0 oC as shown in Eq. 1, Table 1.  

In the presence of 0.2 molar amount of bis(methylzinc) salt of diisopropyl (R,R)-tartrate 1a, prepared

in situ from 0.2 molar amount of diisopropyl (R,R)-tartrate and 0.4 molar amount of dimethylzinc, 

the -dinitrone 2a was treated with dimethylzinc, followed by addition of phenylacetylene (3A).

The corresponding (S,S)-bis(hydroxylamine) 4Aa was obtained with low enantioselectivity of 21% 

ee and a small amount of meso-isomer 5Aa was accompanied (Entry 1).  On the contrary, the 

bis(bromomagnesium) salt 1b afforded the opposite (R,R)-enantiomer with slightly enhanced optical
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yield (Entry 2).  2-Bromomagnesium 3-methylzinc salt 1c realized a higher enantioselection for

(R,R)-4Aa (Entry 3).  In these reactions, -dinitrone 2a was scarcely soluble in toluene, so that the 

reaction mixture was heterogeneous and 2a was supplied gradually into the reaction with the 

progress of the dialkynlyation reaction.  Next the influence of the ester groups in 

2-bromomagnesium 3-methylzinc salt 1 was investigated (Entries 4-9).  The use of the esters

derived from primary alcohols afforded product 4Aa with lower selectivity (Entries 4,5).  In the 

case of the t-butyl ester, the enantioselectivity was also miserable (Entry 9).  The esters derived 

from secondary alcohols were more effective and the cyclohexyl ester was the ester of choice to 

realize the highest selectivity of 70 % ee (Entry 8).

Table 1

M1O CO2R

CO2RM2O

1) Me2Zn (3.0 eq.)

N

N

O

O
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Entry M1 M2 R Time/h Yield of 4Aa/% ee of 4Aa/% Yield of 5Aa/%

1

2

3

4

5

6

7

8

9

MeZn MeZn

BrMg BrMg

MeZn

MeZn

MeZn

MeZn

MeZn

MeZn

MeZn
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Bn
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18

5

5

5

5

5

5

4

5
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81
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21a)
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7
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9

>5

>3

>3

>3

>6

>6

>3

12

>4

1

a

b

c

d

e

f

g

h

i

a) A major product was the opposite (S,S)-enantiomer.

BrMg

BrMg

BrMg

BrMg

BrMg

BrMg

BrMg

iPr
iPr
iPr

(1)



Furthermore, the enantioselectivity was found to be influenced by the substituents on nitrogen of 

-dinitrones as shown in Eq. 2, Table 2.  When the -dinitrones 2b-d were used, the alkynylation 

reactions proceeded slowly to afford the corresponding bis(hydroxylamine)s 4Ab-Ad in low 

chemical yield and with poor enantioselectivity (Entries 2-4).  On the other hand, the reaction of the 

4-t-butylbenzyl substituted -dinitrone 2e proceeded smoothly to give the satisfactory amount of the 

product 4Ae, however, the enantioselectivity decreased (Entry 5).  These results might be due to the 

solubility of -dinitrones.  In the catalytic asymmetric alkynylation reaction of alkynylzinc reagent, 

solubility of -dinitrones 2 could control the rate of supplying -dinitrones into the reaction and the 

balance between the reaction rate and the supplying rate of -dinitrone might be crucial. The 

nitrones 2b-d are less soluble in toluene and t-butylbenzyl substituted nitrone 2e is rather soluble, so 

that the amounts of the catalyst 1h and -dinitrones in the solution were not balanced in these cases 

to realize high enantioselectivity.  In the case of less soluble -dinitrones 2b,c, the alkynylation 

reaction required longer time to consume the -dinitrone and a part of the addition product further 

cyclized to give the corresponding biisoxazoles 6b,c (Entries 2,3). 
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Entry ArCH2 Time/h Yield of 4/% ee of 4/% Yield of 5/%

1

2

3

4

5

4
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3
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3
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-

-
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The effect of solvent was also examined and the results are listed in Eq. 3, Table 3.

Dichloromethane afforded the bis(hydroxylamine) 4Aa with slightly low enantioselectivity (Entry 2).  

The strongly coordinative solvents, such as MeCN or THF, decreased the enantioselectivity (Entries 

3 and 4).  On the other hand, when acyclic ethers were used, the optical yields were further 

improved (Entries 5-8).  Especially, tBuOMe realized the enhanced enantioselectivity of 84% ee 

(Entry 6).  In the case of the high-polar solvents, a part of the addition product cyclized to give the 

corresponding biisoxazole 6a (Entries 3,4,9).  

Unfortunately the enantioselectivities were varied depending on the Grignard reagent used for 

preparation of 1h.  It was found that the slightly excess amount of nBuMgBr was effective to realize 

reproducible high enantioselectivity (Entry 7). Probably a part of bromomagnesium salt in 1h

might be exchanged to the corresponding methylzinc salt in the presence of excess amount of 

methylzinc species to generate bis(methylzinc) salt 1i (Eq. 4).  As mentioned above, the addition 

reaction catalyzed by 1i gave (S,S)-4Aa, which might decrease the enantioselectivity.  When a 

slight excess amount of nBuMgBr was used, partially produced bis(bromomagnesium) salt 1j could 

react with 1i to regenerate 1h (Eqs. 5,6).
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Entry Solvent Time/h Yield of 4Aa/% ee of 4Aa/% Yield of 5Aa/%

1

2

3

4

5

Toluene 4

1

19
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3

73
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31
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6
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3

11
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8
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Yield of 6a/%
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-

<17

31

-

-

-

13

tBuOMe

(3)

6 3 75 84 13 -tBuOMe

a) 0.20 Molar amount of dicyclohexyl (R,R)-tartrate was successively treated with
0.26 molar amount of nBuMgBr and 0.20 molar amount of Me2Zn for the
preparation of 1h instead of using 0.20 molar amount of nBuMgBr.            
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Furthermore, when the asymmetric dialkynylation reaction was carried out by using the 

stoichiometric amount of 1h, bis(hydroxylamine) 4Aa was obtained with higher enantioselectivity of 

90% ee (Eq. 7), which indicated formation of the efficient chiral environment from dicyclohexyl 

tartrate. 
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The catalytic asymmetric addition of various alkynes 3B-G were carried out under the optimized 

conditions to afford the corresponding bis(hydroxylamine)s 4Ba-Ga with moderate to good 

enantioselectivities (Eq. 8, Table 4).  In the cases of 1-hexyne (3F) and (trimethylsilyl)acetylene 

(3G), the alkynylation reactions proceeded slowly to afford the products 4Fa,Ga in slightly lower

chemical yields (Entries 6,7). 
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3

3
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3
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a) 0.20 Molar amount of dicyclohexyl (R,R)-tartrate was treated with 0.26 molar
amount of nBuMgBr and 0.2 molar amount of Me2Zn for the preparation of 1h.



The absolute configuration of the dialkynlyation product 4Aa was determined to be R,R as follows: 

The enantiomerically rich 4Aa (60% ee) was treated with (1S,4R)-camphanic chloride (7) and Et3N 

to give the corresponding diastereomeric mixture of esters, 8 and 9, in 60% yield (Eq. 9).

