Cat al ytic asymmetric di al kynyl ation reaction of $\alpha$-dinitrone by utilizing tartaric acid ester as a chiral auxiliary

| 著者 | Ser i zawa Nasakazu, Fuj i nami Shuhei, Ukaj i <br> Yut aka, I nonat a Kat suhi ko |
| :--- | :--- |
| j our nal or <br> publ i cat i on title e | Tet r ahedr on Asymmet ry |
| vol une | 19 |
| nunber | 8 |
| page r ange | $921-931$ |
| year | $2008-05-01$ |
| URL | ht tp: //hdl . handl e. net /2297/9878 |
| doi: 10.1016/j.tetasy.2008.03.033 |  |

## Graphical Abstract

Catalytic Asymmetric Dialkynylation Reaction of $\alpha$-Dinitrone
by Utilizing Tartaric Acid Ester as a Chiral Auxiliary
Masakazu Serizawa, Shuhei Fujinami, Yutaka Ukaji,* and Katsuhiko Inomata*
Division of Material Sciences, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa, Ishikawa, 920-1192 Japan

1) $\mathrm{Me}_{2} \mathrm{Zn}(3.0$ eq.)

# C atalytic A symmetric Dialkynylation Reaction of $\alpha$-Dinitrone by Utilizing Tartaric Acid Ester as a C hiral A uxiliary 

M asakazu Serizawa, Shuhei Fujinami, Yutaka U kaji,* and K atsuhiko Inomata*<br>Division of Material Sciences, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa, Ishikawa, 920-1192 Japan


#### Abstract

The asymmetric addition of alkynylzinc reagents, prepared in situ from dimethylzinc and 1-alkynes, to $\alpha$-dinitrones derived from glyoxal and $N$-(4-isopropylbenzyl)hydroxylamine was investigated by utilizing dicyclohexyl $(R, R)$-tartrate as a chiral auxiliary. Addition reaction of methyl(2-phenylethynyl)zinc afforded the corresponding optically active $C_{2}$-symmetric ( $R, R$ )-bis(hydroxylamine) derivative with enantioselectivities of $90 \%$ and $81 \%$ ee by utilizing a stoichiometric and a catalytic amount of the tartrate, respectively. Furthermore, the catalytic addition reaction of several alkynylzinc reagents also furnished the corresponding bis(hydroxylamine)s with moderate to good enantioselectivities.


## 1. Introduction

Optically active 1,2-diamine frameworks, which are contained in the numerous biologically active compounds and used as chiral auxiliaries, have been attracting a great deal of attention in organic synthesis. ${ }^{1,2}$ The catalytic asymmetric C-C bond formation via nucleophilic addition of a $C$-nucleophile to imine functions provides one of the most important method for synthesizing optically active amines. ${ }^{3}$ Especially, the addition of alkynyl nucleophile has a strategic advantage to produce more functionalized nitrogen-containing substances. ${ }^{4}$ Recently, we have reported an enantioselective nucleophilic addition of alkynylzinc reagents to acyclic nitrones by utilizing tartaric acid ester as a chiral auxiliary. ${ }^{5}$ Herein, we describe a catalytic asymmetric dialkynylation of $\alpha$-dinitrone, derived from glyoxal, by utilizing tartaric acid ester as a chiral auxiliary to afford the corresponding optically active $C_{2}$-symmetric ( $R, R$ )-bis(hydroxylamine) derivatives, which are versatile building blocks for the chiral 1,2-diamino compounds.

## 2. Results and discussion

First, the addition reaction of an alkynylzinc reagent to an $\alpha$-dinitrone $\mathbf{2 a}$, derived from glyoxal and $N$-(4-isopropylbenzyl)hydroxylamine, was examined in toluene at $0^{\circ} \mathrm{C}$ as shown in Eq. 1, Table 1. In the presence of 0.2 molar amount of bis(methylzinc) salt of diisopropyl ( $R, R$ )-tartrate la, prepared in situ from 0.2 molar amount of diisopropyl $(R, R)$-tartrate and 0.4 molar amount of dimethyIzinc, the $\alpha$-dinitrone $\mathbf{2 a}$ was treated with dimethylzinc, followed by addition of phenylacetylene (3A). The corresponding ( $S, S$ )-bis(hydroxylamine) 4Aa was obtained with low enantioselectivity of $21 \%$ ee and a small amount of meso-isomer 5Aa was accompanied (Entry 1). On the contrary, the bis(bromomagnesium) salt $\mathbf{1 b}$ afforded the opposite ( $R, R$ )-enantiomer with slightly enhanced optical
yield (Entry 2). 2-Bromomagnesium 3-methylzinc salt $\mathbf{1 c}$ realized a higher enantioselection for $(R, R)-\mathbf{4 A a}$ (Entry 3). In these reactions, $\alpha$-dinitrone $\mathbf{2 a}$ was scarcely soluble in toluene, so that the reaction mixture was heterogeneous and $\mathbf{2 a}$ was supplied gradually into the reaction with the progress of the dialkynlyation reaction. Next the influence of the ester groups in 2-bromomagnesium 3 -methylzinc salt $\mathbf{1}$ was investigated (Entries 4-9). The use of the esters derived from primary alcohols afforded product 4Aa with lower selectivity (Entries 4,5). In the case of the $t$-butyl ester, the enantioselectivity was also miserable (Entry 9). The esters derived from secondary alcohols were more effective and the cyclohexyl ester was the ester of choice to realize the highest selectivity of $70 \%$ ee (Entry 8).


Table 1

| Entry | $M^{1}$ | $M^{2}$ | R | 1 | Time/h | Yield of 4Aa/\% | ee of 4Aa/\% | Y ield of 5Aa/\% |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | MeZn | MeZn | 'Pr | a | 18 | 56 | $21^{\text {a) }}$ | $>5$ |
| 2 | BrMg | BrMg | 'Pr | b | 5 | 70 | 47 | >3 |
| 3 | BrMg | MeZn | 'Pr | c | 5 | 81 | 59 | >3 |
| 4 | BrMg | MeZn | Et | d | 5 | 75 | 12 | >3 |
| 5 | BrMg | MeZn | Bn | e | 5 | 67 | 7 | $>6$ |
| 6 | BrMg | MeZn |  | f | 5 | 72 | 30 | $>6$ |
| 7 | BrMg | MeZn |  | g | 5 | 74 | 51 | >3 |
| 8 | BrMg | MeZn |  | h | 4 | 73 | 70 | 12 |
| 9 | BrMg | MeZn | ${ }^{\text {tBu}}$ | i | 5 | 69 | 9 | >4 |

a) A major product was the opposite $(S, S)$-enantiomer.

Furthermore, the enantioselectivity was found to be influenced by the substituents on nitrogen of $\alpha$-dinitrones as shown in Eq. 2, Table 2. When the $\alpha$-dinitrones $\mathbf{2 b}$-d were used, the alkynylation reactions proceeded slowly to afford the corresponding bis(hydroxylamine)s $\mathbf{4 A b} \mathbf{A d}$ in low chemical yield and with poor enantioselectivity (Entries 2-4). On the other hand, the reaction of the 4 - $t$-butylbenzyl substituted $\alpha$-dinitrone $\mathbf{2 e}$ proceeded smoothly to give the satisfactory amount of the product 4Ae, however, the enantioselectivity decreased (Entry 5). These results might be due to the solubility of $\alpha$-dinitrones. In the catalytic asymmetric alkynylation reaction of alkynylzinc reagent, solubility of $\alpha$-dinitrones $\mathbf{2}$ could control the rate of supplying $\alpha$-dinitrones into the reaction and the balance between the reaction rate and the supplying rate of $\alpha$-dinitrone might be crucial. The nitrones $\mathbf{2 b}$-d are less soluble in toluene and $t$-butylbenzyl substituted nitrone $\mathbf{2 e}$ is rather soluble, so that the amounts of the catalyst $\mathbf{1 h}$ and $\alpha$-dinitrones in the solution were not balanced in these cases to realize high enantioselectivity. In the case of less soluble $\alpha$-dinitrones $\mathbf{2 b}, \mathbf{c}$, the alkynylation reaction required longer time to consume the $\alpha$-dinitrone and a part of the addition product further cyclized to give the corresponding biisoxazoles $\mathbf{6 b}, \mathbf{c}$ (Entries 2,3).


Table 2

| Entry | $\mathrm{ArCH}_{2}$ | 2 | Time/h | 4 or 5 | Y ield of 4/\% | ee of 4/\% | Y ield of 5/\% | Y ield of 6/\% |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | Pr- $-\mathrm{CH}_{2}$ | a | 4 | Aa | 73 | 70 | 12 | - |
| 2 |  | b | 40 | Ab | 30 | 24 | 3 | 15 |
| 3 |  | C | 41 | Ac | 44 | 11 | 10 | <10 |
| 4 |  | d | 18 | Ad | 54 | 47 | 14 | - |
| 5 |  | e | 3 | Ae | 74 | 37 | 6 | - |

The effect of solvent was also examined and the results are listed in Eq. 3, Table 3. Dichloromethane afforded the bis(hydroxylamine) 4A a with slightly low enantioselectivity (Entry 2). The strongly coordinative solvents, such as M eCN or THF, decreased the enantioselectivity (Entries 3 and 4). On the other hand, when acyclic ethers were used, the optical yields were further improved (Entries 5-8). Especially, ${ }^{t}$ BuOM e realized the enhanced enantioselectivity of $84 \%$ ee (Entry 6). In the case of the high-polar solvents, a part of the addition product cyclized to give the corresponding biisoxazole $\mathbf{6 a}$ (Entries 3,4,9).
Unfortunately the enantioselectivities were varied depending on the Grignard reagent used for preparation of $\mathbf{1 h}$. It was found that the slightly excess amount of ${ }^{n} \mathrm{BuMgBr}$ was effective to realize reproducible high enantioselectivity (Entry 7). Probably a part of bromomagnesium salt in $\mathbf{1 h}$ might be exchanged to the corresponding methylzinc salt in the presence of excess amount of methylzinc species to generate bis(methylzinc) salt $\mathbf{1 i}$ (Eq. 4). As mentioned above, the addition reaction catalyzed by $\mathbf{1 i}$ gave $(S, S)-4 \mathbf{A} \mathbf{a}$, which might decrease the enantioselectivity. When a slight excess amount of ${ }^{n} \mathrm{BuM}$ gBr was used, partially produced bis(bromomagnesium) salt $\mathbf{1 j}$ could react with $\mathbf{1 i}$ to regenerate $\mathbf{1 h}(E q s .5,6)$.


