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Intrinsic localized modes~ILMs! have been observed in micromechanical cantilever arrays, and
their creation, locking, interaction, and relaxation dynamics in the presence of a driver have been
studied. The micromechanical array is fabricated in a 300 nm thick silicon–nitride film on a silicon
substrate, and consists of up to 248 cantilevers of two alternating lengths. To observe the ILMs in
this experimental system a line-shaped laser beam is focused on the 1D cantilever array, and the
reflected beam is captured with a fast charge coupled device camera. The array is driven near its
highest frequency mode with a piezoelectric transducer. Numerical simulations of the nonlinear
Klein–Gordon lattice have been carried out to assist with the detailed interpretation of the
experimental results. These include pinning and locking of the ILMs when the driver is on,
collisions between ILMs, low frequency excitation modes of the locked ILMs and their relaxation
behavior after the driver is turned off. ©2003 American Institute of Physics.
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An advance of the theory of nonlinear excitations in dis-
crete lattices was the discovery that some localized vibra
tions in perfectly periodic but nonintegrable lattices
could be stabilized by lattice discreteness. The modula
tional instability of extended large amplitude vibrational
modes has been proposed as a mechanism for the realiz
tion of dynamical localization on the scale of the lattice
constant. Although theoretically a variety of methods to
excite the instability of a homogeneous vibrational mode
have been proposed, these ideas have yet to be test
experimentally. Since the observation of nanoscale local
ized vibrational modes still cannot be achieved there is
definite advantage to examining a macroscopic array,
which is small enough so that the entire time dependence
of the instability dynamics occurs in a practical measure-
ment interval. This has been accomplished by using mi-
cromechanical silicon technology to fabricate up to 248
identical cantilevers with a 40 micron lattice constant.
Optical techniques have been used to track the motion o
individual cantilevers in the presence of an inertial
driver. In addition to experimentally characterizing the
modulational instability and identifying the best method
for producing intrinsic localized modes a new discovery is
the locking of the local mode amplitude with the
driver frequency. Numerical simulations have been used
to better understand the nature of this synchronization
effect.
7021054-1500/2003/13(2)/702/14/$20.00
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I. INTRODUCTION

The concept of nonlinear energy localization in period
lattices characterizes a new class of dynamical excitatio
namely, intrinsic localized modes~ILMs!.1 In addition to the-
oretical and numerical studies involving nonlinear crys
dynamics,2–7 applications to other topics have appeared su
as magnetic systems,8–17electron–phonon systems,18,19reac-
tion dynamics,20 molecular biophysics,21,22 and lattice-
assisted energy/charge transfer in polarizable matter.23 Some
of these efforts devoted to examining the nonlinear dynam
of nanoscale lattices have made contact with other poss
applications for ILMs such as in friction24 and crack
propagation.25 Still other larger scale applications deal wi
ILMs in Josephson arrays,26,27 E&M ILMs in optical
switches,28 and in nonlinear photonic crystal wav
guides.29,30 The largest scale application has to do with l
calized multibunch modes in accelerators.31 Thus from con-
densed matter physics to arrays used in high technology,
sees a new class of problems emerging, which share a c
mon denominator.

At the smallest scale, details of ILM quantization18,32,33

are still to be explored. For a classical nonlinear oscilla
array, there are a number of characteristic ILM properti
probed theoretically, such as their interaction with an
driver,14,34–36 their propagation5,37–40 and amplitude depen
dent mobility4,6,40–42 in a discrete lattice potential,43,44 as
well as their interactions with impurities,45–50 that still need
© 2003 American Institute of Physics
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to be examined experimentally. Note that strongly exci
ILMs42 can be trapped anywhere in the lattice, so they a
could approach impurity mode behavior. Thus the explo
tion of the amplitude-dependent properties of ILMs is one
the important experimental issues at the present time.

Although some experimental studies have been repo
for large scale mechanical systems,51,52 for somewhat
smaller Josephson-junction arrays,26,27,53,54and for nanoscale
lattices,15–17,55 none of these studies have examined
driven amplitude dependent trapping phenomena. The
resonant frequency of the mechanical systems makes
time scale too long to perform the necessary experime
ILMs can be seeded in Josephson-junction arrays and
are stable so that trapped ILMs can be measured; howe
the high oscillation frequency, 1 GHz to 10 THz,56 makes it
difficult to observe their dynamical motion. Finally, obser
ing the dynamics in nanoscale lattices has not yet been
complished. Recently micro-electro-mechanical syst
~MEMS! silicon technology has matured sufficiently so th
now it is relatively straight forward to make many identic
elements.57–59 While previous experimental studies of ind
vidual micromechanical oscillators have focused on issue
nonlinearity and specific applications,60–63 in this paper we
describe our experimental investigation of ILM creation,
laxation, locking, and interaction in 1D coupled oscillat
arrays of the cantilever design.

In the next section the experimental and numeric
simulation procedures are described. An optical arrangem
with a 1D charge coupled device~CCD! is used to display
the motion of localized modes. Numerical simulations ha
been made using coupled nonlinear Klein–Gordon equat
to represent the oscillator array. In Sec. III, the experimen
results are presented and compared with the simulations.
breakup of the uniform mode excitation, the developmen
localized modes, and stationary localized modes locked
the driver frequency have been observed in this time dep
dent investigation. Simulations play an important role as th
are used to interpret and understand these experimenta
servations. The conclusions are presented in Sec. IV.