Purification by recrystallization gave diastereomerically pure 8, whose absolute configuration was 

determined to be R,R by X-ray crystallographic analysis (Figure 1).  The absolute stereochemistries 

of other products were tentatively assigned to be also R,R.
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Although the precise reaction mechanism is still unclear, the plausible catalytic cycle is shown in 

Scheme 1.  The first enantioselective alkynylation may proceed via the transition state A to afford 

the R configuration as confirmed above.  The remaining nitrone moiety in the mono-adduct 

subsequently coordinates to Lewis acidic magnesium of the catalyst, followed by the 

transmetallation as depicted in B. The second enantioselective alkynylation may proceed via the 

transition state C, which is similar to the transition state A of the first alkynylation, to afford the 

(R,R)-product 10 .

O
Mg

O

O
Zn

CO2R

OR
Me

N

NO

Ar

Ar
O

N

NO

Ar

Ar
O

ZnMeR'

ZnMeR'

Br

N

N

R'

R'

O

O

Ar Ar

MeZn

ZnMe10

Scheme 1

O
Mg

O

O
Zn

OR

Zn O

OR

O
N

N
O

Ar

Ar

Br

Me

Me

R'
A

O
Mg

O

O
Zn

OR

Zn O

OR
O

Br

Me

Me

N

N
O

Ar

Ar

R'

Me
Zn

R'

O
Mg

O

O
Zn

OR

Zn O

OR

O

C

Me

N

MeR'

R'

Br

Ar

H

N
OZnMe

Ar

O
Mg

O

O
Zn

OR

Zn O

OR

O

Me

N

Me

R'

Br

Ar

H

N
OZnMe

Ar

R'

B

H

H

(R)

3. Conclusion

In conclusion, we have developed enantio- and diastereoselective dialkynylation reaction of 

-dinitrone by utilizing tartaric acid esters as a chiral auxiliary.  This reaction provides a simple and 

attractive approach to optically active C2-symmetric bis(hydroxylamine) derivatives.



                              4. Experimental

4.1 General

All of the melting points were determined by a micro melting apparatus (Yanagimoto-Seisakusho) 

and uncorrected.  The 1H NMR spectra were recorded on a JEOL Lambda 400 spectrometers.  The 

chemical shifts were determined in the -scale relative to tetramethylsilane (= 0) as an internal 

standard.  The IR spectra were measured by JASCO FT/IR-230 spectrometer. The MS spectra 

were recorded with a JEOL SX-102A mass spectrometer.  The specific optical rotations were 

recorded on JASCO DIP-370 spectrometer.  THF and Et2O were freshly distilled from sodium 

diphenylketyl.  All other solvents were distilled according to the usual manner and stored over 

drying agents.  Flash column chromatography and thin-layer chromatography (TLC) were 

performed on Cica-Merck’s silica gel 60 (No. 9385-5B) and Merck’s silica gel 60 PF254 (Art. 

107749), respectively.  

4.2 Preparation of -Dinitrones

N,N'-(Ethane-1,2-diylidene)bis[(4-isopropylphenyl)methanamine oxide] (2a):  To a solution of 

4-isopropylbenzaldehyde (6.72 g, 45.3 mmol) in MeOH (70 ml) was added a solution of 

hydroxyammonium chloride (4.73 g, 68.0 mmol) in H2O (25 ml) and the mixture was stirred for 20 

min at room temperature.  To the mixture was added a solution of Na2CO3 (3.60 g, 34.0 mmol) in 

H2O (25 ml) and the mixture was stirred for 19.5 h at room temperature.  After most of the MeOH 

was evaporated under reduced pressure, the mixture was extracted with Et2O.  The combined

extracts was washed with brine, dried over Na2SO4, and condensed under reduced pressure to give

almost pure 4-isopropylbenzaldehyde oxime (7.33 g, 99%).  The crude oxime was used in the 

following reaction without further purification.  To a solution of 4-isopropylbenzaldehyde oxime

(7.25 g, 44.4 mmol) in MeOH (35 ml) was added a solution of NaBH3CN (2.79 g, 44.4 mmol) in 

MeOH (30 ml) and two drops of an aqueous methyl orange solution as an indicator, then a 1 M 

aqueous HCl solution was added with stirring until the color turned red.  The mixture was stirred 

for 2 h at room temperature adding a 1 M aqueous HCl solution to maintain the red color.  The 

mixture was adjusted to pH 10 by adding a 6 M aqueous KOH solution and the mixture was 

extracted with AcOEt.  The combined extracts were washed with brine, dried over Na2SO4, and 

condensed under reduced pressure to give crude N-(4-isopropylbenzyl)hydroxylamine.  To a 

solution of the crude hydroxylamine in THF (45 ml) was added a mixture of 40% aqueous glyoxal 

solution (3.22 g, 22.2 mmol) and THF (25 ml), followed by stirring for 4.5 h at room temperature.  

The precipitated crude -dinitrone 2a was filtered off.  The product was purified by 

recrystallization from CHCl3/hexane to give pure 2a (5.38 g, 69%, 2 steps from 

4-isopropylbenzaldehyde oxime).  Mp 185–186 °C (decomp., recrystallized from CHCl3/hexane); 

IR (KBr) 3099, 3054, 2961, 2871, 1525, 1466, 1443, 1421, 1373, 1323, 1307, 1282, 1195, 1151, 

1058, 1019, 967, 893, 865, 845, 816, 755, 713, 663 cm–1; 1H NMR (CDCl3)  = 1.23 (d, J = 6.83 Hz, 



12H), 2.90 (sept, J = 6.83 Hz, 2H), 4.88 (s, 4H), 7.23 (d, J = 8.05 Hz, 4H), 7.31 (d, J = 8.05 Hz, 4H), 

7.78 (s, 2H); Found: C, 75.14; H, 8.06; N, 7.89%. Calcd for C22H28N2O2: C, 74.96; H, 8.01; N, 

7.95%.

In a similar manner, -dinitrones 2b–2e were synthesised using hydroxylamines prepared from the 

corresponding aldehydes.

N,N'-(Ethane-1,2-diylidene)bis(phenylmethanamine oxide) (2b):  Mp 205–206 °C (decomp., 

recrystallized from DMSO/H2O); IR (KBr) 3100, 3056, 3033, 2984, 2921, 1527, 1495, 1456, 1443, 

1375, 1337, 1315, 1291, 1197, 1149, 1028, 964, 925, 887, 863, 831, 756, 699, 670 cm–1; 1H NMR 

(CDCl3)  = 4.93 (s, 4H), 7.39 (s, 10H), 7.80 (s, 2H); Found: C, 71.50; H, 6.06; N, 10.46%. Calcd 

for C16H16N2O2: C, 71.62; H, 6.01; N, 10.44%.

N,N'-(Ethane-1,2-diylidene)bis[(4-chlorophenyl)methanamine oxide] (2c):  Mp 213–214 °C

(decomp., recrystallized from DMSO/H2O); IR (KBr) 3101, 3056, 2985, 2923, 2849, 1599, 1577, 

1526, 1494, 1443, 1408, 1374, 1330, 1304, 1281, 1197, 1153, 1145, 1097, 1019, 968, 893, 869, 847, 

808, 737, 682 cm–1; 1H NMR (CDCl3)  = 4.89 (s, 4H), 7.34 (d, J = 9.03 Hz, 4H), 7.37 (d, J = 9.03 

Hz, 4H), 7.79 (s, 2H); Found: C, 57.11; H, 4.19; N, 8.31%. Calcd for C16H14N2O2Cl2: C, 56.99; H, 

4.19; N, 8.31%.