Table 3

| Entry | Solvent | Time/h | Y ield of 4Aa/\% | ee of 4Aa/\% | Y ield of 5Aa/\% | Y ield of 6a/\% |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | Toluene | 4 | 73 | 70 | 12 | - |
| 2 | $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ | 1 | 67 | 57 | 15 | - |
| 3 | MeCN | 19 | 18 | 6 | 11 | $<17$ |
| 4 | THF | 20 | 31 | 46 | 3 | 31 |
| 5 | $\mathrm{Et}_{2} \mathrm{O}$ | 3 | 73 | 83 | 11 | - |
| 6 | ${ }^{\text {t }} \mathrm{BuOMe}$ | 3 | 75 | 84 | 13 | - |
| $7{ }^{\text {a) }}$ | ${ }^{\text {t BuOMe }}$ | 3 | 73 | 81 | 12 | - |
| 8 |  | 3 | 74 | 79 | 14 | - |
| 9 | DME | 19 | 58 | 67 | 9 | 13 |

a) 0.20 Molar amount of dicyclohexyl $(R, R)$-tartrate was successively treated with 0.26 molar amount of ${ }^{n} \mathrm{BuMgBr}$ and 0.20 molar amount of $\mathrm{Me}_{2} \mathrm{Zn}$ for the preparation of $\mathbf{1 h}$ instead of using 0.20 molar amount of ${ }^{n} \mathrm{BuMgBr}$.





$$
\begin{equation*}
1 \mathrm{i}+1 \mathrm{j} \longrightarrow 2 \mathbf{1 h} \tag{6}
\end{equation*}
$$

$$
\begin{aligned}
& X=M e, C \equiv C-P h \text { or } O R \\
& R=C \text { yclohexyl }
\end{aligned}
$$

Furthermore, when the asymmetric dialkynylation reaction was carried out by using the stoichiometric amount of $\mathbf{1 h}$, bis(hydroxylamine) 4A a was obtained with higher enantioselectivity of $90 \%$ ee (Eq. 7), which indicated formation of the efficient chiral environment from dicyclohexyl tartrate.


The catalytic asymmetric addition of various alkynes 3B-G were carried out under the optimized conditions to afford the corresponding bis(hydroxylamine)s 4Ba-Ga with moderate to good enantioselectivities (Eq. 8, Table 4). In the cases of 1-hexyne (3F) and (trimethylsilyl)acetylene ( $\mathbf{3 G}$ ), the alkynylation reactions proceeded slowly to afford the products $\mathbf{4 F a} \mathbf{a} \mathbf{G a}$ in slightly lower chemical yields (Entries 6,7).


Table 4

| Entry | R | 3 | Time/h | 4 or 5 | Y ield of 4/\% | ee of 4/\% | Y ield of 5/\% |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $1^{\text {a) }}$ | Ph | A | 3 | Aa | 73 | 81 | 12 |
| $2^{\text {a) }}$ | ${ }^{n}$ Pen- | B | 3 | Ba | 62 | 76 | 15 |
| $3^{\text {a) }}$ | MeO | C | 3 | Ca | 63 | 72 | 12 |
| $4^{\text {a) }}$ | $\mathrm{CF}_{3}-$ | D | 3 | Da | 64 | 59 | 5 |
| $5^{\text {a) }}$ |  | E | 6 | Ea | 78 | 74 | 10 |
| $6^{\text {a) }}$ | ${ }^{n} \mathrm{Bu}$ | F | 19 | Fa | 24 | 79 | 10 |
| $7{ }^{\text {a) }}$ | TMS | G | 24 | Ga | 57 | 70 | 15 |

a) 0.20 Molar amount of dicyclohexyl $(R, R)$-tartrate was treated with 0.26 molar amount of ${ }^{n} \mathrm{BuMgBr}$ and 0.2 molar amount of $\mathrm{Me}_{2} \mathrm{Zn}$ for the preparation of $\mathbf{1 h}$.

The absolute configuration of the dialkynlyation product 4Aa was determined to be $R, R$ as follows: The enantiomerically rich 4Aa ( $60 \%$ ee) was treated with ( $1 S, 4 R$ )-camphanic chloride (7) and $\mathrm{Et}_{3} \mathrm{~N}$ to give the corresponding diastereomeric mixture of esters, 8 and 9, in $60 \%$ yield (Eq. 9). Purification by recrystallization gave diastereomerically pure 8, whose absolute configuration was determined to be $R, R$ by X-ray crystallographic analysis (Figure 1). The absolute stereochemistries of other products were tentatively assigned to be also $R, R$.




Figure 1

Although the precise reaction mechanism is still unclear, the plausible catalytic cycle is shown in Scheme 1. The first enantioselective alkynylation may proceed via the transition state $\mathbf{A}$ to afford the $R$ configuration as confirmed above. The remaining nitrone moiety in the mono-adduct subsequently coordinates to Lewis acidic magnesium of the catalyst, followed by the transmetallation as depicted in B. The second enantioselective alkynylation may proceed via the transition state $\mathbf{C}$, which is similar to the transition state $\mathbf{A}$ of the first alkynylation, to afford the ( $R, R$ )-product 10 .


## 3. C onclusion

In conclusion, we have developed enantio- and diastereoselective dialkynylation reaction of $\alpha$-dinitrone by utilizing tartaric acid esters as a chiral auxiliary. This reaction provides a simple and attractive approach to optically active $C_{2}$-symmetric bis(hydroxylamine) derivatives.

## 4. Experimental

### 4.1 General

All of the melting points were determined by a micro melting apparatus (Yanagimoto-Seisakusho) and uncorrected. The ${ }^{1}$ H NM R spectra were recorded on a JEOL Lambda 400 spectrometers. The chemical shifts were determined in the $\delta$-scale relative to tetramethyIsilane ( $\delta=0$ ) as an internal standard. The IR spectra were measured by JASCO FT/IR-230 spectrometer. The MS spectra were recorded with a JEOL SX-102A mass spectrometer. The specific optical rotations were recorded on JASCO DIP-370 spectrometer. THF and $\mathrm{Et}_{2} \mathrm{O}$ were freshly distilled from sodium diphenylketyl. All other solvents were distilled according to the usual manner and stored over drying agents. Flash column chromatography and thin-layer chromatography (TLC) were performed on Cica-M erck's silica gel 60 ( $\mathrm{No} .9385-5 \mathrm{~B}$ ) and Merck's silica gel $60 \mathrm{PF}_{254}$ (Art. 107749), respectively.

### 4.2 Preparation of $\alpha$-Dinitrones

$N_{,} N^{\prime}$-(E thane-1,2-diylidene)bis[(4-isopropylphenyl)methanamine oxide] (2a): To a solution of 4-isopropylbenzaldehyde ( $6.72 \mathrm{~g}, 45.3 \mathrm{mmol}$ ) in $\mathrm{MeOH}(70 \mathrm{ml})$ was added a solution of hydroxyammonium chloride ( $4.73 \mathrm{~g}, 68.0 \mathrm{mmol}$ ) in $\mathrm{H}_{2} \mathrm{O}(25 \mathrm{ml})$ and the mixture was stirred for 20 min at room temperature. To the mixture was added a solution of $\mathrm{Na}_{2} \mathrm{CO}_{3}(3.60 \mathrm{~g}, 34.0 \mathrm{mmol})$ in $\mathrm{H}_{2} \mathrm{O}(25 \mathrm{ml})$ and the mixture was stirred for 19.5 h at room temperature. A fter most of the MeOH was evaporated under reduced pressure, the mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined extracts was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and condensed under reduced pressure to give almost pure 4 -isopropylbenzaldehyde oxime ( $7.33 \mathrm{~g}, 99 \%$ ). The crude oxime was used in the following reaction without further purification. To a solution of 4-isopropylbenzaldehyde oxime $(7.25 \mathrm{~g}, 44.4 \mathrm{mmol})$ in $\mathrm{MeOH}(35 \mathrm{ml})$ was added a solution of $\mathrm{NaBH}_{3} \mathrm{CN}(2.79 \mathrm{~g}, 44.4 \mathrm{mmol})$ in MeOH ( 30 ml ) and two drops of an aqueous methyl orange solution as an indicator, then a 1 M aqueous HCl solution was added with stirring until the color turned red. The mixture was stirred for 2 h at room temperature adding a 1 M aqueous HCl solution to maintain the red color. The mixture was adjusted to pH 10 by adding a 6 M aqueous KOH solution and the mixture was extracted with AcOEt. The combined extracts were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and condensed under reduced pressure to give crude $N$-(4-isopropylbenzyl)hydroxylamine. To a solution of the crude hydroxylamine in THF ( 45 ml ) was added a mixture of $40 \%$ aqueous glyoxal solution ( $3.22 \mathrm{~g}, 22.2 \mathrm{mmol}$ ) and THF ( 25 ml ), followed by stirring for 4.5 h at room temperature. The precipitated crude $\alpha$-dinitrone 2a was filtered off. The product was purified by recrystallization from $\mathrm{CHCl}_{3} /$ hexane to give pure $\mathbf{2 a}(5.38 \mathrm{~g}, 69 \%, 2$ steps from 4-isopropylbenzaldehyde oxime). Mp 185-186 ${ }^{\circ} \mathrm{C}$ (decomp., recrystal lized from $\mathrm{CHCl}_{3} /$ hexane); IR (K Br) 3099, 3054, 2961, 2871, 1525, 1466, 1443, 1421, 1373, 1323, 1307, 1282, 1195, 1151, $1058,1019,967,893,865,845,816,755,713,663 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta=1.23(\mathrm{~d}, \mathrm{~J}=6.83 \mathrm{~Hz}$,

12 H ), 2.90 (sept, J $=6.83 \mathrm{~Hz}, 2 \mathrm{H}$ ), $4.88(\mathrm{~s}, 4 \mathrm{H}), 7.23(\mathrm{~d}, \mathrm{~J}=8.05 \mathrm{~Hz}, 4 \mathrm{H}), 7.31(\mathrm{~d}, \mathrm{~J}=8.05 \mathrm{~Hz}, 4 \mathrm{H})$, 7.78 (s, 2H); Found: C, 75.14; H, 8.06; N, 7.89\%. Calcd for $\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{2}$ : C, 74.96; H, 8.01; N, 7.95\%.