II. EXPERIMENTAL DETAILS

A. Physical

1. Fabrication and linear measurements to
characterize cantilever coupling

To fabricate SiNx cantilever arrays on a silicon substrat
the starting film is a low stress silicon nitride layer, silico
rich to alleviate tensile stresses. After coating with a pho
resist mask it is exposed and then etched via a CF4 plasma in
a reactive ion chamber. Next, the silicon substrate is unde
using an anisotropic KOH etch, thus releasing the SiNx can-
tilevers. A top view of the resulting structure is shown in F
1~a!. The relative scale of the cantilevers and overhang
be seen. The overhang region provides the coupling betw
the cantilevers. A 3D rendition of one unit cell of the resu
ing array is shown in Fig. 1~b!. The physical characteristic
of the four oscillator arrays studied here are given in Tabl

To examine the coupling properties of the overhang
tween the cantilevers, some initial tests have been carried
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with small arrays composed of nine identical cantileve
These are samples A and B in Table I. A piezoelectric tra
ducer ~PZT! with variable frequency is used to drive th
monocantilever array to obtain the frequency dependent
sponse of individual cantilevers.

The optical apparatus used to measure the dependen
the spectral bandwidth on the overhang is shown in Fig
The sample is attached to the PZT and situated in an ev
ated chamber maintained below 1 mTorr at ambient temp
ture. A cantilever is chosen, and a laser beam focused o
as can be seen in the figure. A variable frequency ac volt
drives the PZT which uniformly shakes the entire sample
that the cantilever array experiences a common accelera
The resulting deflection of the laser beam from the oscil
ing cantilever is measured by a position sensitive photodi
detector~PSD!, with output voltage proportional to the opt
cal spot position. For a linear response of the array the P
ac voltage is typically set to 0.05 V; for examining the no
linear shift of a resonance frequency, and hence the an
monicity of the system, the driving voltage is;0.1 V. For
ILM creation it is ;10 V.

Figures 3~a! and 3~b! show the signal versus driving fre
quency for test samples A and B, respectively. These
samples, which are identical except for different overha
widths, produce different spectral bandwidths as expec
Figures 3~a! and 3~b! clearly show that the bandwidth in
creases with the length of the overhang. Ignoring for
moment any normal modes of the overhang itself, the ca
levers should produce nine degrees of vibrational freed
The nine peaks observed are the resonant frequencie
these nine normal modes. The solid and dotted curves de
the spectra taken of the center and edge cantilever, res
tively, so that all modes are counted.

With the coupling between oscillators characterized,
design of the large oscillator arrays can now be considere

FIG. 1. Characteristic dimensions of a di-element type silicon nitride ca
lever array.~a! Top view photograph. White region to the right is the 300 n
thick SiNx array and overhang, while the dark gray region on the left is
film supported by the substrate. The parameters for this sample~D! are
given in Table I.~b! 3D sketch showing one unit cell.
P license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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TABLE I. Summary of the characteristics of the micromechanical samples.

Sample label A B C D

Type Mono-element Mono-element Di-element Di-eleme
Thickness~nm! 300 300 300 300
Pitch ~mm! 110 110 65 40
Length ~mm! 50 50 50/55 50/55
Width ~mm! 10 10 15 15
Total number 9 9 152 248
Overhang~mm! 28.5 35.6 70 67
f a ~kHz!a 180.43 186.2 136.1 147.0
f b ~kHz!a 133.0 143.2
f c ~kHz!a 121.2 127.7
f d ~kHz!a 171.43 158.4 72.7 60.8

aResonant frequencies at the upper zone center, upper zone boundary, lower zone center, and low
boundary, as shown in Fig. 7. For the mono-element type arrays, only two frequencies are specified
correspond to the same modes in folded dispersion curve as if the samples were of the di-element typ
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is known that cantilevers of this design have a ha
nonlinearity.61,62 The procedure of choice for the productio
of ILMs is to drive a uniform mode to large amplitude so th
it becomes unstable and breaks up into localized excitati
To achieve the large amplitude uniform mode instability
an array with hard anharmonicity, the highest frequency u
form mode of the array needs to be driven.64

For a mono-type cantilever 1D lattice this would be t
zone-boundary excitation.~Although our arrays have fixed
boundary conditions they are sufficiently large that termin
ogy consistent with periodic boundary conditions will b
used throughout the paper.! To excite the zone boundar
mode shown in Fig. 4~a! would require a special driver, on
that could producep out-of-phase amplitude on neighborin
cantilevers. In order to use the PZT driver, which accelera
the entire lattice uniformly, two different-length cantileve
per unit cell have been constructed in arrays C and D
displayed in Fig. 1. With this di-element array, the dispers
curve is folded over@see Fig. 4~b!# so that the highest fre
quency vibrational mode is now at the zone center. T
optic-like mode can be excited with the PZT driven at t
appropriate frequency. Any ILMs should appear near the
of the upper band as shown in the figure.