N,N'-(Ethane-1,2-diylidene)bis[(3,5-dimethylphenyl)methanamine oxide] (2d):  Mp

206–207 °C (decomp., recrystallized from CHCl3/AcOEt); IR (KBr) 3098, 3057, 3022, 2955, 2917, 

2867, 1606, 1530, 1469, 1369, 1321, 1307, 1280, 1192, 1153, 1038, 996, 925, 914, 891, 849, 740, 

679 cm–1; 1H NMR (CDCl3)  = 2.31 (s, 12H), 4.84 (s, 4H), 7.00 (s, 6H), 7.78 (s, 2H); Found: C, 

74.19; H, 7.45; N, 8.69%. Calcd for C20H24N2O2: C, 74.04; H, 7.46; N, 8.64%.

N,N'-(Ethane-1,2-diylidene)bis[(4-t-butylphenyl)methanamine oxide] (2e): Mp 159.5–160.5 °C

(decomp., recrystallized from AcOE/hexane); IR (KBr) 3092, 3053, 2961, 2904, 2868, 1529, 1473, 

1436, 1417, 1362, 1321, 1269, 1188, 1153, 1109, 1024, 949, 895, 842, 810, 751, 691, 658 cm–1; 1H 

NMR (CDCl3)  = 1.30 (s, 18H), 4.89 (s, 4H), 7.32 (d, J = 8.29 Hz, 4H), 7.40 (d, J = 8.29 Hz, 4H), 

7.79 (s, 2H); Found: C, 75.71; H, 8.51; N, 7.38%. Calcd for C24H32N2O2: C, 75.75; H, 8.48; N, 

7.36%.

4.3 Catalytic Asymmetric Dialkynylation Reaction

Representative Procedure for Catalytic Asymmetric Dialkynylation of an -Dinitrone (Table 3,

Entry 7):  To a tBuOMe (1.0 ml) solution of dicyclohexyl (R,R)-tartrate (32 mg 0.10 mmol) was 

added butylmagnesium bromide (0.13 mmol, 0.25 ml of 0.536 M solution in THF) at 0 °C under an 



argon atmosphere, and the mixture was stirred for 10 min.  After adding dimethylzinc (1.6 mmol, 

1.6 ml of 1.0 M solution in hexane), the resulting suspension was stirred for 10 min at 0 °C.  To the 

suspension, solid -dinitrone 2a (180 mg, 0.51 mmol) was added and the suspension was stirred for 

10 min at 0 °C.  To the reaction mixture, a tBuOMe (1.0 ml) solution of phenylacetylene (3A) (156 

mg, 1.53 mmol) was added and the suspension was stirred for 3 h at 0 °C.  The reaction was 

quenched by addition of a saturated aqueous NaHCO3 solution.  After warming to room 

temperature, the precipitate containing meso-isomer 5Aa was separated by filtration through Celite 

to give the filtrate (F) and precipitate (P).  The precipitate (P) was suspended in CHCl3 and the 

mixture was heated to dissolve 5Aa.  The insoluble inorganic matter was filtered off through Celite 

and the filtrate was condensed under reduced pressure to give the meso-isomer 5Aa (29 mg, 10%).  

The filtrate (F) was extracted with AcOEt and the combined extracts were washed with brine, dried 

over Na2SO4, and condensed under reduced pressure.  The resulting residue was dissolved in a 

small amount of Et2O, followed by addition of hexane to precipitate additional meso-isomer 5Aa, 

which was separated by filtration (5 mg, 2%).  The filtrate was condensed and the residue was 

purified by TLC (SiO2, hexane/AcOEt = 5/1) to give dl-isomer 4Aa (206 mg, 73%).  The 

enantiomer ratio was determined by HPLC analysis (Daicel Chiralcel IA, hexane/iPrOH = 30/1, 

detected at 254 nm) to be 81% ee.

In a similar way, the asymmetric addition reactions of alkynylzinc reagent to the -dinitrones 2 were 

carried out to give the corresponding bis(hydroxylamine)s 4.  The physical and spectral data of 4, 5, 

and 6 are given in following. 

N,N'-[(R,R)-1,6-Diphenylhexa-1,5-diyne-3,4-diyl]bis[N-(4-isopropylbenzyl)hydroxylamine]

(4Aa):  Mp 125–126 °C (decomp., recrystallized from AcOEt/hexane); []D
25 +14 (c 0.824, EtOH, 

81% ee); IR (KBr) 3487, 3218, 3054, 3023, 2960, 2927, 2907, 2869, 2225, 1598, 1513, 1489, 1443, 

1363, 1327, 1304, 1100, 1069, 1055, 1020, 959, 914, 805, 758, 691 cm–1; 1H NMR (CDCl3)  = 

1.24 (d, J = 6.83 Hz, 12H), 2.90 (sept, J = 6.83 Hz, 2H), 3.98 (d, J = 12.69 Hz, 2H), 4.20 (d, J = 

12.69 Hz, 2H), 4.25 (s, 2H), 5.48 (br, 2H), 7.20 (d, J = 8.05 Hz, 4H), 7.28–7.33 (m, 6H), 7.34 (d, J = 

8.05 Hz, 4H), 7.47–7.55 (m, 4H); Found: C, 81.71; H, 7.28; N, 5.02%. Calcd for C38H40N2O2: C, 

81.98; H, 7.24; N, 5.03%.

N,N'-[(R,R)-1,6-Diphenylhexa-1,5-diyne-3,4-diyl]bis[N-(benzyl)hydroxylamine] (4Ab):  Mp

114.5–115.5 °C (decomp., recrystallized from AcOEt/hexane); []D
25 +7 (c 0.73, EtOH, 24% ee).

The enantiomer ratio was determined by HPLC (Daicel Chiralcel OD-H, hexane/EtOH = 100/1, 

detected at 254 nm). IR (KBr) 3420, 3061, 3031, 2905, 2860, 2225, 1598, 1572, 1541, 1490, 1455, 

1442, 1302, 1259, 1177, 1157, 1069, 1029, 967, 915, 822, 756, 691 cm–1; 1H NMR (CDCl3)  = 

4.00 (d, J = 12.82 Hz, 2H), 4.23 (d, J = 12.82 Hz, 2H), 4.25 (s, 2H), 5.22 (s, 2H), 7.26–7.38 (m, 12H), 

7.42 (d, J = 6.71 Hz, 4H), 7.47–7.56 (m, 4H); Found: C, 81.29; H, 6.02; N, 5.95%. Calcd for 



C32H28N2O2: C, 81.33; H, 5.97; N, 5.93%.