In a similar manner, $\alpha$-dinitrones $\mathbf{2 b}$ - $\mathbf{2 e}$ were synthesised using hydroxylamines prepared from the corresponding aldehydes.
$N_{,} N^{\prime}$-(Ethane-1,2-diylidene)bis(phenylmethanamine oxide) (2b): Mp 205-206 ${ }^{\circ} \mathrm{C}$ (decomp., recrystallized from DM SO/H 20 ); IR (K Br) 3100, 3056, 3033, 2984, 2921, 1527, 1495, 1456, 1443, 1375, 1337, 1315, 1291, 1197, 1149, 1028, 964, 925, 887, 863, 831, 756, 699, $670 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} N \mathrm{NR}$ $\left(\mathrm{CDCl}_{3}\right) \delta=4.93(\mathrm{~s}, 4 \mathrm{H}), 7.39(\mathrm{~s}, 10 \mathrm{H}), 7.80(\mathrm{~s}, 2 \mathrm{H})$; Found: $\mathrm{C}, 71.50 ; \mathrm{H}, 6.06 ; \mathrm{N}, 10.46 \%$. Calcd for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2}$ : C, 71.62; H, 6.01; N, 10.44\%.
$N_{,} N^{\prime}$-(E thane-1,2-diylidene)bis[(4-chlorophenyl)methanamine oxide] (2c): $\mathrm{Mp} 213-214{ }^{\circ} \mathrm{C}$ (decomp., recrystal lized from DM SO/H 2 O); IR (KBr) 3101, 3056, 2985, 2923, 2849, 1599, 1577, 1526, 1494, 1443, 1408, 1374, 1330, 1304, 1281, 1197, 1153, 1145, 1097, 1019, 968, 893, 869, 847, $808,737,682 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta=4.89(\mathrm{~s}, 4 \mathrm{H}), 7.34(\mathrm{~d}, \mathrm{~J}=9.03 \mathrm{~Hz}, 4 \mathrm{H}), 7.37(\mathrm{~d}, \mathrm{~J}=9.03$ $\mathrm{Hz}, 4 \mathrm{H}), 7.79(\mathrm{~s}, 2 \mathrm{H})$; Found: $\mathrm{C}, 57.11 ; \mathrm{H}, 4.19 ; \mathrm{N}, 8.31 \%$. Calcd for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Cl}_{2}: \mathrm{C}, 56.99 ; \mathrm{H}$, 4.19; N, 8.31\%.
$N_{,} N^{\prime}$-(E thane-1,2-diylidene)bis[(3,5-dimethylphenyl)methanamine oxide] (2d): Mp 206-207 ${ }^{\circ} \mathrm{C}$ (decomp., recrystallized from $\mathrm{CHCl}_{3} / \mathrm{AcOEt}^{2}$ ); IR (K Br) 3098, 3057, 3022, 2955, 2917, 2867, 1606, 1530, 1469, 1369, 1321, 1307, 1280, 1192, 1153, 1038, 996, 925, 914, 891, 849, 740, $679 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta=2.31(\mathrm{~s}, 12 \mathrm{H}), 4.84(\mathrm{~s}, 4 \mathrm{H}), 7.00(\mathrm{~s}, 6 \mathrm{H}), 7.78(\mathrm{~s}, 2 \mathrm{H})$; Found: C, 74.19; H, 7.45; N, 8.69\%. Calcd for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{2}: \mathrm{C}, 74.04 ; \mathrm{H}, 7.46 ; \mathrm{N}, 8.64 \%$.
$N^{\prime} \boldsymbol{N}^{\prime}$-(E thane-1,2-diylidene)bis[(4-t-butylphenyl)methanamine oxide] (2e): Mp 159.5-160.5 ${ }^{\circ} \mathrm{C}$ (decomp., recrystallized from A cOE/hexane); IR (K Br) 3092, 3053, 2961, 2904, 2868, 1529, 1473, 1436, 1417, 1362, 1321, 1269, 1188, 1153, 1109, 1024, 949, 895, 842, 810, 751, 691, $658 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (CDCl $)^{2} \delta=1.30(\mathrm{~s}, 18 \mathrm{H}), 4.89(\mathrm{~s}, 4 \mathrm{H}), 7.32(\mathrm{~d}, \mathrm{~J}=8.29 \mathrm{~Hz}, 4 \mathrm{H}), 7.40(\mathrm{~d}, \mathrm{~J}=8.29 \mathrm{~Hz}, 4 \mathrm{H})$, 7.79 (s, 2H); Found: C, 75.71; H, 8.51; N, 7.38\%. Calcd for $\mathrm{C}_{24} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}_{2}: \mathrm{C}, 75.75 ; \mathrm{H}, 8.48 ; \mathrm{N}$, 7.36\%.

### 4.3 C atalytic A symmetric Dialkynylation Reaction

Representative Procedure for Catalytic A symmetric Dialkynylation of an $\alpha$-Dinitrone (Table 3, Entry 7): To a ${ }^{\prime} \mathrm{BuOMe}(1.0 \mathrm{ml})$ solution of dicyclohexyl $(R, R)$-tartrate ( 32 mg 0.10 mmol ) was added butylmagnesium bromide ( $0.13 \mathrm{mmol}, 0.25 \mathrm{ml}$ of 0.536 M solution in THF) at $0^{\circ} \mathrm{C}$ under an
argon atmosphere, and the mixture was stirred for 10 min . A fter adding dimethylzinc ( 1.6 mmol , 1.6 ml of 1.0 M solution in hexane), the resulting suspension was stirred for 10 min at $0^{\circ} \mathrm{C}$. To the suspension, solid $\alpha$-dinitrone $\mathbf{2 a}$ ( $180 \mathrm{mg}, 0.51 \mathrm{mmol}$ ) was added and the suspension was stirred for 10 min at $0^{\circ} \mathrm{C}$. To the reaction mixture, $\mathrm{a}^{t} \mathrm{BuOMe}(1.0 \mathrm{ml})$ solution of phenylacetylene ( 3 A ) (156 $\mathrm{mg}, 1.53 \mathrm{mmol}$ ) was added and the suspension was stirred for 3 h at $0^{\circ} \mathrm{C}$. The reaction was quenched by addition of a saturated aqueous $\mathrm{NaHCO}_{3}$ solution. After warming to room temperature, the precipitate containing meso-isomer 5A a was separated by filtration through Celite to give the filtrate (F) and precipitate (P). The precipitate (P) was suspended in $\mathrm{CHCl}_{3}$ and the mixture was heated to dissolve 5Aa. The insoluble inorganic matter was filtered off through Celite and the filtrate was condensed under reduced pressure to give the meso-isomer 5Aa ( $29 \mathrm{mg}, 10 \%$ ). The filtrate (F) was extracted with A cOEt and the combined extracts were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and condensed under reduced pressure. The resulting residue was dissolved in a small amount of $\mathrm{Et}_{2} \mathrm{O}$, followed by addition of hexane to precipitate additional meso-isomer 5Aa, which was separated by filtration ( $5 \mathrm{mg}, 2 \%$ ). The filtrate was condensed and the residue was purified by $\operatorname{TLC}\left(\mathrm{SiO}_{2}\right.$, hexane/AcOEt $\left.=5 / 1\right)$ to give $d l$-isomer 4Aa (206 mg, 73\%). The enantiomer ratio was determined by HPLC analysis (Daicel Chiralcel IA, hexane/ ${ }^{i} \mathrm{PrOH}=30 / 1$, detected at 254 nm ) to be 81\% ee.

In a similar way, the asymmetric addition reactions of alkynylzinc reagent to the $\alpha$-dinitrones $\mathbf{2}$ were carried out to give the corresponding bis(hydroxylamine)s 4. The physical and spectral data of 4, 5, and $\mathbf{6}$ are given in following.

## $N, N^{\prime}-[(R, R)-1,6-D i p h e n y l h e x a-1,5-d i y n e-3,4-d i y l] b i s[N$-(4-isopropylbenzyl)hydroxylamine]

(4Aa): Mp 125-126 ${ }^{\circ} \mathrm{C}$ (decomp., recrystallized from A cOEt/hexane); $[\alpha]_{D}{ }^{25}+14$ (c 0.824, EtOH, 81\% ee); IR (K Br) 3487, 3218, 3054, 3023, 2960, 2927, 2907, 2869, 2225, 1598, 1513, 1489, 1443, 1363, 1327, 1304, 1100, 1069, 1055, 1020, 959, 914, 805, 758, $691 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta=$ $1.24(\mathrm{~d}, \mathrm{~J}=6.83 \mathrm{~Hz}, 12 \mathrm{H}), 2.90(\mathrm{sept}, \mathrm{J}=6.83 \mathrm{~Hz}, 2 \mathrm{H}), 3.98(\mathrm{~d}, \mathrm{~J}=12.69 \mathrm{~Hz}, 2 \mathrm{H}), 4.20(\mathrm{~d}, \mathrm{~J}=$ $12.69 \mathrm{~Hz}, 2 \mathrm{H}), 4.25(\mathrm{~s}, 2 \mathrm{H}), 5.48(\mathrm{br}, 2 \mathrm{H}), 7.20(\mathrm{~d}, \mathrm{~J}=8.05 \mathrm{~Hz}, 4 \mathrm{H}), 7.28-7.33(\mathrm{~m}, 6 \mathrm{H}), 7.34(\mathrm{~d}, \mathrm{~J}=$ $8.05 \mathrm{~Hz}, 4 \mathrm{H}), 7.47-7.55(\mathrm{~m}, 4 \mathrm{H})$; Found: $\mathrm{C}, 81.71 ; \mathrm{H}, 7.28 ; \mathrm{N}, 5.02 \%$. Calcd for $\mathrm{C}_{38} \mathrm{H}_{40} \mathrm{~N}_{2} \mathrm{O}_{2}$ : C , 81.98; H, 7.24; N, 5.03\%.
$N, N^{\prime}-[(R, R)$-1,6-Diphenylhexa-1,5-diyne-3,4-diyl]bis[ $N$-(benzyl)hydroxylamine] (4A b): M p 114.5-115.5 ${ }^{\circ} \mathrm{C}$ (decomp., recrystallized from AcOEt/hexane); $[\alpha]_{D}{ }^{25}+7$ (c 0.73, EtOH, $24 \%$ ee). The enantiomer ratio was determined by HPLC (Daicel Chiralcel OD-H, hexane/EtOH $=100 / 1$, detected at 254 nm ). IR (K Br) 3420, 3061, 3031, 2905, 2860, 2225, 1598, 1572, 1541, 1490, 1455, $1442,1302,1259,1177,1157,1069,1029,967,915,822,756,691 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta=$ $4.00(\mathrm{~d}, \mathrm{~J}=12.82 \mathrm{~Hz}, 2 \mathrm{H}), 4.23(\mathrm{~d}, \mathrm{~J}=12.82 \mathrm{~Hz}, 2 \mathrm{H}), 4.25(\mathrm{~s}, 2 \mathrm{H}), 5.22(\mathrm{~s}, 2 \mathrm{H}), 7.26-7.38(\mathrm{~m}, 12 \mathrm{H})$, $7.42(\mathrm{~d}, \mathrm{~J}=6.71 \mathrm{~Hz}, 4 \mathrm{H}), 7.47-7.56$ (m, 4H); Found: C, 81.29; H, 6.02; N, 5.95\%. Calcd for
$\mathrm{C}_{32} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{2}: \mathrm{C}, 81.33 ; \mathrm{H}, 5.97 ; \mathrm{N}, 5.93 \%$.
$N^{\prime} N^{\prime}-[(R, R)-1,6-D$ iphenylhexa-1,5-diyne-3,4-diyl]bis[ $N$-(4-chlorobenzyl)hydroxylamine] (4Ac): Mp 107.5-108.5 ${ }^{\circ} \mathrm{C}$ (decomp., recrystallized from AcOEthexane); $[\alpha]_{0}{ }^{25}+5$ (c 0.488, EtOH, $11 \%$ ee). The enantiomer ratio was determined by HPLC (Daicel Chiral cel OD-H, hexane/EtOH = 40/1, detected at 254 nm ). IR ( K Br) 3551, 3290, 3060, 2919, 2861, 2227, 1598, 1491, 1442, 1407, 1363, 1299, 1226, 1090, 1070, 1049, 1016, 967, 915, 851, 833, 801, 757, 724, $690 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ( $\mathrm{CDCl}_{3}$ ) $\delta=3.96(\mathrm{~d}, \mathrm{~J}=12.93 \mathrm{~Hz}, 2 \mathrm{H}), 4.21(\mathrm{~d}, \mathrm{~J}=12.93 \mathrm{~Hz}, 2 \mathrm{H}), 4.24(\mathrm{~s}, 2 \mathrm{H}), 5.32(\mathrm{br}, 2 \mathrm{H}), 7.28-7.38(\mathrm{~m}$, 14H), 7.47-7.53 (m, 4H); Found: C, 70.93; H, 4.82; N, 5.16\%. Calcd for $\mathrm{C}_{32} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Cl}_{2}$ : C, 70.98; H, 4.84; N, 5.18\%.