FIG. 2. Experimental setup for a one-cantilever linear response mea
ment. The cantilever array is in a vacuum chamber. A PZT is employe
drive the sample. A beam from a He–Ne laser is focused on one cantil
A position-sensitive photodiode detector~PSD! which outputs voltage pro-
portional to the laser beam position is used to pick up the deflection of
reflected laser beam. By scanning the frequency of the oscillator and
suring the ac voltage with the lock-in amplifier, linear spectra are obtain
y 2003 to 128.84.231.133. Redistribution subject to AI
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2. Linear measurements of large di-element cantilever
arrays

The frequency dependent linear response of individ
cantilevers for a large di-element array~sample D! is shown
in Fig. 5. The laser beam, shown in Fig. 2, is now focused
a cantilever, near the center of the sample. The drive
quency is incremented in 100 Hz steps in the lower f
quency region and 50 Hz steps in the higher frequency
gion. For each frequency point, a measurement takes a
three seconds. Optic-like normal modes can be activated
the uniform driver, and can be seen in this figure. As e
pected, there are two pass bands, with the upper b
~143.2–147.0 kHz! much narrower than the lower on
~60.8–127.7 kHz!. Due to the coupling of the driver to th
normal modes the frequency dependence of the respons
creases with increasing frequency in the lower band,
increases with increasing frequency in the upper band. Th
is at least one other band at around 235–240 kHz, wh
may be related to the vibration of the overhang. Howev

FIG. 3. Linear spectra for mono-element arrays showing the dependen
the bandwidth on the overhang.~a! Sample A with 28.5mm overhang, and
~b! sample B with 35.6mm overhang. Samples A and B contain nine can
levers; see Table I for more details. Solid and dotted curves correspon
the spectrum for the center and for the edge cantilever, respectively.
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705Chaos, Vol. 13, No. 2, 2003 Study of ILMs in MEMS cantilever arrays
this region is beyond the frequency limit of the photosensi
detector and the lock-in amplifier, and it has not been m
sured accurately.

To examine the response of the system to large am
tude excitation and in particular to explore ILM dynamics,
is necessary to measure a large number of cantilevers si
taneously. Figure 6 shows the experimental setup for m
suring ILM dynamics versus time. In Fig. 6~a! the He–Ne
laser beam is focused with a cylindrical lens into a line alo
the static array. The reflected beam is then imaged onto a
CCD camera. The PZT is driven with a voltage-controll
oscillator for variable or constant frequency operation
shown in the figure. The switch and the ramp generator
synchronized with the camera by using a pulse genera
Images are captured by a computer, which is triggered by
pulse generator. The speed of the camera, about 18 kH
insufficient to monitor the sinusoidal motion of the cantil
vers. However, as the vibration of a cantilever grows,
reflected laser beam increasingly misses the 1D CCD cam
as illustrated in Fig. 6~b!, and the image of that particula
cantilever becomes darker.

The maximum lateral capturing speed of the camera
be defined as the array pitch divided by the camera per
i.e., 183103 a/s, wherea is the cantilever pitch. This is
sufficient to observe the fastest traveling ILMs, which mo
at speeds of up to 143103 a/s. It should be emphasized th
ILMs excited near the top of the band are far slower than
maximum speed. Consequently, the capturing speed of
camera is fast enough to observe both the lateral motio
an ILM and its time development. This relatively straightfo
ward observational method permits a systematic monito

FIG. 4. Schematic dispersion curves.~a! Mono-element cantilever array: a
ILM can be expected to appear at the zone boundary frequency for
nonlinearity. ~b! Di-element cantilever array: the dispersion curve for t
mono-element array~thin dotted line! is folded back and a stop band ap
pears. For hard anharmonicity ILMs will be created at the zone center.
Downloaded 23 May 2003 to 128.84.231.133. Redistribution subject to AI
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of the excitation pattern for large amplitude ILM creatio
and interaction with a driver.

It has been shown theoretically that changing the f
quency~chirping! of a large amplitude driver is an effectiv
method by which to excite a nonlinear system to large a
plitude so that the resulting instability produces ILMs.35,65

Since the resonant frequency of the nonlinear cantileversrd

FIG. 5. Linear spectrum obtained for a large di-element cantilever ar
The laser was focused on a cantilever near the middle of sample D
contains 248 cantilevers. Frequency is step incremented in 100 Hz s
over the lower frequency region and in 50 Hz steps in the higher freque
region. The lower band begins at 60.8 kHz and ends at 127.7 kHz.
upper band begins at 143.2 kHz and ends at 147.0 kHz.