N,N'-[(R,R)-1,6-Diphenylhexa-1,5-diyne-3,4-diyl]bis[N-(4-chlorobenzyl)hydroxylamine] (4Ac):  

Mp 107.5–108.5 °C (decomp., recrystallized from AcOEt/hexane); []D
25 +5 (c 0.488, EtOH, 11% 

ee). The enantiomer ratio was determined by HPLC (Daicel Chiralcel OD-H, hexane/EtOH = 40/1, 

detected at 254 nm).  IR (KBr) 3551, 3290, 3060, 2919, 2861, 2227, 1598, 1491, 1442, 1407, 1363, 

1299, 1226, 1090, 1070, 1049, 1016, 967, 915, 851, 833, 801, 757, 724, 690 cm–1; 1H NMR (CDCl3) 

 = 3.96 (d, J = 12.93 Hz, 2H), 4.21 (d, J = 12.93 Hz, 2H), 4.24 (s, 2H), 5.32 (br, 2H), 7.28–7.38 (m, 

14H), 7.47–7.53 (m, 4H); Found: C, 70.93; H, 4.82; N, 5.16%. Calcd for C32H26N2O2Cl2: C, 70.98; 

H, 4.84; N, 5.18%.  

N,N'-[(R,R)-1,6-Diphenylhexa-1,5-diyne-3,4-diyl]bis[N-(3,5-dimethylbenzyl)hydroxylamine]

(4Ad):  Mp 138–139 °C (decomp., recrystallized from EtOH/hexane); []D
25 +10 (c 0.584, EtOH, 

47% ee).  The enantiomer ratio was determined by HPLC (Daicel Chiralcel OD-H, hexane/EtOH = 

100/1, detected at 254 nm).  IR (KBr) 3465, 3208, 3019, 2915, 2861, 2228, 1607, 1490, 1459, 1442, 

1377, 1362, 1326, 1307, 1259, 1159, 1102, 1069, 1041, 981, 915, 853, 815, 756, 690, 668 cm–1; 1H 

NMR (CDCl3)  = 2.30 (s, 12H), 3.92 (d, J = 12.69 Hz, 2H), 4.16 (d, J = 12.69 Hz, 2H), 4.26 (s, 2H), 

5.55 (br, 2H), 6.92 (s, 2H), 7.04 (s, 4H), 7.28–7.34 (m, 6H), 7.48–7.54 (m, 4H); Found: C, 81.66; H, 

6.87; N, 5.27%. Calcd for C36H36N2O2: C, 81.78; H, 6.86; N, 5.30%.  

N,N'-[(R,R)-1,6-Diphenylhexa-1,5-diyne-3,4-diyl]bis[N-(4-t-butylbenzyl)hydroxylamine] (4Ae):  

Mp 106.5–107.5 °C (from EtOH/hexane); []D
25 +5 (c 0.884, EtOH, 37% ee).  The enantiomer 

ratio was determined by HPLC (Daicel Chiralcel IA, hexane/iPrOH = 60/1, detected at 254 nm).  IR 

(KBr) 3285, 3057, 3031, 2962, 2903, 2867, 1598, 1509, 1490, 1474, 1459, 1442, 1413, 1395, 1363, 

1296, 1269, 1109, 1069, 1048, 1023, 963, 914, 844, 809, 756, 690, 669 cm–1; 1H NMR (CDCl3)  =

1.31 (s, 18H), 3.99 (d, J = 12.69 Hz, 2H), 4.21 (d, J = 12.69 Hz, 2H), 4.26 (s, 2H), 5.44 (br, 2H), 

7.29–7.34 (m, 6H), 7.35 (s, 8H), 7.49–7.53 (m, 4H); Found: C, 82.36; H, 7.72; N, 4.81%. Calcd for 

C40H44N2O2: C, 82.15; H, 7.58; N, 4.79%.

N,N'-[(R,R)-1,6-Bis(4-pentylphenyl)hexa-1,5-diyne-3,4-diyl]bis[N-(4-isopropylbenzyl)hydroxyla

mine] (4Ba): Mp 105–106 °C (decomp., recrystallized from EtOH/hexane); []D
25 +13 (c 0.892, 

EtOH, 76% ee).  The enantiomer ratio was determined by HPLC (Daicel Chiralcel IA, 

hexane/iPrOH = 15/1, detected at 254 nm).  IR (KBr) 3276, 3083, 3026, 2958, 2928, 2857, 2227, 

1611, 1509, 1460, 1420, 1382, 1362, 1317, 1182, 1115, 1081, 1055, 1020, 965, 834, 816, 715 cm–1;
1H NMR (CDCl3)  = 0.88 (t, 6.59 Hz, 6H), 1.24 (d, J = 6.83 Hz, 12H), 1.27–1.36 (m, 8H), 1.60 

(quint, J = 7.56 Hz, 4H), 2.59 (t, J = 7.56 Hz, 4H), 2.89 (sept, J = 6.83 Hz, 2H), 3.96 (d, J = 12.69 Hz, 

2H), 4.20 (d, 12.69 J = Hz, 2H), 4.23 (s, 2H), 5.23 (br, 2H), 7.12 (d, J = 8.05 Hz, 4H), 7.19 (d, J = 

7.81 Hz, 4H), 7.33 (d, J = 8.05 Hz, 4H), 7.42 (d, J = 7.81 Hz, 4H); Found: C, 82.45; H, 8.78; N, 



3.94%. Calcd for C48H60N2O2: C, 82.71; H, 8.68; N, 4.02%.

N,N'-[(R,R)-1,6-Bis(4-methoxyphenyl)hexa-1,5-diyne-3,4-diyl]bis[N-(4-isopropylbenzyl)hydrox

ylamine] (4Ca): Mp 125–126 °C (decomp., recrystallized from AcOEt/hexane); []D
25 +12 (c 

0.788, EtOH, 72% ee).  The enantiomer ratio was determined by HPLC (Daicel Chiralcel IA, 

hexane/EtOH = 7/1, detected at 254 nm). IR (KBr) 3435, 3008, 2958, 2932, 2892, 2837, 2225, 

1606, 1569, 1509, 1462, 1442, 1418, 1384, 1363, 1334, 1290, 1248, 1171, 1104, 1030, 970, 920, 831, 

804, 764, 725 cm–1; 1H NMR (CDCl3)  = 1.24 (d, J = 6.83 Hz, 12H), 2.89 (sept, J = 6.83 Hz, 2H), 

3.81 (s, 6H), 3.96 (d, J = 12.69 Hz, 2H), 4.19 (d, J = 12.69 Hz, 2H), 4.22 (s, 2H), 5.46 (br, 2H), 6.83 

(d, J = 9.03 Hz, 4H), 7.19 (d, J = 8.05 Hz, 4H), 7.33 (d, J = 8.05 Hz, 4H), 7.44 (d, J = 9.03 Hz, 4H);

Found: C, 77.77; H, 7.19; N, 4.61%. Calcd for C40H44N2O4: C, 77.89; H, 7.19; N, 4.54%.    

N,N'-{(R,R)-1,6-Bis[4-(trifluoromethyl)phenyl]hexa-1,5-diyne-3,4-diyl}bis[N-(4-isopropylbenzy

l)hydroxylamine] (4Da):  Mp 113.5–114.5 °C (decomp., recrystallized from AcOEt/hexane); 

[]D
25 +9 (c 0.912, EtOH, 59% ee).  The enantiomer ratio was determined by HPLC (Daicel 

Chiralcel IA, hexane/iPrOH = 20/1, detected at 254 nm).  IR (KBr) 3296, 3055, 3025, 2962, 2929, 

2871, 1615, 1515, 1463, 1420, 1405, 1385, 1363, 1324, 1168, 1129, 1105, 1067, 1017, 971, 843, 810, 

732, 715, 659 cm–1; 1H NMR (CDCl3)  = 1.24 (d, J = 6.83 Hz, 12H), 2.87 (sept, J = 6.83 Hz, 2H),

3.96 (d, J = 12.69 Hz, 2H), 4.19 (d, J = 12.69 Hz, 2H), 4.27 (s, 2H), 5.52 (s, 2H), 7.20 (d, J = 8.05 

Hz, 4H), 7.32 (d, J = 8.05 Hz, 4H), 7.58 (d, J = 9.03 Hz, 4H), 7.60 (d, J = 9.03 Hz, 4H); Found: C, 

69.35; H, 5.60; N, 3.98%. Calcd for C40H38N2O2F6: C, 69.35; H, 5.53; N, 4.04%.