## $N, N^{\prime}-[(R, R)-1,6-$ Diphenylhexa-1,5-diyne-3,4-diyl]bis[ $N$-(3,5-dimethylbenzyl)hydroxylamine]

(4Ad): M p 138-139 ${ }^{\circ} \mathrm{C}$ (decomp., recrystallized from EtOH/hexane); $[\alpha]_{\mathrm{D}}{ }^{25}+10$ (c $0.584, \mathrm{EtOH}$, $47 \%$ ee). The enantiomer ratio was determined by HPLC (Daicel Chiralcel OD-H, hexane/EtOH = 100/1, detected at 254 nm ). IR (K Br) 3465, 3208, 3019, 2915, 2861, 2228, 1607, 1490, 1459, 1442, 1377, 1362, 1326, 1307, 1259, 1159, 1102, 1069, 1041, 981, 915, 853, 815, 756, 690, $668 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta=2.30(\mathrm{~s}, 12 \mathrm{H}), 3.92(\mathrm{~d}, \mathrm{~J}=12.69 \mathrm{~Hz}, 2 \mathrm{H}), 4.16(\mathrm{~d}, \mathrm{~J}=12.69 \mathrm{~Hz}, 2 \mathrm{H}), 4.26(\mathrm{~s}, 2 \mathrm{H})$, $5.55(\mathrm{br}, 2 \mathrm{H}), 6.92(\mathrm{~s}, 2 \mathrm{H}), 7.04(\mathrm{~s}, 4 \mathrm{H}), 7.28-7.34(\mathrm{~m}, 6 \mathrm{H}), 7.48-7.54(\mathrm{~m}, 4 \mathrm{H})$; Found: C, 81.66; H, 6.87; N, $5.27 \%$. Calcd for $\mathrm{C}_{36} \mathrm{H}_{36} \mathrm{~N}_{2} \mathrm{O}_{2}: \mathrm{C}, 81.78$; $\mathrm{H}, 6.86 ; \mathrm{N}, 5.30 \%$.
$N_{,} N^{\prime}-[(R, R)$-1,6-Diphenylhexa-1,5-diyne-3,4-diyl]bis[ $N$-(4-t-butylbenzyl)hydroxylamine] (4Ae): Mp 106.5-107.5 ${ }^{\circ} \mathrm{C}$ (from EtOH/hexane); $[\alpha]_{D}{ }^{25}+5$ (c 0.884, EtOH, 37\% ee). The enantiomer ratio was determined by HPLC (Daicel Chiral cel IA, hexane/'PrOH $=60 / 1$, detected at 254 nm ). IR (K Br) 3285, 3057, 3031, 2962, 2903, 2867, 1598, 1509, 1490, 1474, 1459, 1442, 1413, 1395, 1363, 1296, 1269, 1109, 1069, 1048, 1023, 963, 914, 844, 809, 756, 690, $669 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta=$ $1.31(\mathrm{~s}, 18 \mathrm{H}), 3.99(\mathrm{~d}, \mathrm{~J}=12.69 \mathrm{~Hz}, 2 \mathrm{H}), 4.21(\mathrm{~d}, \mathrm{~J}=12.69 \mathrm{~Hz}, 2 \mathrm{H}), 4.26(\mathrm{~s}, 2 \mathrm{H}), 5.44(\mathrm{br}, 2 \mathrm{H})$, 7.29-7.34 (m, 6H), 7.35 (s, 8H), 7.49-7.53 (m, 4H); Found: C, 82.36; H, 7.72; N, 4.81\%. Calcd for $\mathrm{C}_{40} \mathrm{H}_{44} \mathrm{~N}_{2} \mathrm{O}_{2}: \mathrm{C}, 82.15 ; \mathrm{H}, 7.58 ; \mathrm{N}, 4.79 \%$.

## $N, N^{\prime}-[(R, R)-1,6-$ Bis(4-pentylphenyl)hexa-1,5-diyne-3,4-diyl]bis[ $N$-(4-isopropylbenzyl)hydroxyla

 mine] (4Ba): Mp 105-106 ${ }^{\circ} \mathrm{C}$ (decomp., recrystallized from EtOH/hexane); $[\alpha]_{0}{ }^{25}+13$ (c 0.892 , EtOH, 76\% ee). The enantiomer ratio was determined by HPLC (Daicel Chiralcel IA, hexane/' $\mathrm{PrOH}=15 / 1$, detected at 254 nm ). IR ( KBr ) 3276, 3083, 3026, 2958, 2928, 2857, 2227, $1611,1509,1460,1420,1382,1362,1317,1182,1115,1081,1055,1020,965,834,816,715 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta=0.88(\mathrm{t}, 6.59 \mathrm{~Hz}, 6 \mathrm{H}), 1.24(\mathrm{~d}, \mathrm{~J}=6.83 \mathrm{~Hz}, 12 \mathrm{H}), 1.27-1.36(\mathrm{~m}, 8 \mathrm{H}), 1.60$ (quint, J $=7.56 \mathrm{~Hz}, 4 \mathrm{H}$ ), $2.59(\mathrm{t}, \mathrm{J}=7.56 \mathrm{~Hz}, 4 \mathrm{H}), 2.89($ sept, $\mathrm{J}=6.83 \mathrm{~Hz}, 2 \mathrm{H}), 3.96(\mathrm{~d}, \mathrm{~J}=12.69 \mathrm{~Hz}$, $2 \mathrm{H}), 4.20(\mathrm{~d}, 12.69 \mathrm{~J}=\mathrm{Hz}, 2 \mathrm{H}), 4.23(\mathrm{~s}, 2 \mathrm{H}), 5.23(\mathrm{br}, 2 \mathrm{H}), 7.12(\mathrm{~d}, \mathrm{~J}=8.05 \mathrm{~Hz}, 4 \mathrm{H}), 7.19(\mathrm{~d}, \mathrm{~J}=$ $7.81 \mathrm{~Hz}, 4 \mathrm{H}$ ), $7.33(\mathrm{~d}, \mathrm{~J}=8.05 \mathrm{~Hz}, 4 \mathrm{H}), 7.42(\mathrm{~d}, \mathrm{~J}=7.81 \mathrm{~Hz}, 4 \mathrm{H})$; Found: C, 82.45; H, 8.78; N,$N, N^{\prime}-[(R, R)-1,6-B i s(4-m e t h o x y p h e n y l) h e x a-1,5-d i y n e-3,4-d i y l] b i s[N-(4-i s o p r o p y l b e n z y l) h y d r o x$ ylamine] (4Ca): Mp 125-126 ${ }^{\circ} \mathrm{C}$ (decomp., recrystallized from AcOEthexane); $[\alpha]_{0}{ }^{25}+12$ (c 0.788, EtOH, $72 \%$ ee). The enantiomer ratio was determined by HPLC (Daicel Chiralcel IA, hexane/EtOH $=7 / 1$, detected at 254 nm ). IR ( KBr ) 3435, 3008, 2958, 2932, 2892, 2837, 2225, $1606,1569,1509,1462,1442,1418,1384,1363,1334,1290,1248,1171,1104,1030,970,920,831$, $804,764,725 \mathrm{~cm}^{-1}{ }^{1}{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta=1.24(\mathrm{~d}, \mathrm{~J}=6.83 \mathrm{~Hz}, 12 \mathrm{H}), 2.89($ sept, J $=6.83 \mathrm{~Hz}, 2 \mathrm{H})$, $3.81(\mathrm{~s}, 6 \mathrm{H}), 3.96(\mathrm{~d}, \mathrm{~J}=12.69 \mathrm{~Hz}, 2 \mathrm{H}), 4.19(\mathrm{~d}, \mathrm{~J}=12.69 \mathrm{~Hz}, 2 \mathrm{H}), 4.22(\mathrm{~s}, 2 \mathrm{H}), 5.46(\mathrm{br}, 2 \mathrm{H}), 6.83$ ( $\mathrm{d}, \mathrm{J}=9.03 \mathrm{~Hz}, 4 \mathrm{H}$ ), $7.19(\mathrm{~d}, \mathrm{~J}=8.05 \mathrm{~Hz}, 4 \mathrm{H}), 7.33(\mathrm{~d}, \mathrm{~J}=8.05 \mathrm{~Hz}, 4 \mathrm{H}), 7.44(\mathrm{~d}, \mathrm{~J}=9.03 \mathrm{~Hz}, 4 \mathrm{H})$; Found: C, 77.77; $\mathrm{H}, 7.19 ; \mathrm{N}, 4.61 \%$. Calcd for $\mathrm{C}_{40} \mathrm{H}_{44} \mathrm{~N}_{2} \mathrm{O}_{4}: \mathrm{C}, 77.89 ; \mathrm{H}, 7.19 ; \mathrm{N}, 4.54 \%$.
$N, N^{\prime}-\{(R, R)$-1,6-Bis[4-(trifluoromethyl)phenyl]hexa-1,5-diyne-3,4-diyl\}bis[ $N$-(4-isopropylbenzy I)hydroxylamine] (4Da): Mp 113.5-114.5 ${ }^{\circ} \mathrm{C}$ (decomp., recrystallized from AcOEt/hexane); $[\alpha]_{\mathrm{D}}{ }^{25}+9$ (c 0.912, EtOH, $59 \%$ ee). The enantiomer ratio was determined by HPLC (Daicel Chiralcel IA, hexane/'PrOH = 20/1, detected at 254 nm ). IR (KBr) 3296, 3055, 3025, 2962, 2929, 2871, 1615, 1515, 1463, 1420, 1405, 1385, 1363, 1324, 1168, 1129, 1105, 1067, 1017, 971, 843, 810, $732,715,659 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta=1.24(\mathrm{~d}, \mathrm{~J}=6.83 \mathrm{~Hz}, 12 \mathrm{H}), 2.87(\mathrm{sept}, \mathrm{J}=6.83 \mathrm{~Hz}, 2 \mathrm{H})$, $3.96(\mathrm{~d}, \mathrm{~J}=12.69 \mathrm{~Hz}, 2 \mathrm{H}), 4.19(\mathrm{~d}, \mathrm{~J}=12.69 \mathrm{~Hz}, 2 \mathrm{H}), 4.27(\mathrm{~s}, 2 \mathrm{H}), 5.52(\mathrm{~s}, 2 \mathrm{H}), 7.20(\mathrm{~d}, \mathrm{~J}=8.05$ $\mathrm{Hz}, 4 \mathrm{H}), 7.32(\mathrm{~d}, \mathrm{~J}=8.05 \mathrm{~Hz}, 4 \mathrm{H}), 7.58(\mathrm{~d}, \mathrm{~J}=9.03 \mathrm{~Hz}, 4 \mathrm{H}), 7.60(\mathrm{~d}, \mathrm{~J}=9.03 \mathrm{~Hz}, 4 \mathrm{H})$; Found: C, 69.35; H, 5.60; N, 3.98\%. Calcd for $\mathrm{C}_{40} \mathrm{H}_{38} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~F}_{6}$ : C, $69.35 ; \mathrm{H}, 5.53 ; \mathrm{N}, 4.04 \%$.
$N, N^{\prime}-[(R, R)-1,6-\mathrm{Bis}(2$-fluorophenyl)hexa-1,5-diyne-3,4-diyl]bis[ $N$-(4-isopropylbenzyl)hydroxyla mine] ( 4 E ): : $\quad \mathrm{Mp} 108-109{ }^{\circ} \mathrm{C}$ (decomp., recrystallized from A COEt/hexane); $[\alpha]_{\mathrm{D}}{ }^{25}+11$ (c 0.948, EtOH, $74 \%$ ee). The enantiomer ratio was determined by HPLC (Daicel Chiralcel IA, hexane $/ \mathrm{PrOH}=10 / 1$, detected at 254 nm ). IR ( K Br) 3241, 3060, 2960, 2927, 2870, 1612, 1574, 1514, 1493, 1448, 1420, 1384, 1363, 1303, 1271, 1255, 1216, 1104, 1055, 1031, 1021, 967, 944, 854, $827,808,758,667 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta=1.24(\mathrm{~d}, \mathrm{~J}=6.83 \mathrm{~Hz}, 12 \mathrm{H}), 2.89$ (sept, J $=6.83 \mathrm{~Hz}$, $2 \mathrm{H}), 4.01(\mathrm{~d}, \mathrm{~J}=12.69 \mathrm{~Hz}, 2 \mathrm{H}), 4.24(\mathrm{~d}, \mathrm{~J}=12.69 \mathrm{~Hz}, 2 \mathrm{H}), 4.31(\mathrm{~s}, 2 \mathrm{H}), 5.43(\mathrm{br}, 2 \mathrm{H}), 7.04-7.12(\mathrm{~m}$, $4 \mathrm{H}), 7.19(\mathrm{~d}, \mathrm{~J}=8.05 \mathrm{~Hz}, 4 \mathrm{H}), 7.27-7.34(\mathrm{~m}, 2 \mathrm{H}), 7.35(\mathrm{~d}, \mathrm{~J}=8.05 \mathrm{~Hz}, 4 \mathrm{H}), 7.46-7.53(\mathrm{~m}, 2 \mathrm{H})$; Found: $\mathrm{C}, 77.06 ; \mathrm{H}, 6.60 ; \mathrm{N}, 4.72 \%$. Calcd for $\mathrm{C}_{38} \mathrm{H}_{38} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~F}_{2}$ : $\mathrm{C}, 77.00 ; \mathrm{H}, 6.46 ; \mathrm{N}, 4.73 \%$. HPLC (Daicel Chiral cel IA, hexane/'PrOH =50/1, detected at 220 nm ). IR (neat) 3230, 3093, 3053, 3012, 2958, 2931, 2871, 2233, 1614, 1567, 1514, 1464, 1421, 1381, 1362, 1328, 1301, 1237, 1142, 1103, 1056, 1020, 954, 809, 740, $715 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta=0.93(\mathrm{t}, \mathrm{J}=7.08 \mathrm{~Hz}, 6 \mathrm{H}), 1.24(\mathrm{~d}$, $J=6.83 \mathrm{~Hz}, 12 \mathrm{H}$ ), 1.42-1.65 (m, 8H), 2.30 (t, 7.08 Hz, 4H), 2.88 (sept, J $=6.83 \mathrm{~Hz}, 2 \mathrm{H}$ ), $3.82(\mathrm{~d}, \mathrm{~J}$
$=12.69 \mathrm{~Hz}, 2 \mathrm{H}), 3.87(\mathrm{~s}, 2 \mathrm{H}), 4.07(\mathrm{~d}, \mathrm{~J}=12.69 \mathrm{~Hz}, 2 \mathrm{H}), 5.39(\mathrm{br}, 2 \mathrm{H}), 7.16(\mathrm{~d}, \mathrm{~J}=8.05 \mathrm{~Hz}, 4 \mathrm{H})$, $7.28(d, J=8.05 \mathrm{~Hz}, 4 \mathrm{H})$; HRMS (FAB ${ }^{+}$), Found: $m / z 517.37900$. Calcd for $\mathrm{C}_{34} \mathrm{H}_{49} \mathrm{~N}_{2} \mathrm{O}_{2}:\left(\mathrm{M}^{+}+\mathrm{H}\right)$, 517.37941.