FIG. 6. ~a! Experimental setup for the ILM measurements. A beam from
He–Ne laser is focused along the array by using a cylindrical lens.
elliptical spot from the cylindrical lens is positioned so that the short axis
the ellipse lies along the length of the cantilever, while the longer a
encompasses many cantilevers. A 1D CCD is used to detect the bea
flected from the cantilevers. A voltage controlled oscillator~vco!, switch
~sw! and amplifier are used to drive the PZT. The frequency of the vco
controlled by a ramp generator. A pulse generator, which controls the sw
and the ramp generator are synchronized to the camera. A scanner att
to the mirror is driven by an oscillator~not shown in this figure!. Two-
dimensional images can be captured by synchronized scanning of the m
and the camera. This feature is used to observe the amplitude patte
stationary ILMs.~b! Schematic showing the relation between cantilever a
plitude and detector response. At large vibration amplitudes the deflectio
the laser beam from the cantilever changes and the image at the CCD
becomes darker. In this picture the elements of the 1D CCD camera
arranged horizontally.
P license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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creases with amplitude, it is necessary to increase the d
frequency with time to track the highest resonant frequen
In addition, since the oscillators are necessarily damped
driving is required for steady state observation of the res
ant ILMs.

A scanner attached behind the mirror in front of the CC
as shown in Fig. 6~a! can be used to obtain a two
dimensional image of the cantilevers. This oscillator driv
scanner is synchronized with the camera. During the t
development measurement of ILMs, which is the main foc
of most experiments, this mirror is mechanically fixed
observe individual cantilever motion.

B. Numerical

The lowest frequencyv of a simple cantilever with one
end fixed is given by66

v25
~3.52!2

L4 S EI

rtwD5
~3.52!2

12L3

E

m
t3w5

k

m
. ~1!

HereE is the Young’s modulus, the second moment-of-a
I 5t3w/12, wheret is the thickness of the beam, andw is its
width ~see Table I for these values!, L is the length of the
beam, andr is the density of the material.

Our experimental system consists of an array of cant
ver beams that are coupled together by the overhang re
between them. Since the two cantilevers in a unit cell h
different lengths, then, according to Eq.~1!, both their linear
spring constants and masses will be different. As a first
proximation, the dynamics of the overhang will be ignore
so that it acts only as a massless coupler between cantile
For small oscillations an individual cantilever in the array
assumed to obey Eq.~1! but with an effective spring and
mass, in order to include some contribution of the overha
For the large amplitude problem, each cantilever is then r
resented by a mass and an onsite potential which has
harmonic~quadratic! and anharmonic~hard quartic! terms.
The coupling between cantilevers is assumed to be harm
for all cantilever amplitudes. Such a di-element lattice mo
obeys the nonlinear Klein–Gordon equation,67 namely,

ma

d2

dt2
xai1

ma

t

d

dt
xai1k2axai1k4axai

3

1kI~2xai2xbi2xbi21!5maa, ~2!

mb

d2

dt2
xbi1

mb

t

d

dt
xbi1k2bxbi1k4bxbi

3

1kI~2xbi2xai112xai!5mba, ~3!

where the subscriptsa and b correspond to the differen
length cantilevers,xai and xbi are the displacements of th
cantilever ends,ma and mb are their masses,t is a linear
~energy! lifetime, k2a andk2b are the onsite harmonic sprin
constants,k4a and k4b are onsite quartic spring constant
andkI is the harmonic coupling constant. The PZT does
apply a force directly to the cantilevers, but causes accel
tion and deceleration of the cantilever’s inertial frame w
magnitudea.
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The masses are estimated from the density of silic
nitride and the size of the cantilevers. The lifetimet is ex-
perimentally determined. In order to determine the spr
constantsk2a , k2b , andkI experimentally, four frequencie
have been measured: the maximum and minimum frequ
cies for the upper and for the lower bands. These points o
dispersion curve are identified in Table I.

By choosing the top three experimental frequencies
the fit to the small oscillation case, a good approximation
the upper branch of the dispersion curve can be obtain
The lowest experimental frequency~lower branch, zone cen
ter! is not reproduced within our model. One way to obta
different bandwidths is to introduce longer-range intera
tions, which would stem from the dynamical properties
the overhang. To reproduce the entire experimental dis
sion curve takes up to sixth nearest-neighbor interactio
Since ILMs are created at the top of the upper branch,
exact shape of the lower branch is not expected to pla
crucial role so this long-range interaction is not included
our simulations.

With the harmonic spring constants of the model chos
its linear response can be determined and the disper
curve obtained. The system is driven with a uniform dist
bution of acceleration noise, witha ranging between
61023 m/s2 ~compared to thea ;1014 m/s2 that will be
needed for ILM production!. The beam displacements of th
entire array are recorded as a function of time. A Four
transform~FT! of a single oscillator displacement as a fun
tion of time yields the frequencies that the particular cant
ver experiences during the given time interval. Likewise
FT ~taken over a finite spatial interval! of the displacements
of all the cantilevers at any instant of time will yield th
excited wave vector modes that are participating in the c
lective motion. Performing FTs in both space and tim
changes the real-space data (x,t) representation to reciproca
space (v,k). Such a two-dimensional FT of the beam di
placement data is shown in Fig. 7~a!. The time interval is
equivalent to 1000 periods of oscillation. A one-dimension
FT for the oscillations of a single cantilever from the midd
of the sample is shown in Fig. 7~b!. In both of these frames
it is clear that the simulated bandwidth is almost the same
the acoustic and optic branches.

The nonlinear onsite quartic spring constant in Eqs.~2!
and ~3! is determined in the following manner:~1! k4a and
k4b are set equal to each other and~2! the value is deter-
mined so that the upper-branch frequency in a simulat
shows the same frequency shift as for experiment at a po
level below the threshold for the uniform mode instabilit
This power still needs to be sufficiently high so that t
nonlinear frequency shift of the resonant frequency can
determined accurately. A complete list of simulation para
eter values can be found in Table II.