N,N'-[(R,R)-1,6-Bis(2-fluorophenyl)hexa-1,5-diyne-3,4-diyl]bis[N-(4-isopropylbenzyl)hydroxyla

mine] (4Ea):  Mp 108–109 °C (decomp., recrystallized from AcOEt/hexane); []D
25 +11 (c 0.948, 

EtOH, 74% ee).  The enantiomer ratio was determined by HPLC (Daicel Chiralcel IA, 

hexane/iPrOH = 10/1, detected at 254 nm).  IR (KBr) 3241, 3060, 2960, 2927, 2870, 1612, 1574, 

1514, 1493, 1448, 1420, 1384, 1363, 1303, 1271, 1255, 1216, 1104, 1055, 1031, 1021, 967, 944, 854, 

827, 808, 758, 667 cm–1; 1H NMR (CDCl3)  = 1.24 (d, J = 6.83 Hz, 12H), 2.89 (sept, J = 6.83 Hz, 

2H), 4.01 (d, J = 12.69 Hz, 2H), 4.24 (d, J = 12.69 Hz, 2H), 4.31 (s, 2H), 5.43 (br, 2H), 7.04–7.12 (m, 

4H), 7.19 (d, J = 8.05 Hz, 4H), 7.27–7.34 (m, 2H), 7.35 (d, J = 8.05 Hz, 4H), 7.46–7.53 (m, 2H);

Found: C, 77.06; H, 6.60; N, 4.72%. Calcd for C38H38N2O2F2: C, 77.00; H, 6.46; N, 4.73%.

N,N'-[(R,R)-Tetradeca-5,9-diyne-7,8-diyl]bis[N-(4-isopropylbenzyl)hydroxylamine] (4Fa):  

Obtained as an oil; []D
25 -10 (c 0.248, EtOH, 79% ee).  The enantiomer ratio was determined by 

HPLC (Daicel Chiralcel IA, hexane/iPrOH = 50/1, detected at 220 nm).  IR (neat) 3230, 3093, 3053, 

3012, 2958, 2931, 2871, 2233, 1614, 1567, 1514, 1464, 1421, 1381, 1362, 1328, 1301, 1237, 1142, 

1103, 1056, 1020, 954, 809, 740, 715 cm–1; 1H NMR (CDCl3)  = 0.93 (t, J = 7.08 Hz, 6H), 1.24 (d, 

J = 6.83 Hz, 12H), 1.42–1.65 (m, 8H), 2.30 (t, 7.08 Hz, 4H), 2.88 (sept, J = 6.83 Hz, 2H), 3.82 (d, J 



= 12.69 Hz, 2H), 3.87 (s, 2H), 4.07 (d, J = 12.69 Hz, 2H), 5.39 (br, 2H), 7.16 (d, J = 8.05 Hz, 4H), 

7.28 (d, J = 8.05 Hz, 4H); HRMS (FAB+), Found: m/z 517.37900. Calcd for C34H49N2O2: (M
++H), 

517.37941.  

N,N'-[(R,R)-1,6-Bis(trimethylsilyl)hexa-1,5-diyne-3,4-diyl]bis[N-(4-isopropylbenzyl)hydroxyl

amine] (4Ga):  Obtained as an oil; []D
25 -9 (c 0.536, EtOH, 70% ee).  The enantiomer ratio was 

determined by HPLC (Daicel Chiralcel IA, hexane/iPrOH = 100/1, detected at 220 nm).  IR (neat)

3277, 3012, 2959, 2898, 2870, 2173, 1612, 1514, 1460, 1420, 1384, 1362, 1249, 1056, 1020, 982, 

842, 808, 760, 700 cm–1; 1H NMR (CDCl3)  = 0.22 (s, 18H), 1.24 (d, J = 6.83 Hz, 12H), 2.89 (sept, 

J = 6.83 Hz, 2H), 3.83 (d, J = 12.93 Hz, 2H), 3.96 (s, 2H), 4.09 (d, J = 12.93 Hz, 2H), 5.21 (br, 2H), 

7.18 (d, J = 8.05 Hz, 4H), 7.28 (d, J = 8.05 Hz, 4H); HRMS (FAB+), Found: m/z 549.33305. Calcd 

for C32H49N2O2Si2: (M
++H), 549.33327.  

N,N'-[(R,S)-1,6-Diphenylhexa-1,5-diyne-3,4-diyl]bis[N-(4-isopropylbenzyl)hydroxylamine]

(5Aa): Mp 168.5–169.5 °C (decomp., recrystallized from AcOEt/hexane); IR (KBr) 3261, 3051,

2965, 2929, 2869, 2217, 1557, 1540, 1508, 1489, 1465, 1442, 1417, 1297, 1239, 1083, 1029, 998, 

972, 919, 857, 832, 804, 758, 691 cm–1; 1H NMR (CDCl3)  = 1.24 (d, J = 6.83 Hz, 12H), 2.89 (sept, 

J = 6.83 Hz, 2H), 4.00 (d, J = 12.93 Hz, 2H), 4.27 (d, J = 12.93 Hz, 2H), 4.29 (s, 2H), 5.23 (br, 2H), 

7.18 (d, J = 8.05 Hz, 4H), 7.31–7.36 (m, 6H), 7.37 (d, J = 8.05 Hz, 4H), 7.51–7.56 (m, 4H); Found: 

C, 81.71; H, 7.25; N, 4.94%. Calcd for C38H40N2O2: C, 81.98; H, 7.24; N, 5.03%.

N,N'-[(R,S)-1,6-Diphenylhexa-1,5-diyne-3,4-diyl]bis[N-(benzyl)hydroxylamine] (5Ab):  Mp

172.5–173.5 °C (decomp., recrystallized from AcOEt); IR (KBr) 3240, 3084, 3063, 3030, 2934, 

2879, 1598, 1492, 1454, 1443, 1344, 1296, 1236, 1215, 1079, 1031, 990, 971, 931, 915, 838, 818, 

764, 742, 697 cm–1; 1H NMR (CDCl3)  = 4.04 (d, J = 13.17 Hz, 2H), 4.30 (d, J = 13.17 Hz, 2H), 

4.30 (s, 2H), 5.17 (s, 2H), 7.28–7.37 (m, 12H), 7.43–7.48 (m, 4H), 7.51–7.57 (m, 4H); Found: C, 

81.23; H, 6.02; N, 5.87%. Calcd for C32H28N2O2: C, 81.33; H, 5.97; N, 5.93%.