## $N, N^{\prime}-[(R, R)-1,6-$ Bis(trimethylsilyl)hexa-1,5-diyne-3,4-diyl]bis[ $N$-(4-isopropylbenzyl)hydroxyl

amine] (4Ga): Obtained as an oil; $[\alpha]_{D}{ }^{25}-9$ (c $0.536, \mathrm{EtOH}, 70 \%$ ee). The enantiomer ratio was determined by HPLC (Daicel Chiralcel IA, hexane/ $\mathrm{PrOH}=100 / 1$, detected at 220 nm ). IR (neat) 3277, 3012, 2959, 2898, 2870, 2173, 1612, 1514, 1460, 1420, 1384, 1362, 1249, 1056, 1020, 982, $842,808,760,700 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta=0.22(\mathrm{~s}, 18 \mathrm{H}), 1.24(\mathrm{~d}, \mathrm{~J}=6.83 \mathrm{~Hz}, 12 \mathrm{H}), 2.89$ (sept, $J=6.83 \mathrm{~Hz}, 2 \mathrm{H}), 3.83(\mathrm{~d}, \mathrm{~J}=12.93 \mathrm{~Hz}, 2 \mathrm{H}), 3.96(\mathrm{~s}, 2 \mathrm{H}), 4.09(\mathrm{~d}, \mathrm{~J}=12.93 \mathrm{~Hz}, 2 \mathrm{H}), 5.21(\mathrm{br}, 2 \mathrm{H})$, $7.18(\mathrm{~d}, \mathrm{~J}=8.05 \mathrm{~Hz}, 4 \mathrm{H}), 7.28(\mathrm{~d}, \mathrm{~J}=8.05 \mathrm{~Hz}, 4 \mathrm{H})$; HRMS (FAB ${ }^{+}$), Found: $m / z 549.33305$. Calcd for $\mathrm{C}_{32} \mathrm{H}_{49} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Si}_{2}:\left(\mathrm{M}^{+}+\mathrm{H}\right), 549.33327$.