III. RESULTS AND DISCUSSION

A. Trapping and locking

1. Experiment

Two sequential time-dependent response measurem
of the 152-cantilever array~sample C! for a large amplitude
P license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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driver are shown in Fig. 8. The cantilever positions can
identified by the white lines to the left of the time50 marker.
The high-power, PZT driver (;20 V) is chirped from the top
of the optic band,f a , to 1.011f a between time50 and 14.2
ms as indicated by the dotted vertical line in the figure. T
CCD camera images a portion of the sample, which is 1
cantilevers in this case. The dark tracks versus time iden
large amplitude localized excitations. Although the start
conditions are the same for the experiments shown in F
8~a! and 8~b! different results are observed as would be e
pected for a process initiated by random noise. Note
some moving ILMs form during the chirp phase. At long
times between 14.2 ms and 72.7 ms, with a cw driver so
ILMs continue to receive energy while the others die out.
some point the large amplitude ILMs become trapped a
lattice site. This can be seen around lattice site 60 in Fig.~a!
and at two locations, namely, 38 and 80 in Fig. 8~b!. After
the driver is turned off at time572.7 ms the trapped ILMs
decay.

FIG. 7. Simulated linear response for a di-element cantilever array.
physical parameters of the di-element array are given in Table II. Apply
low noise amounting toa5061023 m/s2, the displacements are measur
as a function of time.~a! The time-space Fourier transform of the shor
cantilever displacements gives the excitation pattern ink space only where
normal modes exist. The three experimental frequencies, 147.0, 143.2
127.7 kHz at the top and bottom of the upper band, and top of the lo
band of sample D are reproduced. The bottom of the lower band frequ
~123.3 kHz! in simulation is much higher than the experimental one~60.8
kHz!. ~b! The time Fourier spectrum of a single cantilever displacem
pattern.

TABLE II. List of parameters used in the simulations.

Parameters Cantilevera Cantileverb

Mass 5.46310213 kg 4.96310213 kg
Damping constant,t 8.75 ms 8.75 ms
Harmonic,k2 0.303 kg/s2 0.353 kg/s2

Anharmonic,k4 5.03108 kg/s2 m2 5.03108 kg/s2 m2

Harmonic intersite,kI 0.0241 kg/s2 0.0241 kg/s2
Downloaded 23 May 2003 to 128.84.231.133. Redistribution subject to AI
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Figure 9 shows cantilever responses versus time with
high-power, chirped driver for the 248-element array, sam
D in Table I. Before the pulse is turned on (time,0), each
stripe corresponds to a stationary cantilever. The PZT volt
is again about 20 V. The viewing size is now 230 cantileve
Figures 9~a! and 9~b! show different results for identica
starting conditions. Here, the driver frequency is chirp
from 0.9986f a to 1.016f a . Figure 9~c! shows the results for
a slightly different starting condition, where the driver fr
quency is chirped from 0.9986f a to 1.034f a . As long as the
chirping starts near the top of the band and ends 2–
higher thanf a , the different chirping schemes give simila
results. The pulse duration is 48.9 ms and the chirp time
16.2 ms~dotted line!. The pulse interval is highlighted in
these figures. At early times ILMs are observed to for
move, oscillate and hop until the chirp ends; then a f
ILMs continue to pick up energy and become trapped
lattice sites. Using an optical probe coupled to a spectr
analyzer to monitor the center of such a pinned ILM co
firms that the fixed mode is frequency-locked to the driv
After the pulse, these stationary ILMs lose energy, beco
broader, break free from the trapping site, and sometim
oscillate about it. Note that these oscillations range o
10–20 lattice sites and hence they have a much larger

e
g

nd
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cy

tFIG. 8. Cantilever excitation versus time showing the production, inter
tion and decay of ILMs. These experimental results for sample C are ta
with the 1D CCD camera. Frames~a! and~b! have identical starting condi-
tions. The PZT frequency is chirped fromf a5136.3 kHz to 1.011f a . The
chirp ends at 14.2 ms~dotted line!. The dark regions identify localized
excitations. Highlighted region corresponds to the time where the puls
on. Some localized excitations become trapped during this cw phase. P
duration is 72.7 ms.
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plitude than the one unit cell oscillations described in Re
38 and 43. The moving ILMs have speeds ranging from 2
lattice sites per millisecond. This should be compared to
maximum possible speed of an optic branch linear m
wave packet of about 13 lattice sites per millisecond. T
oval identifiers in Figs. 9~a! and 9~c! indicate regions where
fairly uniform background excitations can be seen. Such p
terns exist even after the pulse. The amplitude of such e
tations in Fig. 9~c! is less than in frames~a! and ~b! and
probably accounts for the absence of any motion of
trapped ILM after the pulse is turned off. A brief descriptio
of some of these results has already been given.68

Close inspection of the large-amplitude trapped ILMs
Fig. 9 reveals an experimental artifact in the central region
the ILM image. The experiments indicate a smaller amp
tude at the center of the mode than actually exists there
systematic investigation shows this feature is false. By tak
a 2D image of two trapped ILMs, which are shown in F
10, it is possible to identify the single peaked nature of
excitation. The two arrows in the figure identify the center
the two localized excitations. In each case the large am
tude peak is centered on the short cantilever.