N,N'-[(R,S)-1,6-Diphenylhexa-1,5-diyne-3,4-diyl]bis[N-(4-chlorobenzyl)hydroxylamine] (5Ac):  

Mp 169–170 °C (decomp., recrystallized from AcOEt/hexane); IR (KBr) 3253, 3064, 2876, 2216, 

1598, 1541, 1507, 1490, 1465, 1457, 1442, 1405, 1339, 1298, 1236, 1177, 1091, 1029, 1017, 975, 

948, 915, 856, 830, 801, 755, 690 cm–1; 1H NMR (CDCl3)  = 4.00 (d, J = 13.42 Hz, 2H), 4.25 (d, J 

= 13.42 Hz, 2H), 4.26 (s, 2H), 5.86 (br, 2H), 7.29 (d, J = 8.54 Hz, 4H), 7.33–7.41 (m, 10H), 

7.49–7.55 (m, 4H); Found: C, 70.79; H, 5.05; N, 5.03%. Calcd for C32H26N2O2Cl2: C, 70.98; H, 

4.84; N, 5.18%.

N,N'-[(R,S)-1,6-Diphenylhexa-1,5-diyne-3,4-diyl]bis[N-(3,5-dimethylbenzyl)hydroxylamine] 

(5Ad):  Mp 164–165 °C (decomp., recrystallized from CHCl3/hexane); IR (KBr) 3232, 3019, 2914, 



2873, 2225, 1606, 1489, 1458, 1442, 1379, 1349, 1299, 1235, 1166, 1088, 1071, 1029, 979, 928, 903, 

859, 810, 756, 710, 691, 668 cm–1; 1H NMR (CDCl3)  = 2.28 (s, 12H), 3.97 (d, J = 12.93 Hz, 2H), 

4.22 (d, J = 12.93 Hz, 2H), 4.30 (s, 2H), 5.16 (br, 2H), 6.91 (s, 2H), 7.07 (s, 4H), 7.31–7.37 (m, 6H), 

7.51–7.58 (m, 4H); Found: C, 81.56; H, 6.97; N, 5.24%. Calcd for C36H36N2O2: C, 81.78; H, 6.86; N, 

5.30%.

N,N'-[(R,S)-1,6-Diphenylhexa-1,5-diyne-3,4-diyl]bis[N-(4-t-butylbenzyl)hydroxylamine] (5Ae):  

Mp 186–187 °C (decomp., recrystallized from CHCl3/hexane); IR (KBr) 3268, 3060, 3028, 2962, 

2903, 2871, 2223, 1598, 1511, 1489, 1476, 1463, 1442, 1412, 1393, 1364, 1297, 1270, 1110, 1081, 

1029, 995, 973, 860, 845, 824, 804, 755, 690 cm–1; 1H NMR (CDCl3)  = 1.31 (s, 18H), 4.01 (d, J = 

13.17 Hz, 2H), 4.27 (d, J = 13.17 Hz, 2H), 4.30 (s, 2H), 5.25 (br, 2H), 7.31–7.40 (m, 14H), 

7.50–7.56 (m, 4H); Found: C, 82.05; H, 7.84; N, 4.76%. Calcd for C40H44N2O2: C, 82.15; H, 7.58; N, 

4.79%.

N,N'-[(R,S)-1,6-Bis(4-pentylphenyl)hexa-1,5-diyne-3,4-diyl]bis[N-(4-isopropylbenzyl)hydroxyla

mine] (5Ba): Mp 157.5–158.5 °C (decomp., recrystallized from Et2O/hexane); IR (KBr) 3243, 

3050, 3026, 2958, 2927, 2871, 2857, 1509, 1463, 1418, 1297, 1240, 1184, 1085, 1021, 855, 832, 804, 

736, 715 cm–1; 1H NMR (CDCl3)  = 0.90 (t, 6.83 Hz, 6H), 1.24 (d, J = 7.07 Hz, 12H), 1.28–1.40 

(m, 8H), 1.62 (quint, J = 7.56 Hz, 4H), 2.61 (t, J = 7.56 Hz, 4H), 2.89 (sept, J = 7.07 Hz, 2H), 3.99 (d, 

J = 12.93 Hz, 2H), 4.25 (d, 12.93 J = Hz, 2H), 4.26 (s, 2H), 5.24 (br, 2H), 7.15 (d, J = 8.05 Hz, 4H),

7.18 (d, J = 8.05 Hz, 4H), 7.36 (d, J = 8.05 Hz, 4H), 7.44 (d, J = 8.05 Hz, 4H); Found: C, 82.53; H, 

8.76; N, 4.01%. Calcd for C48H60N2O2: C, 82.71; H, 8.68; N, 4.02%.

N,N'-[(R,S)-1,6-Bis(4-methoxyphenyl)hexa-1,5-diyne-3,4-diyl]bis[N-(4-isopropylbenzyl)hydrox

ylamine] (5Ca): Mp 197–198 °C (decomp., recrystallized from CHCl3/hexane); IR (KBr) 3220, 

3008, 2959, 2931, 2872, 2218, 1606, 1509, 1461, 1415, 1290, 1251, 1172, 1104, 1084, 1029, 857, 

830, 805, 708 cm–1; 1H NMR (CDCl3)  = 1.24 (d, J = 7.07 Hz, 12H), 2.89 (sept, J = 7.07 Hz, 2H), 

3.83 (s, 6H), 3.99 (d, J = 12.69 Hz, 2H), 4.25 (d, J = 12.69 Hz, 2H), 4.26 (s, 2H), 6.86 (d, J = 8.78 

Hz, 4H), 7.18 (d, J = 8.05 Hz, 4H), 7.36 (d, J = 8.05 Hz, 4H), 7.46 (d, J = 8.78 Hz, 4H), Signals of 

the hydroxy proton (OH) was not observed clearly.; Found: C, 77.98; H, 7.29; N, 4.54%. Calcd for 

C40H44N2O4: C, 77.89; H, 7.19; N, 4.54%.  

N,N'-{(R,S)-1,6-Bis[4-(trifluoromethyl)phenyl]hexa-1,5-diyne-3,4-diyl}bis[N-(4-isopropylbenzyl

)hydroxylamine] (5Da):  Mp 161–162 °C (decomp., recrystallized from AcOEt/hexane); IR (KBr) 

3232, 3055, 3024, 2961, 2928, 2894, 2873, 1614, 1568, 1514, 1462, 1406, 1326, 1300, 1258, 1169, 

1131, 1105, 1088, 1068, 1017, 855, 842, 804, 730, 656 cm–1; 1H NMR (CDCl3)  = 1.24 (d, J = 7.07 

Hz, 12H), 2.90 (sept, J = 7.07 Hz, 2H), 4.00 (d, J = 12.93 Hz, 2H), 4.23 (d, J = 12.93 Hz, 2H), 4.32 

(s, 2H), 5.29 (s, 2H), 7.19 (d, J = 8.05 Hz, 4H), 7.34 (d, J = 8.05 Hz, 4H), 7.60 (d, J = 8.54 Hz, 4H), 



7.63 (d, J = 8.54 Hz, 4H); Found: C, 69.31; H, 5.55; N, 4.09%. Calcd for C40H38N2O2F6: C, 69.35; H, 

5.53; N, 4.04%.