## $N_{,} N^{\prime}-[(R, S)$-1,6-Diphenylhexa-1,5-diyne-3,4-diyl]bis[ $N$-(4-isopropylbenzyl)hydroxylamine]

(5A a): M p 168.5-169.5 ${ }^{\circ} \mathrm{C}$ (decomp., recrystallized from AcOEt/hexane); IR (KBr) 3261, 3051, 2965, 2929, 2869, 2217, 1557, 1540, 1508, 1489, 1465, 1442, 1417, 1297, 1239, 1083, 1029, 998, $972,919,857,832,804,758,691 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta=1.24(\mathrm{~d}, \mathrm{~J}=6.83 \mathrm{~Hz}, 12 \mathrm{H}), 2.89$ (sept, $J=6.83 \mathrm{~Hz}, 2 \mathrm{H}), 4.00(\mathrm{~d}, \mathrm{~J}=12.93 \mathrm{~Hz}, 2 \mathrm{H}), 4.27(\mathrm{~d}, \mathrm{~J}=12.93 \mathrm{~Hz}, 2 \mathrm{H}), 4.29(\mathrm{~s}, 2 \mathrm{H}), 5.23(\mathrm{br}, 2 \mathrm{H})$, $7.18(\mathrm{~d}, \mathrm{~J}=8.05 \mathrm{~Hz}, 4 \mathrm{H}), 7.31-7.36(\mathrm{~m}, 6 \mathrm{H}), 7.37(\mathrm{~d}, \mathrm{~J}=8.05 \mathrm{~Hz}, 4 \mathrm{H}), 7.51-7.56$ (m, 4H); Found: C, 81.71; H, 7.25; N , 4.94\%. Calcd for $\mathrm{C}_{38} \mathrm{H}_{40} \mathrm{~N}_{2} \mathrm{O}_{2}: \mathrm{C}, 81.98 ; \mathrm{H}, 7.24 ; \mathrm{N}, 5.03 \%$.
$N, N^{\prime}$-[(R,S)-1,6-Diphenylhexa-1,5-diyne-3,4-diyl]bis[ $N$-(benzyl)hydroxylamine] (5Ab): Mp $172.5-173.5{ }^{\circ} \mathrm{C}$ (decomp., recrystallized from AcOEt); IR (KBr) 3240, 3084, 3063, 3030, 2934, $2879,1598,1492,1454,1443,1344,1296,1236,1215,1079,1031,990,971,931,915,838,818$, $764,742,697 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta=4.04(\mathrm{~d}, \mathrm{~J}=13.17 \mathrm{~Hz}, 2 \mathrm{H}), 4.30(\mathrm{~d}, \mathrm{~J}=13.17 \mathrm{~Hz}, 2 \mathrm{H})$, $4.30(\mathrm{~s}, 2 \mathrm{H}), 5.17(\mathrm{~s}, 2 \mathrm{H}), 7.28-7.37(\mathrm{~m}, 12 \mathrm{H}), 7.43-7.48(\mathrm{~m}, 4 \mathrm{H}), 7.51-7.57(\mathrm{~m}, 4 \mathrm{H})$; Found: C, 81.23; H, 6.02; N, 5.87\%. Calcd for $\mathrm{C}_{32} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{2}$ : C, 81.33; H, 5.97; N, 5.93\%.
$N, N^{\prime}-[(R, S)-1,6-$ Diphenylhexa-1,5-diyne-3,4-diyl]bis[ $N$-(4-chlorobenzyl)hydroxylamine] (5AC): Mp 169-170 ${ }^{\circ} \mathrm{C}$ (decomp., recrystallized from A cOEt/hexane); IR (K Br) 3253, 3064, 2876, 2216, 1598, 1541, 1507, 1490, 1465, 1457, 1442, 1405, 1339, 1298, 1236, 1177, 1091, 1029, 1017, 975, $948,915,856,830,801,755,690 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta=4.00(\mathrm{~d}, \mathrm{~J}=13.42 \mathrm{~Hz}, 2 \mathrm{H}), 4.25(\mathrm{~d}, \mathrm{~J}$ $=13.42 \mathrm{~Hz}, 2 \mathrm{H}), 4.26(\mathrm{~s}, 2 \mathrm{H}), 5.86(\mathrm{br}, 2 \mathrm{H}), 7.29(\mathrm{~d}, \mathrm{~J}=8.54 \mathrm{~Hz}, 4 \mathrm{H}), 7.33-7.41(\mathrm{~m}, 10 \mathrm{H})$, 7.49-7.55 (m, 4H); Found: C, 70.79; H, 5.05; N, 5.03\%. Calcd for $\mathrm{C}_{32} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Cl}$ : C, $70.98 ; \mathrm{H}$, 4.84; N, 5.18\%.
(5Ad): M p 164-165 ${ }^{\circ} \mathrm{C}$ (decomp., recrystallized from $\mathrm{CHCl}_{3} /$ hexane); IR (K Br) 3232, 3019, 2914,
$2873,2225,1606,1489,1458,1442,1379,1349,1299,1235,1166,1088,1071,1029,979,928,903$, $859,810,756,710,691,668 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta=2.28(\mathrm{~s}, 12 \mathrm{H}), 3.97(\mathrm{~d}, \mathrm{~J}=12.93 \mathrm{~Hz}, 2 \mathrm{H})$, $4.22(\mathrm{~d}, \mathrm{~J}=12.93 \mathrm{~Hz}, 2 \mathrm{H}), 4.30(\mathrm{~s}, 2 \mathrm{H}), 5.16(\mathrm{br}, 2 \mathrm{H}), 6.91(\mathrm{~s}, 2 \mathrm{H}), 7.07(\mathrm{~s}, 4 \mathrm{H}), 7.31-7.37(\mathrm{~m}, 6 \mathrm{H})$, 7.51-7.58 (m, 4H); Found: C, 81.56; H, 6.97; N, 5.24\%. Calcd for $\mathrm{C}_{36} \mathrm{H}_{36} \mathrm{~N}_{2} \mathrm{O}_{2}$ : C, 81.78; H, 6.86; N, 5.30\%.
$N, N^{\prime}-[(R, S)-1,6-$ Diphenylhexa-1,5-diyne-3,4-diyl]bis[ $N$-(4-t-butylbenzyl)hydroxylamine] (5Ae): Mp 186-187 ${ }^{\circ} \mathrm{C}$ (decomp., recrystallized from $\mathrm{CHCl}_{3} /$ hexane); IR (KBr) 3268, 3060, 3028, 2962, 2903, 2871, 2223, 1598, 1511, 1489, 1476, 1463, 1442, 1412, 1393, 1364, 1297, 1270, 1110, 1081, $1029,995,973,860,845,824,804,755,690 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{HNMR}\left(\mathrm{CDCl}_{3}\right) \delta=1.31(\mathrm{~s}, 18 \mathrm{H}), 4.01(\mathrm{~d}, \mathrm{~J}=$ $13.17 \mathrm{~Hz}, 2 \mathrm{H}), 4.27(\mathrm{~d}, \mathrm{~J}=13.17 \mathrm{~Hz}, 2 \mathrm{H}), 4.30(\mathrm{~s}, 2 \mathrm{H}), 5.25(\mathrm{br}, 2 \mathrm{H}), 7.31-7.40(\mathrm{~m}, 14 \mathrm{H})$, 7.50-7.56 (m, 4H); Found: C, 82.05; H, 7.84; N, 4.76\%. Calcd for $\mathrm{C}_{40} \mathrm{H}_{44} \mathrm{~N}_{2} \mathrm{O}_{2}$ : C, 82.15; H, 7.58; N, 4.79\%.
$N_{,} N^{\prime}-[(R, S)-1,6-$ Bis(4-pentylphenyl)hexa-1,5-diyne-3,4-diyl]bis[ $N$-(4-isopropylbenzyl)hydroxyla mine] (5Ba): Mp 157.5-158.5 ${ }^{\circ} \mathrm{C}$ (decomp., recrystallized from $E t_{2} \mathrm{O} /$ hexane); IR (KBr) 3243, 3050, 3026, 2958, 2927, 2871, 2857, 1509, 1463, 1418, 1297, 1240, 1184, 1085, 1021, 855, 832, 804, $736,715 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta=0.90(\mathrm{t}, 6.83 \mathrm{~Hz}, 6 \mathrm{H}), 1.24(\mathrm{~d}, \mathrm{~J}=7.07 \mathrm{~Hz}, 12 \mathrm{H}), 1.28-1.40$ ( $\mathrm{m}, 8 \mathrm{H}$ ) , 1.62 (quint, J $=7.56 \mathrm{~Hz}, 4 \mathrm{H}$ ), 2.61 (t, J $=7.56 \mathrm{~Hz}, 4 \mathrm{H}$ ), 2.89 (sept, J $=7.07 \mathrm{~Hz}, 2 \mathrm{H}$ ), 3.99 (d, $\mathrm{J}=12.93 \mathrm{~Hz}, 2 \mathrm{H}), 4.25(\mathrm{~d}, 12.93 \mathrm{~J}=\mathrm{Hz}, 2 \mathrm{H}), 4.26(\mathrm{~s}, 2 \mathrm{H}), 5.24(\mathrm{br}, 2 \mathrm{H}), 7.15(\mathrm{~d}, \mathrm{~J}=8.05 \mathrm{~Hz}, 4 \mathrm{H})$, $7.18(\mathrm{~d}, \mathrm{~J}=8.05 \mathrm{~Hz}, 4 \mathrm{H}), 7.36(\mathrm{~d}, \mathrm{~J}=8.05 \mathrm{~Hz}, 4 \mathrm{H}), 7.44(\mathrm{~d}, \mathrm{~J}=8.05 \mathrm{~Hz}, 4 \mathrm{H})$; Found: $\mathrm{C}, 82.53 ; \mathrm{H}$, 8.76; $\mathrm{N}, 4.01 \%$. Calcd for $\mathrm{C}_{48} \mathrm{H}_{60} \mathrm{~N}_{2} \mathrm{O}_{2}$ : C, 82.71; $\mathrm{H}, 8.68 ; \mathrm{N}, 4.02 \%$.
$N, N^{\prime}-[(R, S)-1,6-\mathrm{Bis}(4-m e t h o x y p h e n y l) h e x a-1,5-$ diyne-3,4-diyl]bis[ $N$-(4-isopropylbenzyl)hydrox ylamine] (5Ca): $\quad \mathrm{Mp} 197-198{ }^{\circ} \mathrm{C}$ (decomp., recrystallized from $\mathrm{CHCl}_{3} /$ hexane); $\mathrm{IR}(\mathrm{KBr}) 3220$, 3008, 2959, 2931, 2872, 2218, 1606, 1509, 1461, 1415, 1290, 1251, 1172, 1104, 1084, 1029, 857, $830,805,708 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta=1.24(\mathrm{~d}, \mathrm{~J}=7.07 \mathrm{~Hz}, 12 \mathrm{H}), 2.89(\mathrm{sept}, \mathrm{J}=7.07 \mathrm{~Hz}, 2 \mathrm{H})$, $3.83(\mathrm{~s}, 6 \mathrm{H}), 3.99(\mathrm{~d}, \mathrm{~J}=12.69 \mathrm{~Hz}, 2 \mathrm{H}), 4.25(\mathrm{~d}, \mathrm{~J}=12.69 \mathrm{~Hz}, 2 \mathrm{H}), 4.26(\mathrm{~s}, 2 \mathrm{H}), 6.86(\mathrm{~d}, \mathrm{~J}=8.78$ $\mathrm{Hz}, 4 \mathrm{H}), 7.18(\mathrm{~d}, \mathrm{~J}=8.05 \mathrm{~Hz}, 4 \mathrm{H}), 7.36(\mathrm{~d}, \mathrm{~J}=8.05 \mathrm{~Hz}, 4 \mathrm{H}), 7.46(\mathrm{~d}, \mathrm{~J}=8.78 \mathrm{~Hz}, 4 \mathrm{H})$, Signals of the hydroxy proton $(\mathbf{O H})$ was not observed clearly.; Found: $\mathrm{C}, 77.98 ; \mathrm{H}, 7.29 ; \mathrm{N}, 4.54 \%$. Calcd for $\mathrm{C}_{40} \mathrm{H}_{44} \mathrm{~N}_{2} \mathrm{O}_{4}: \mathrm{C}, 77.89 ; \mathrm{H}, 7.19 ; \mathrm{N}, 4.54 \%$.
$N, N^{\prime}-\{(R, S)-1,6$-Bis[4-(trifluoromethyl)phenyl]hexa-1,5-diyne-3,4-diyl\}bis[ $N$-(4-isopropylbenzyl )hydroxylamine] (5Da): Mp 161-162 ${ }^{\circ} \mathrm{C}$ (decomp., recrystallized from A cOEt/hexane); IR (K Br) 3232, 3055, 3024, 2961, 2928, 2894, 2873, 1614, 1568, 1514, 1462, 1406, 1326, 1300, 1258, 1169, 1131, 1105, 1088, 1068, 1017, 855, 842, 804, 730, $656 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} N \mathrm{NR}\left(\mathrm{CDCl}_{3}\right) \delta=1.24(\mathrm{~d}, \mathrm{~J}=7.07$ $\mathrm{Hz}, 12 \mathrm{H}), 2.90($ sept, $\mathrm{J}=7.07 \mathrm{~Hz}, 2 \mathrm{H}), 4.00(\mathrm{~d}, \mathrm{~J}=12.93 \mathrm{~Hz}, 2 \mathrm{H}), 4.23(\mathrm{~d}, \mathrm{~J}=12.93 \mathrm{~Hz}, 2 \mathrm{H}), 4.32$ $(\mathrm{s}, 2 \mathrm{H}), 5.29(\mathrm{~s}, 2 \mathrm{H}), 7.19(\mathrm{~d}, \mathrm{~J}=8.05 \mathrm{~Hz}, 4 \mathrm{H}), 7.34(\mathrm{~d}, \mathrm{~J}=8.05 \mathrm{~Hz}, 4 \mathrm{H}), 7.60(\mathrm{~d}, \mathrm{~J}=8.54 \mathrm{~Hz}, 4 \mathrm{H})$,
7.63 (d, J = $8.54 \mathrm{~Hz}, 4 \mathrm{H}$ ); Found: C, 69.31; H, 5.55; N, 4.09\%. Calcd for $\mathrm{C}_{40} \mathrm{H}_{38} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~F}_{6}: \mathrm{C}, 69.35 ; \mathrm{H}$, 5.53; N, 4.04\%.
$N, N^{\prime}-[(R, S)-1,6-B i s(2$-fluorophenyl)hexa-1,5-diyne-3,4-diyl]bis[ $N$-(4-isopropylbenzyl)hydroxyla mine] (5E a): M p 177-178 ${ }^{\circ} \mathrm{C}$ (decomp., recrystallized from A cOEthexane); IR (K Br) 3249, 3087, $3012,2960,2925,2889,1612,1576,1492,1467,1448,1363,1300,1254,1214,1103,1083,1057$, 1031, 997, 954, 856, 832, 822, 803, 759, $726 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta=1.24(\mathrm{~d}, \mathrm{~J}=7.07 \mathrm{~Hz}, 12 \mathrm{H})$, 2.89 (sept, J = $7.07 \mathrm{~Hz}, 2 \mathrm{H}$ ), $4.03(\mathrm{~d}, \mathrm{~J}=12.93 \mathrm{~Hz}, 2 \mathrm{H}), 4.28(\mathrm{~d}, \mathrm{~J}=12.93 \mathrm{~Hz}, 2 \mathrm{H}), 4.33(\mathrm{~s}, 2 \mathrm{H})$, 5.19 (br, 2H), 7.05-7.15 (m, 4H), 7.18 (d, J = $8.05 \mathrm{~Hz}, 4 \mathrm{H}), 7.29-7.36(\mathrm{~m}, 2 \mathrm{H}), 7.38(\mathrm{~d}, \mathrm{~J}=8.05 \mathrm{~Hz}$, 4H), 7.49-7.55 (m, 2H); Found: C, 77.21; H, 6.46; N, 4.73\%. Calcd for $\mathrm{C}_{38} \mathrm{H}_{38} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~F}_{2}: \mathrm{C}, 77.00 ; \mathrm{H}$, 6.46; N, 4.73\%.
$N_{1} N^{\prime}$-[( $\left.R, S\right)$-Tetradeca-5,9-diyne-7,8-diyl]bis[ $N$-(4-isopropylbenzyl)hydroxylamine] (5F a): Mp $161-162{ }^{\circ} \mathrm{C}$ (decomp., recrystallized from AcOEt/hexane); IR (K Br) 3376, 3056, 3012, 2956, 2932, 2867, 2230, 1516, 1462, 1422, 1384, 1362, 1351, 1333, 1300, 1235, 1138, 1096, 1056, 1023, 1002, $956,885,852,836,813,778,737,715 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta=0.94(\mathrm{t}, \mathrm{J}=7.08 \mathrm{~Hz}, 6 \mathrm{H}), 1.24$ (d, J = $7.07 \mathrm{~Hz}, 12 \mathrm{H}$ ), 1.41-1.63 (m, 8H ), 2.32 (t, $6.83 \mathrm{~Hz}, 4 \mathrm{H}$ ), 2.89 (sept, J $=7.07 \mathrm{~Hz}, 2 \mathrm{H}$ ), 3.83 (d, $\mathrm{J}=12.93 \mathrm{~Hz}, 2 \mathrm{H}), 3.91(\mathrm{~s}, 2 \mathrm{H}), 4.13(\mathrm{~d}, \mathrm{~J}=12.93 \mathrm{~Hz}, 2 \mathrm{H}), 5.19(\mathrm{br}, 2 \mathrm{H}), 7.17(\mathrm{~d}, \mathrm{~J}=8.05 \mathrm{~Hz}, 4 \mathrm{H})$, 7.30 (d, J $=8.05 \mathrm{~Hz}, 4 \mathrm{H}$ ); Found: C, 79.12; H, 9.54; N, 5.38\%. Calcd for $\mathrm{C}_{34} \mathrm{H}_{48} \mathrm{~N}_{2} \mathrm{O}_{2}: \mathrm{C}, 79.02 ; \mathrm{H}$, 9.36; N, 5.42\%.