FIG. 9. Cantilever excitation versus time showing the production and de
of ILMs. Experimental results for sample D taken with the 1D CCD came
Frames~a! and ~b! have identical starting conditions. The frequency of t
PZT is chirped from 0.9986f a to 1.016f a . For frame~c! the chirp extends
from 0.9986f a to 1.034f a . Chirp ends at 16.2 ms~dotted line!. Dark pat-
terns identify localized excitations. The pulse is on over the highlighted t
interval and its duration is 48.9 ms. Ovals indicate some of the many reg
where fairly uniform background excitations can be seen. The amplitud
this normal mode noise is larger in~a! and~b! than it is in~c!. After Ref. 68.
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2. Simulations

To understand in more detail a number of the featu
observed in Figs. 8 and 9 it is necessary to turn to numer
simulations, which have parameters very similar to those
the experiment. Figure 11 summarizes some of the result
such an investigation. The chirping scheme used in
simulation is shown in Fig. 11~a!. The system is initialized
with a small amount of random noise. The system is th
allowed to settle for 500 periods of the resonant frequency
which point the driver is turned on (time50). The driver
frequency starts at the top of the upper band, then cont
ously increases linearly to frequency 1.027f a over a time
interval of 2500 periods. When the uniform mode becom
highly excited the noise perturbation triggers the modu
tional instability. In the cw mode the fixed driver frequenc
is 1.027f a until the driver is turned off at 7500 periods.

Figure 11~b! shows a density-plot of the energy of ea
lattice site as a function of time for a typical simulation r
sult. The energy of a particular lattice site in the di-eleme
array, at a given instant of time, is
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where i indexes the unit cell number, and the actual latt
site number is given byj 52i 21 and j 52i for the long
~cantilevera) and short~cantileverb) sites, respectively. The
energy consists of the kinetic energy and onsite poten
terms, as well as the potential energy stored in the coup
springs. The parameter set used here for sample D is give
Table II. The total number of cantilevers is 250 with fixe

y
.

e
ns
of

FIG. 10. Two-dimensional image of the amplitude pattern for sample
showing two trapped ILMs. Note that each ILM is centered on a sh
cantilever site. The two stationary ILM patterns are obtained by scanning
mirror in front of the CCD shown in Fig. 6. A scanner, synchronized w
the CCD, is used to vibrate the mirror. The cantilevers and the overh
region are illuminated by the laser and the small amplitude ones ap
bright in this image. Strongly vibrating cantilevers appear darker. The sh
of each pinned ILM is single peaked.
P license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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709Chaos, Vol. 13, No. 2, 2003 Study of ILMs in MEMS cantilever arrays
end boundary conditions. As expected there is no qualita
difference between simulations with the periodic- and fixe
end boundary conditions except near the boundaries.

During the chirping phase of the driver many movin
ILMs appear which then coalesce into several trapped ILM
Most of the ILMs appear to die out after only a few hundr
periods of oscillation. In this particular simulation, fou
modes can be identified that persist much longer than
others. These are identified in Fig. 11~b! as LS1, LS2, LS3,
and NL1. The first three of these are trapped at particu
lattice sites and in addition, have their frequency locked
that of the driver. Because of this synchronization with t
driver there is a continual transfer of energy to the ILM
which keeps them pinned at the particular lattice sites
prevents them from decaying. The fourth large-amplitu
ILM, NL1, fails to frequency lock to the driver in the cw
region, and hence ultimately decays after a time lapse
;2600 periods. Once the driver has been turned off,
three locked states decay. Mode LS3 is seen to decay pe
fully, maintaining its symmetry without further motion in th
lattice. In contrast, LS1 and LS2 are close enough toge
so that once the decay begins and they become unpin
they repel one another, and move in the lattice.

FIG. 11. Computer simulations of ILM production, dynamics, and dec
Cantilever parameters are listed in Table II.~a! Driver frequency as a func-
tion of time for this simulation. Pulse is on from 0 to 7500 periods. Driv
frequency starts atf a , increases up to 1.027f a linearly until 2500 periods,
and then, remains at that frequency. The magnitude of the accelerati
kept constant,a51.03104 m/s2. ~b! A density plot of the energy versu
time. Dark regions identify localized modes. During the time that the
driver is on three locked stationary ILMs~LS1, LS2, LS3! are found. NL1
identifies an ILM, which is not locked to the driver. Hopping motion
ILMs can be seen in the oval markers.~c! Energy as a function of time for
the ILM labeled LS3 averaged over three lattice sites. The character
oscillation frequency of the slowly decaying feature is 0.0056f a with a Q
;13. Horizontal arrow shows a linear energy lifetime~8.75 ms! used in this
simulation.
Downloaded 23 May 2003 to 128.84.231.133. Redistribution subject to AI
e
-

s.

e

r
o
e
,
d
e

of
e
ce-

er
ed,

Figure 11~c! shows the average energy for a particu
locked ILM ~LS3! as a function of time as determined by

ELS35 (
j 543

45

Ej , ~5!

where theEj are defined by Eq.~4!. The low frequency
oscillation of the average mode energy at frequen
0.0056f a decays slowly over a long time interval. It require
the presence of the driver and disappears immediately a
the driver is turned off. The figure shows that during t
chirp, the energy of this mode increases with time to
amplitude value compatible with the fixed synchronizati
frequency of the driver. Thus, the amplitude of such a lock
ILM is rigidly connected to the driver frequency.