N,N'-[(R,S)-1,6-Bis(2-fluorophenyl)hexa-1,5-diyne-3,4-diyl]bis[N-(4-isopropylbenzyl)hydroxyla

mine] (5Ea):  Mp 177–178 °C (decomp., recrystallized from AcOEt/hexane); IR (KBr) 3249, 3087, 

3012, 2960, 2925, 2889, 1612, 1576, 1492, 1467, 1448, 1363, 1300, 1254, 1214, 1103, 1083, 1057, 

1031, 997, 954, 856, 832, 822, 803, 759, 726 cm–1; 1H NMR (CDCl3)  = 1.24 (d, J = 7.07 Hz, 12H), 

2.89 (sept, J = 7.07 Hz, 2H), 4.03 (d, J = 12.93 Hz, 2H), 4.28 (d, J = 12.93 Hz, 2H), 4.33 (s, 2H), 

5.19 (br, 2H), 7.05–7.15 (m, 4H), 7.18 (d, J = 8.05 Hz, 4H), 7.29–7.36 (m, 2H), 7.38 (d, J = 8.05 Hz, 

4H), 7.49–7.55 (m, 2H); Found: C, 77.21; H, 6.46; N, 4.73%. Calcd for C38H38N2O2F2: C, 77.00; H, 

6.46; N, 4.73%.

N,N'-[(R,S)-Tetradeca-5,9-diyne-7,8-diyl]bis[N-(4-isopropylbenzyl)hydroxylamine] (5Fa):  Mp

161–162 °C (decomp., recrystallized from AcOEt/hexane); IR (KBr) 3376, 3056, 3012, 2956, 2932, 

2867, 2230, 1516, 1462, 1422, 1384, 1362, 1351, 1333, 1300, 1235, 1138, 1096, 1056, 1023, 1002, 

956, 885, 852, 836, 813, 778, 737, 715 cm–1; 1H NMR (CDCl3)  = 0.94 (t, J = 7.08 Hz, 6H), 1.24 

(d, J = 7.07 Hz, 12H), 1.41–1.63 (m, 8H), 2.32 (t, 6.83 Hz, 4H), 2.89 (sept, J = 7.07 Hz, 2H), 3.83 (d, 

J = 12.93 Hz, 2H), 3.91 (s, 2H), 4.13 (d, J = 12.93 Hz, 2H), 5.19 (br, 2H), 7.17 (d, J = 8.05 Hz, 4H), 

7.30 (d, J = 8.05 Hz, 4H); Found: C, 79.12; H, 9.54; N, 5.38%. Calcd for C34H48N2O2: C, 79.02; H, 

9.36; N, 5.42%.

N,N'-[(R,S)-1,6-Bis(trimethylsilyl)hexa-1,5-diyne-3,4-diyl]bis[N-(4-isopropylbenzyl)hydroxyla

mine] (5Ga):  Mp 161.5–162.5 °C (decomp., recrystallized from AcOEt/hexane); IR (KBr) 3387, 

3012, 2961, 2867, 2175, 1514, 1462, 1420, 1362, 1298, 1243, 1094, 1056, 1016, 996, 846, 811, 762, 

696 cm–1; 1H NMR (CDCl3)  = 0.24 (s, 18H), 1.24 (d, J = 6.83 Hz, 12H), 2.89 (sept, J = 6.83 Hz, 

2H), 3.85 (d, J = 12.93 Hz, 2H), 3.96 (s, 2H), 4.14 (d, J = 12.93 Hz, 2H), 5.08 (br, 2H), 7.17 (d, J = 

8.05 Hz, 4H), 7.31 (d, J = 8.05 Hz, 4H); Found: C, 69.82; H, 8.91; N, 5.00%. Calcd for 

C32H48N2O2Si2: C, 70.02; H, 8.81; N, 5.10%.

(3R,3'R)-2,2'-bis(4-isopropylbenzyl)-5,5'-diphenyl-2,2',3,3'-tetrahydro-3,3'-biisoxazole (6a):  

Obtained as an oil; IR (KBr) 3056, 3025, 2959, 2925, 2870, 1652, 1601, 1577, 1514, 1494, 1448, 

1420, 1362, 1335, 1280, 1243, 1181, 1097, 1071, 1047, 1022, 1000, 917, 890, 822, 770, 724, 691 

cm–1; 1H NMR (CDCl3)  = 1.27 (d, J = 6.83 Hz, 12H), 2.92 (sept, J = 6.83 Hz, 2H), 4.01 (d, J = 

12.93 Hz, 2H), 4.19 (s, 2H), 4.20 (d, J = 12.93 Hz, 2H), 5.23 (s, 2H), 7.21 (d, J = 8.05 Hz, 4H), 

7.29–7.33 (m, 6H), 7.36 (d, J = 8.05 Hz, 4H), 7.40–7.50 (m, 4H); HRMS (FAB+), Found: m/z

557.31687. Calcd for C38H41N2O2: (M
++H), 557.31681.

(3R,3'R)-2,2'-Dibenzyl-5,5'-diphenyl-2,2',3,3'-tetrahydro-3,3'-biisoxazole (6b):  Mp



113–114 °C (decomp., recrystallized from CH2Cl2/hexane); IR (KBr) 3106, 3085, 3061, 3031, 2877, 

2839, 1653, 1600, 1577, 1494, 1449, 1360, 1342, 1316, 1278, 1248, 1219, 1043, 1024, 916, 889, 

757, 726, 691 cm–1; 1H NMR (CDCl3)  = 4.07 (d, J = 13.42 Hz, 2H), 4.19 (s, 2H), 4.24 (d, J = 

13.42 Hz, 2H), 5.24 (s, 2H), 7.26–7.40 (m, 12H), 7.41–7.45 (m, 4H), 7.45–7.50 (m, 4H); Found: C, 

81.05; H, 5.93; N, 5.84%. Calcd for C32H28N2O2: C, 81.33; H, 5.97; N, 5.93%.

(3R,3'R)-2,2'-Bis(4-chlorobenzyl)-5,5'-diphenyl-2,2',3,3'-tetrahydro-3,3'-biisoxazole (6c):  Mp

134–135 °C (decomp., recrystallized from Et2O/hexane); IR (KBr) 3112, 3084, 3065, 3036, 2925, 

2900, 2846, 1659, 1598, 1577, 1491, 1447, 1406, 1331, 1243, 1228, 1089, 1042, 1015, 937, 919, 

882, 817, 802, 761, 745, 735, 709, 689, 663 cm–1; 1H NMR (CDCl3)  = 4.02 (d, J = 13.42 Hz, 2H), 

4.14 (s, 2H), 4.20 (d, J = 13.42 Hz, 2H), 5.22 (s, 2H), 7.25–7.37 (m, 14H), 7.43–7.49 (m, 4H);

Found: C, 70.69; H, 4.90; N, 5.01%. Calcd for C32H26N2O2Cl2: C, 70.98; H, 4.84; N, 5.18%.

4.4 Determination of Absolute Configuration (Eq. 9):  To a CH2Cl2 (3 ml) solution of 

N,N'-[(R,R)-1,6-diphenylhexa-1,5-diyne-3,4-diyl]bis[N-(4-isopropylbenzyl)hydroxylamine] (4Aa) 

(150 mg, 0.27 mmol, 60% ee) was added a CH2Cl2 (3 ml) solution of Et3N (63 mg, 0.62 mmol) at 

0 °C under a nitrogen atmosphere.  To the mixture was added a CH2Cl2 (3 ml) solution of 

(1S,4R)-camphanic chloride (7) (134 mg, 0.62 mmol), and the mixture was stirred for 2 h at 0 °C.  