## $N, N^{\prime}-[(R, S)-1,6-$ Bis(trimethylsilyl)hexa-1,5-diyne-3,4-diyl]bis[ $N$-(4-isopropylbenzyl)hydroxyla

 mine] (5Ga): Mp 161.5-162.5 ${ }^{\circ} \mathrm{C}$ (decomp., recrystallized from AcOEt/hexane); IR (K Br) 3387, $3012,2961,2867,2175,1514,1462,1420,1362,1298,1243,1094,1056,1016,996,846,811,762$, $696 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta=0.24(\mathrm{~s}, 18 \mathrm{H}), 1.24(\mathrm{~d}, \mathrm{~J}=6.83 \mathrm{~Hz}, 12 \mathrm{H}), 2.89(\mathrm{sept}, \mathrm{J}=6.83 \mathrm{~Hz}$, $2 \mathrm{H}), 3.85(\mathrm{~d}, \mathrm{~J}=12.93 \mathrm{~Hz}, 2 \mathrm{H}), 3.96(\mathrm{~s}, 2 \mathrm{H}), 4.14(\mathrm{~d}, \mathrm{~J}=12.93 \mathrm{~Hz}, 2 \mathrm{H}), 5.08(\mathrm{br}, 2 \mathrm{H}), 7.17(\mathrm{~d}, \mathrm{~J}=$ $8.05 \mathrm{~Hz}, 4 \mathrm{H}$ ), 7.31 (d, J = $8.05 \mathrm{~Hz}, 4 \mathrm{H}$ ); Found: C, 69.82; H, 8.91; N, 5.00\%. Calcd for $\mathrm{C}_{32} \mathrm{H}_{48} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Si}_{2}: ~ \mathrm{C}, 70.02 ; \mathrm{H}, 8.81 ; \mathrm{N}, 5.10 \%$.
## ( $3 R, 3^{\prime} R$ )-2,2'-bis(4-isopropylbenzyl)-5,5'-diphenyl-2,2' 3,3 '3'-tetrahydro-3,3'-biisoxazole (6a):

 Obtained as an oil; IR (K Br) 3056, 3025, 2959, 2925, 2870, 1652, 1601, 1577, 1514, 1494, 1448, 1420, 1362, 1335, 1280, 1243, 1181, 1097, 1071, 1047, 1022, 1000, 917, 890, 822, 770, 724, 691 $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta=1.27(\mathrm{~d}, \mathrm{~J}=6.83 \mathrm{~Hz}, 12 \mathrm{H}), 2.92($ sept, $\mathrm{J}=6.83 \mathrm{~Hz}, 2 \mathrm{H}), 4.01(\mathrm{~d}, \mathrm{~J}=$ $12.93 \mathrm{~Hz}, 2 \mathrm{H}), 4.19(\mathrm{~s}, 2 \mathrm{H}), 4.20(\mathrm{~d}, \mathrm{~J}=12.93 \mathrm{~Hz}, 2 \mathrm{H}), 5.23(\mathrm{~s}, 2 \mathrm{H}), 7.21(\mathrm{~d}, \mathrm{~J}=8.05 \mathrm{~Hz}, 4 \mathrm{H})$, 7.29-7.33 (m, 6H), 7.36 (d, J $=8.05 \mathrm{~Hz}, 4 \mathrm{H}$ ), 7.40-7.50 (m, 4H); HRMS (FAB ${ }^{+}$), Found: m/z 557.31687. Calcd for $\mathrm{C}_{38} \mathrm{H}_{41} \mathrm{~N}_{2} \mathrm{O}_{2}:\left(\mathrm{M}^{+}+\mathrm{H}\right), 557.31681$.113-114 ${ }^{\circ} \mathrm{C}$ (decomp., recrystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexane); IR ( K Br ) 3106, 3085, 3061, 3031, 2877, 2839, 1653, 1600, 1577, 1494, 1449, 1360, 1342, 1316, 1278, 1248, 1219, 1043, 1024, 916, 889, $757,726,691 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta=4.07(\mathrm{~d}, \mathrm{~J}=13.42 \mathrm{~Hz}, 2 \mathrm{H}), 4.19(\mathrm{~s}, 2 \mathrm{H}), 4.24(\mathrm{~d}, \mathrm{~J}=$ $13.42 \mathrm{~Hz}, 2 \mathrm{H}$ ), 5.24 (s, 2H), 7.26-7.40 (m, 12H), 7.41-7.45 (m, 4H), 7.45-7.50 (m, 4H); Found: C, 81.05; H, 5.93; N, 5.84\%. Calcd for $\mathrm{C}_{32} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{2}$ : C, 81.33; H, 5.97; N, 5.93\%.
( $3 R, 3^{\prime} R$ )-2,2'-Bis(4-chlorobenzyl)-5,5'-diphenyl-2,2',3,3'-tetrahydro-3,3'-biisoxazole (6c): Mp $134-135{ }^{\circ} \mathrm{C}$ (decomp., recrystallized from $\mathrm{Et}_{2} \mathrm{O} /$ hexane); IR (K Br) 3112, 3084, 3065, 3036, 2925, 2900, 2846, 1659, 1598, 1577, 1491, 1447, 1406, 1331, 1243, 1228, 1089, 1042, 1015, 937, 919, $882,817,802,761,745,735,709,689,663 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{HNMR}\left(\mathrm{CDCl}_{3}\right) \delta=4.02(\mathrm{~d}, \mathrm{~J}=13.42 \mathrm{~Hz}, 2 \mathrm{H})$, $4.14(\mathrm{~s}, 2 \mathrm{H}), 4.20(\mathrm{~d}, \mathrm{~J}=13.42 \mathrm{~Hz}, 2 \mathrm{H}), 5.22(\mathrm{~s}, 2 \mathrm{H}), 7.25-7.37(\mathrm{~m}, 14 \mathrm{H}), 7.43-7.49(\mathrm{~m}, 4 \mathrm{H})$; Found: C, 70.69; H, 4.90; N, 5.01\%. Calcd for $\mathrm{C}_{32} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Cl}_{2}$ : C, 70.98; H, 4.84; N, 5.18\%.
4.4 Determination of Absolute Configuration (Eq. 9): To a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ( 3 ml ) solution of $N, N^{\prime}$ [( $R, R$ )-1,6-diphenylhexa-1,5-diyne-3,4-diyl]bis[ $N$-(4-isopropylbenzyl)hydroxylamine] (4A a) ( $150 \mathrm{mg}, 0.27 \mathrm{mmol}, 60 \%$ ee) was added a $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{ml})$ solution of $\mathrm{Et}_{3} \mathrm{~N}(63 \mathrm{mg}, 0.62 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$ under a nitrogen atmosphere. To the mixture was added a $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{ml})$ solution of $(1 S, 4 R)$-camphanic chloride (7) ( $134 \mathrm{mg}, 0.62 \mathrm{mmol}$ ), and the mixture was stirred for 2 h at $0^{\circ} \mathrm{C}$. A fter quenching the reaction by addition of water, the mixture was extracted with AcOEt. The combined extracts were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and condensed under reduced pressure. The product was recrystallized from ACOEt /hexane to give the diastereomeric mixture of 8 and 9 ( $147 \mathrm{mg}, 60 \%$ ). The diastereomerically pure 8 ( $89 \mathrm{mg}, 36 \%$ ) was obtained by recrystallizing further twice (first: A cOEt/hexane, second: toluene/hexane).
$N^{\prime} N^{\prime}-[(3 R, 4 R)$-1,6-diphenylhexa-1,5-diyne-3,4-diyl]bis\{N-(4-isopropylbenzyl)-O-[(1S',4R')-4,7,7 -trimethyl-2-oxabicyclo[2.2.1]heptane-3-one-1-carbonyl]hydroxylamine\} (8): Mp $148-149{ }^{\circ} \mathrm{C}$ (decomp., recrystallized from toluene/hexane); [ $\alpha]_{\mathrm{D}}{ }^{25}+80$ (c 0.14, EtOH, $100 \%$ ee); IR (K Br) 3053, 3018, 2962, 2934, 2871, 2230, 1781, 1599, 1513, 1490, 1443, 1398, 1381, 1332, 1309, 1254, 1227, $1167,1103,1051,1018,993,956,934,847,825,756,690 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} N \mathrm{NR}\left(\mathrm{CDCl}_{3}\right) \delta=0.55(\mathrm{~s}, 6 \mathrm{H})$, $0.70(\mathrm{~s}, 6 \mathrm{H}), 0.97(\mathrm{~s}, 6 \mathrm{H}), 1.21(\mathrm{~d}, \mathrm{~J}=6.83 \mathrm{~Hz}, 12 \mathrm{H}), 1.35-1.49(\mathrm{~m}, 2 \mathrm{H}), 1.62-1.78(\mathrm{~m}, 4 \mathrm{H})$, 1.95-2.15 (m, 2H), 2.88 (sept, J $=6.83 \mathrm{~Hz}, 2 \mathrm{H}$ ), $4.28(\mathrm{~d}, \mathrm{~J}=13.42 \mathrm{~Hz}, 2 \mathrm{H}), 4.46(\mathrm{br}, 2 \mathrm{H}), 4.86$ ( s , $2 \mathrm{H}), 7.17(\mathrm{~d}, \mathrm{~J}=8.05,4 \mathrm{H}), 7.29-7.38(\mathrm{~m}, 6 \mathrm{H}), 7.42(\mathrm{~d}, \mathrm{~J}=8.05 \mathrm{~Hz}, 4 \mathrm{H}), 7.45-7.51(\mathrm{~m}, 4 \mathrm{H})$; Found: C, 75.92; H, 6.96; N, 3.06\%. Calcd for $\mathrm{C}_{58} \mathrm{H}_{64} \mathrm{~N}_{2} \mathrm{O}_{8}: \mathrm{C}, 75.95 ; \mathrm{H}, 7.03 ; \mathrm{N}, 3.06 \%$. Crystal data (Fig. 1): $\mathrm{C}_{58} \mathrm{H}_{64} \mathrm{~N}_{2} \mathrm{O}_{8}$, FW 917.15, monoclinic, $P 2_{1,}, a=12.478(3) \AA, b=13.085(3) \AA, c=15.514(3) \AA, \beta$ $=90.240(6)^{\circ}, V=2533.0(9) \AA^{3}, Z=2 . \quad D_{\text {calcd }}=1.202 \mathrm{gcm}^{-3} . \quad R=0.082\left(R_{w}=0.111\right)$ for 8489 reflections with $I>3.00 \sigma(I)$ and 613 variable parameters.