To explore the development of locked ILMs from a
other view, the double Fourier transform of the cantilev
motion over a specific time interval is taken. The resulti
time development of excitations both in real space and ik
space is shown in Fig. 12. The energy density as a func
of time for this particular simulation is presented in Fi
12~a!. The same parameters are used as those for Fig.
only the initial noise is different. The frequency chirp (f a

→1.027f a) lasts for 2500 periods@left solid vertical line in
~a!#. At long times only one locked ILM appears. An exam
nation of the energy versus time for the center cantilever
two neighboring sites shows a monochromatic strength
cillation frequency at 0.0056f a the same as was describe
above for LS3. The pulse is turned off at time57500 periods
@right solid vertical line in~a!#. By time–space Fourier trans
forming the displacement over the different time interva
identified by the dotted lines:b, c, d, e, f , andg, in Fig.
12~a!, the (v,k) excitation plots shown in frames~b!–~g! are
obtained. The dotted curves in these six frames identify
linear dispersion curve of the optic branch for the di-elem
cantilever array. Figures 12~b! and 12~c! show time cuts dur-
ing the chirp. The position of the nonlinear dispersion cur
and the interference between different ILMs can be seen
Fig. 12~c!. The early and late stages of the single locked st
appear in Figs. 12~d! and 12~e!. Figures 12~f! and 12~g! iden-
tify the decaying state. A brief description of these findin
has been presented earlier.68

The time evolution of Fig. 12 shows that initially th
region above the linear dispersion curve is almost uniform
excited@Fig. 12~b!# in k space, while in real space there a
many different levels of excitations and localized excitati
speeds. By the middle of the chirp, several horizontal-l
tracks, characteristic of stationary ILMs, emerge in t
k-space representation@Fig. 12~c!#. In the initial stage after
the chirp one strong horizontal excitation is accompanied
flat, relatively weak side bands as shown in Fig. 12~d!. The
side bands are caused by the strength modulation of
locked ILM. Both the background and these side bands to
locked mode are nearly gone by Fig. 12~e!. The blue line at
the 151 kHz,k50 point, in Fig. 12~e!, is a real feature which
occurs at the driver frequency. It comes about because
center of the locked ILM is in phase with the driver, whi
the rest of the lattice is out of phase. Ink space, the locked
ILM is represented by a near uniform distribution while th
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out of phase component of the lattice is represented by a
delta function. These two contributions cancel atk50 pro-
ducing the blue spot. After the pulse is turned off, the IL
loses energy, and its frequency decreases as shown in
12~f! and 12~g!.

3. Discussion

Due to the lack of dynamic range and linearity of t
amplitude measurement only limited experimental inform
tion about ILM sizes has been obtained. Even though
sizes of ILMs shown in Figs. 8 and 9 appear broader tha
the simulation shown in Fig. 11, this may be a feature of
experiment, since the measured darkness is not proporti
to the amplitude of the cantilever due to the nonlinearity
the optical response of the cantilever motion and the ele
cal response of the CCD.

FIG. 12. ~Color! Simulated formation, locking and decay of an ILM in th
k space.~a! Energy density as a function of time. All parameters used are
same as for Fig. 11, except for the initial noise. The pulse is turned o
time50 and off at 7500 periods. Chirping starts from the top of the ba
f a , and ends at 1.027f a at time52500 periods. The solid lines show whe
the chirp ends and when the pulse is turned off. Only one ILM is trap
during the cw part of the pulse. A low frequency oscillation of 0.0056f a is
observed at the center ILM site, similar to that shown in Fig. 11~c!. The
Q;15. ~b!–~g!: Time–space Fourier transform of the displacement in s
eral time windows. The time windows for these frames are indicated by
letters b–g above frame~a!. The time development during the initia
chirped excitation are shown in frames~b! and~c! locked state in frames~d!
and~e!, and the decaying ILM state in frames~f! and~g!. Dotted curves in
frames~b!–~g! identify the linear dispersion curve for the upper band. No
the side bands in frame~d! and the blue line atk50 in frame~e!. After Ref.
68.
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The general picture from observations and simulation
that a number of moving localized modes are created
tially, but that there are only very few modes, which grow
amplitude and survive until the end of the chirp and ev
fewer survive until the end of the cw pulse. From our sim
lations, these ILMs are frequency locked to the driver. In t
way sufficient energy can be transferred to maintain th
strongly localized state and fixed vibrational amplitud
Other ILMs that fail to lock their frequency to the driver a
seen to decay. In theoretical work Ro¨ssler and Page34 have
reported a locked in-phase driven single-peaked ILM w
out-of-phase background for a realistic anharmonic poten
Their description is somewhat similar to that observed h
in Figs. 12~d! and 12~e!.