After quenching the reaction by addition of water, the mixture was extracted with AcOEt.  The 

combined extracts were washed with brine, dried over Na2SO4, and condensed under reduced 

pressure.  The product was recrystallized from AcOEt/hexane to give the diastereomeric mixture of 

8 and 9 (147 mg, 60%). The diastereomerically pure 8 (89 mg, 36%) was obtained by 

recrystallizing further twice (first: AcOEt/hexane, second: toluene/hexane).  

N,N'-[(3R,4R)-1,6-diphenylhexa-1,5-diyne-3,4-diyl]bis{N-(4-isopropylbenzyl)-O-[(1S',4R')-4,7,7

-trimethyl-2-oxabicyclo[2.2.1]heptane-3-one-1-carbonyl]hydroxylamine} (8): Mp 148–149 °C

(decomp., recrystallized from toluene/hexane); []D
25 +80 (c 0.14, EtOH, 100% ee); IR (KBr) 3053, 

3018, 2962, 2934, 2871, 2230, 1781, 1599, 1513, 1490, 1443, 1398, 1381, 1332, 1309, 1254, 1227, 

1167, 1103, 1051, 1018, 993, 956, 934, 847, 825, 756, 690 cm–1; 1H NMR (CDCl3)  = 0.55 (s, 6H), 

0.70 (s, 6H), 0.97 (s, 6H), 1.21 (d, J = 6.83 Hz, 12H), 1.35–1.49 (m, 2H), 1.62–1.78 (m, 4H), 

1.95–2.15 (m, 2H), 2.88 (sept, J = 6.83 Hz, 2H), 4.28 (d, J = 13.42 Hz, 2H), 4.46 (br, 2H), 4.86 (s, 

2H), 7.17 (d, J = 8.05, 4H), 7.29–7.38 (m, 6H), 7.42 (d, J = 8.05 Hz, 4H), 7.45–7.51 (m, 4H); Found: 

C, 75.92; H, 6.96; N, 3.06%. Calcd for C58H64N2O8: C, 75.95; H, 7.03; N, 3.06%.  Crystal data (Fig. 

1): C58H64N2O8, FW 917.15, monoclinic, P21, a = 12.478(3) Å, b = 13.085(3) Å, c = 15.514(3) Å, 
= 90.240(6)o, V = 2533.0(9) Å3, Z = 2.  Dcalcd = 1.202 gcm–3.  R = 0.082 (Rw = 0.111) for 8489

reflections with I > 3.00(I) and 613 variable parameters.
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C32H26N2O2Cl2

N,N'-[(R,R)-1,6-Diphenylhexa-1,5-diyne-3,4-diyl]bis[N-(4-chlorobenzyl)hydroxylamine]

Ee = 11%

[]D
25 +5 (c 0.488, EtOH)

Source of Chirality: Dicyclohexyl (R,R)-tartrate

Absolute configuration: (R,R)
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C38H40N2O2

N,N'-[(R,R)-1,6-Diphenylhexa-1,5-diyne-3,4-diyl]bis[N-(4-isopropylbenzyl)hydroxylamine]

Ee = 81%

[]D
25 +14 (c 0.824, EtOH)

Source of Chirality: Dicyclohexyl (R,R)-tartrate

Absolute configuration: (R,R)
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N,N'-[(R,R)-1,6-Diphenylhexa-1,5-diyne-3,4-diyl]bis[N-(benzyl)hydroxylamine]

Ee = 24%

[]D
25 +7 (c 0.73, EtOH)

Source of Chirality: Dicyclohexyl (R,R)-tartrate

Absolute configuration: (R,R)
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C40H44N2O2

N,N'-[(R,R)-1,6-Diphenylhexa-1,5-diyne-3,4-diyl]bis[N-(4-t-butylbenzyl)hydroxylamine]

Ee = 37%

[]D
25 +5 (c 0.884, EtOH)

Source of Chirality: Dicyclohexyl (R,R)-tartrate

Absolute configuration: (R,R)
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C48H60N2O2

N,N'-[(R,R)-1,6-Bis(4-pentylphenyl)hexa-1,5-diyne-3,4-diyl]bis[N-(4-isopropylbenzyl)hydroxylamine]

Ee = 76%

[]D
25 +13 (c 0.892, EtOH)

Source of Chirality: Dicyclohexyl (R,R)-tartrate

Absolute configuration: (R,R)
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N,N'-[(R,R)-1,6-Bis(4-methoxyphenyl)hexa-1,5-diyne-3,4-diyl]bis[N-(4-isopropylbenzyl)hydroxylamine]

Ee = 72%

[]D
25 +12 (c 0.788, EtOH)

Source of Chirality: Dicyclohexyl (R,R)-tartrate

Absolute configuration: (R,R)
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C36H36N2O2

N,N'-[(R,R)-1,6-Diphenylhexa-1,5-diyne-3,4-diyl]bis[N-(3,5-dimethylbenzyl)hydroxylamine]

Ee = 47%

[]D
25 +10 (c 0.584, EtOH)

Source of Chirality: Dicyclohexyl (R,R)-tartrate

Absolute configuration: (R,R)
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C40H38N2O2F6

N,N'-{(R,R)-1,6-Bis[4-(trifluoromethyl)phenyl]hexa-1,5-diyne-3,4-diyl}bis[N-(4-isopropylbenzyl)hydroxylamine]

Ee = 59%

[]D
25 +9 (c 0.912, EtOH)

Source of Chirality: Dicyclohexyl (R,R)-tartrate

Absolute configuration: (R,R)
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C38H38N2O2F2

N,N'-[(R,R)-1,6-Bis(2-fluorophenyl)hexa-1,5-diyne-3,4-diyl]bis[N-(4-isopropylbenzyl)hydroxylamine]

Ee = 74%

[]D
25 +11 (c 0.948, EtOH)

Source of Chirality: Dicyclohexyl (R,R)-tartrate

Absolute configuration: (R,R)
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C34H48N2O2

N,N'-[(R,R)-Tetradeca-5,9-diyne-7,8-diyl]bis[N-(4-isopropylbenzyl)hydroxylamine]

Ee = 79%

[]D
25 -10 (c 0.248, EtOH)

Source of Chirality: Dicyclohexyl (R,R)-tartrate

Absolute configuration: (R,R)
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iPr

C32H48N2O2Si2

N,N'-[(R,R)-1,6-Bis(trimethylsilyl)hexa-1,5-diyne-3,4-diyl]bis[N-(4-isopropylbenzyl)hydroxylamine]

Ee = 70%

[]D
25 -9 (c 0.536, EtOH)

Source of Chirality: Dicyclohexyl (R,R)-tartrate

Absolute configuration: (R,R)
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C58H64N2O8

N,N'-[(3R,4R)-1,6-diphenylhexa-1,5-diyne-3,4-diyl]

bis{N-(4-isopropylbenzyl)-O-[(1S',4R')-4,7,7-trimethyl-2-oxabicyclo[2.2.1]heptane-3-one-1-carbonyl]hydroxylamine}

Ee = 100% []D
25 +80 (c 0.14, EtOH)

Source of Chirality: Dicyclohexyl (R,R)-tartrate,

(1S,4R)-camphanic chloride

Absolute configuration: (3R,4R,1S',4R')