## Acknowledgements

The present work was financially supported in part by Grant-in-Aid for Scientific Research on Priority A reas "A dvanced M olecular Transformations of Carbon Resources" from The Ministry of Education, Culture, Sports, Science and Technology (MEXT) and NOVARTIS Foundation (Japan) for the Promotion of Science.

## References

1. For reviews, see: (a) Bennani, Y. L.; Hanessian, S. Chem. Rev. 1997, 97, 3161-3195. (b) Lucet, D.; Gall, T. L.; Mioskowski, C. Angew. Chem. Int. Ed. 1998, 37, 2580-2627. (c) Viso, A ; Fernández-Pradilla, R.; García, A.; Flores, A Chem. Rev. 2005, 105, 3167-3196. (d) Kizirian, J.-C. Chem. Rev. 2008, 108, 140-205.
2. Recent examples of preparation of chiral vicinal diamines: (a) Alexakis, A.; Tomassini, A.; Chouillet, C.; Roland, S.; M angeney, P.; Bernardinelli, G. Angew. Chem. Int. Ed. 2000, 39, 4093-4095. (b) Prakash, G. K. S.; M andal, M . J. Am. Chem. Soc. 2002, 124, 6538-6539. (c) M uñiz, K .; Nieger, M. Synlett 2003, 211-214. (d) Bernardi, L.; Gothelf, A . S.; Hazell, R. G.; Jørgensen, K . A J. Org. Chem. 2003, 68, 2583-2591. (e) Chen, Y.; Yudin, A . K. Tetrahedron Lett. 2003, 44, 4865-4868. (f) Viso, A.; Fernández-Pradilla, R.; García, A .; Guerrero-Strachan, C.; Alonso, M .; Tortosa, M .; Flores, A .; M artínez-Ripoll, M .; Fonseca, I.; A ndré, I.; Rodríguez, A. Chem. Eur. J. 2003, 9, 2867-2876. (g) Westermann, B. Angew. Chem. Int. Ed. 2003, 42, 151-153. (h) Bunnage, M. E.; Burke, A. J.; Davies, S. G.; Millican, N. L.; Nicholson, R. L.; Roberts, P. M.; Smith, A. D. Org. Biomol. Chem. 2003, 1, 3708-3715. (i) O oi, T.; K ameda, M.; Fujii, J.; M aruoka, K. Org. Lett. 2004, 6, 2397-2399. (j) Zhong, Y.-W.; Xu, M .-H.; Lin, G.-Q. Org. Lett. 2004, 6, 3953-3956. (k) Zhong, Y.-W.; Izumi, K.; X u, M .-H.; Lin, G.-Q. Org. Lett. 2004, 6, 4747-4750. (I) Rondot, C.; Zhu, J. Org. Lett. 2005, 7, 1641-1644. (m) Nadir, U. K.; K rishna, R. V.; Singh, A. Tetrahedron Lett. 2005, 46, 479-482. (n) Chowdari, N. S.; A hmad, M .; A Ibertshofer, K.; Tanaka, F.; B arbas, III, C. F. Org. Lett. 2006, 8, 2839-2842. (0) Fukuta, Y.; M ita, T.; Fukuda, N.; K anai, M .; Shibasaki, M . J. Am. Chem. Soc. 2006, 128, 6312-6313. (p) Serizawa, M .; U kaji, Y.; Inomata, K. Tetrahedron: Asymmetry 2006, 17, 3075-3083.
3. (a) Enders, D.; Reinhold, U. Tetrahedron: Asymmetry 1997, 8, 1895-1946. (b) Bloch, R. Chem. Rev. 1998, 98, 1407-1438. (c) K obayashi, S.; Ishitani, H. Chem. Rev. 1999, 99, 1069-1094. (d) Denmark, S. E.; Nicaise, O. J.-C. In Comprehensive Asymmetric Catalysis; Jacobsen, E. N.; Pfaltz, A .; Yamamoto, H., Eds.; Springer, Berlin, 1999; Chap. 26.2.
4. (a) Blanchet, J.; Bonin, M.; Micouin, L. Org. Prep. Proced. Int. 2002, 34, 467-492. b) A schwanden, P.; Carreira, E. M . In Acetylene Chemistry; Diederich, F.; Stang, P. J.; Tykwinski, R. R., Eds.; Wiley-VCH, Weinheim, 2005; Chap. 3. (c) Zani, L.; Bolm, C. Chem. Commun. 2006, 4263-4275.
5. (a) Wei, W.-L.; K obayashi, M.; Ukaji, Y.; Inomata, K. Chem. Lett. 2006, 35, 176-177. (b) K onishi, A.; Wei, W.-L; K obayashi, M .; Fujinami, S.; U kaji, Y.; Inomata, K . Chem. Lett. 2007, 36, 44-45.

## Stereochemistry Abstract






|  |  |
| :--- | :--- |
| M asakazu Serizawa, Shuhei Fujinami, |  |
| Y utaka U kaji,* and K atsuhiko Inomata* |  |

## M asakazu Serizawa, Shuhei Fujinami,

Y utaka U kaji,* and K atsuhiko Inomata*

$\mathrm{Ee}=76 \%$
$[\alpha]_{D}{ }^{25}+13(\mathrm{c} 0.892, \mathrm{EtOH})$
Source of Chirality: Dicyclohexyl ( $\mathrm{R}, \mathrm{R}$ )-tartrate
A bsolute configuration: (R,R)
$\mathrm{C}_{48} \mathrm{H}_{60} \mathrm{~N}_{2} \mathrm{O}_{2}$
N,N'-[(R,R)-1,6-Bis(4-pentylphenyl)hexa-1,5-diyne-3,4-diyl]bis[N-(4-isopropylbenzyl)hydroxylamine]

$\mathrm{Ee}=72 \%$
$[\alpha]_{D}{ }^{25}+12(c 0.788$, EtOH $)$
Source of Chirality: Dicyclohexyl (R,R)-tartrate
A bsolute configuration: $(R, R)$

N,N'-[(R,R)-1,6-Bis(4-methoxyphenyl)hexa-1,5-diyne-3,4-diyl]bis[N-(4-isopropylbenzyl)hydroxylamine]


|  |  |
| :--- | :--- |
| M asakazu Serizawa, Shuhei Fujinami, |  |
| I utaka Ukaji,* and K atsuhiko Inomata* |  |
| Source of Chirality: Dicyclohexyl (R,R) -tartrate |  |

$N, N$ '-[(R,R)-1,6-Bis(2-fluorophenyl)hexa-1,5-diyne-3,4-diyl]bis[ $N$-(4-isopropylbenzyl)hydroxylamine]


| M asakazu Serizawa, Shuhei Fujinami, <br> Y utaka U kaji,* and K atsuhiko Inomata* |  |
| :---: | :---: |
| OH | $\mathrm{Ee}=70 \%$ |
|  | $[\alpha]_{D}{ }^{25}-9$ (c 0.536, EtOH) |
| $\mathrm{iPr}_{\mathrm{TMS}}$ | Source of Chirality: Dicyclohexyl ( $R, R$ )-tartrate |
| $\mathrm{C}_{32} \mathrm{H}_{48} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Si}_{2}$ | A bsolute configuration: ( $\mathrm{R}, \mathrm{R}$ ) |
| N, $\mathrm{N}^{\prime}-[(\mathrm{R}, \mathrm{R})-1,6-\mathrm{Bis}($ trimethylsilyl) hexa-1,5-diyne-3,4-diyl]bis | 4-isopropylbenzyl)hydroxylamine] |


| M asakazu Serizawa, Shuhei Fujinami, <br> Y utaka U kaji,* and K atsuhiko Inomata* |  |
| :---: | :---: |
|  | $\mathrm{Ee}=100 \% \quad[\alpha]_{D}{ }^{25}+80(\mathrm{c} 0.14, \mathrm{EtOH})$ |
| , | Source of Chirality: Dicyclohexyl (R,R)-tartrate, |
| Pr Ph $\geqslant$ | (1S,4R)-camphanic chloride |
| $\mathrm{N}, \mathrm{N}$-[(3R,4R)-1,6-diphenylhexa-1,5-diyne-3,4-diyl] | A bsolute configuration: ( $3 \mathrm{R}, 4 \mathrm{R}, 1 \mathrm{~S}^{\prime}, 4 \mathrm{R}^{\prime}$ ) |
| bis $\{\mathrm{N}$-(4-isopropylbenzyl)-0-[(1S',4R')-4,7,7-trimethyl-2-oxabicyclo[2.2.1]heptane-3-one-1-carbonyl]hydroxylamine\} |  |