Simulations demonstrate that the mobility of localiz
modes decreases with increasing amplitude,37 and if the am-
plitude becomes large enough, the localized mode is trap
at a site.42 Although the nonlinear KG lattice does not su
port a Peierls–Nabarro potential43,44 due to the presence o
internal degrees of freedom,40,69 a pinning potential of some
sort still appears to be a valid concept.

The two trapped ILMs shown in Fig. 10 have maximu
amplitude at the short cantilever site, as do the locked IL
in the simulations shown in Fig. 11~b!. Thus, the single-
peaked mode is more stable than the double peaked mod
agreement with the early studies of stationary and mov
ILMs in antiferromagnets14 which have both anharmonic in
trasite and intersite potentials.

B. Interactions

1. Experiment

Various types of interactions have been identified
which a locked/pinned ILM participates. Figure 13 addres
the interaction of a pinned ILM with traveling ILMs. The
data, a magnified image of a section of Fig. 9~a!, is presented
in Fig. 13~b!, and a schematic representation of the tim
evolution identifying important features is given in Fig
13~a!. After the pulse is turned on at time50, the initial
excitation stage followed by modulational breakup into se
eral small amplitude localized excitations is marked as
gion ~A! in Fig. 13~a!. Compare with the data in Fig. 13~b!.
At longer time, three main excitation sequences appea
outlined in Fig. 13~a!. The chirp interval extends to 16.2 m
Within the center sequence~region B!, hopping of an ILM
across the lattice can be observed. The random hopping
tion of an otherwise pinned ILM is a consequence of
interaction with traveling ILMs and/or background excit
tions associated with the other normal modes of the ar
Markers C-1 and C-2 identify collisions between travelin
ILMs and/or other excitations and a strongly pinned ILM.
each case the traveling excitation appears to be refle
from the stationary one.

In addition to pinned ILMs, an underlying normal mod
excitation pattern is another characteristic feature. The o
shown in Fig. 9 mark three of the many regions where fi
grained, small amplitude background excitation patterns
be seen, even after the end of the pulse. These excitation
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maintained by the strong driver via nonlinear effects. T
exact mechanism of this normal mode excitation is still n
completely under experimental control.

The fact that an identical experimental starting condit
in Figs. 9~a! and 9~b! give different end results demonstrat
the importance of the underlying excitation spectrum of
array. Even when some level of impurities is present~un-
avoidable for a fabricated system!, random ILM creation is
possible if the normal mode excitation effect is larger th
the impurity effect, which is the case in these experime
Also the observation of random final conditions during t
cw driver interval is experimental evidence that the intrin
pinning effect dominates any underlying impurity effec
Hence the nonrepeatability of the pinning location stron
supports our claim that the localized excitations in the c
tilever array are intrinsic localized modes, as opposed to
purity modes.

2. Simulations

Numerical studies show behavior similar to experime
regarding the interaction of a pinned ILM with travelin
ILMs. Examination of Fig. 11~b! in the vicinity of the pinned
ILMs LS2 and LS3 in the time interval 2000–4000 period
shows the reflection of localized wavepackets. The reflec
of a moving ILM wave packet from a locked ILM come
about because of the effective rigidity of the latter. The a
plitude and frequency of a locked ILM are fixed by the fr
quency and strength of the driver. Since the amplitude of

FIG. 13. Experimental demonstration of pinning and hopping of ILM
Magnified section of part of Fig. 9~a!. Enhanced contrast to emphasize on
strongly excited modes. Even sites are the shorter cantilever sites. C
ends at 16.2 ms.~b! Experimental data: The initial excitation stage~A! is
followed by breaking up into several localized excitations, the~B! region
shows the hopping of an ILM, region~C-1! and~C-2! illustrate collision and
repulsive interaction, and region~D! identifies the final stationary locked
state. Note that long-lived strongly excited modes are only at even~short!
cantilever sites. The bright center of these ILMs is an experimental arti
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locked ILM is fixed and there is no remaining freedom, co
liding ILMs are reflected, as though from a boundary.

Most ILMs created during the initial breakup stage
the uniform mode do not lock to the driver, instead th
decompose into small amplitude traveling ILM/wavepack
which continually collide with locked ILMs. Near the middl
of the chirping stage some locked ILMs are still eas
moved by collisions with such traveling modes, since t
pinning effect is still weak. Due to the stability differenc
between the single- and double-peaked modes, ILMs rem
longer as single-peaked modes, and when the pinning e
is weak, an ILM appears to hop among its preferred sites
shown by the oval near LS1 in Fig. 11~b!. Collisions of an
unlocked ILM with small amplitude traveling ILM/wave
packets can also be seen in the oval associated with N
The hopping process is evident.

The repulsive interaction between two strong ILMs c
be seen in Fig. 11~b! to start at around 9000 periods. Afte
the pulse is turned off at 7500 periods, the two ILMs, LS
and LS2 lose energy, broaden and unpin. Once they are
bile the repulsion between them can be observed.

C. Excitation of a pinned ILM

1. Experiment

Since a locked ILM appears to be a stable, somew
rigid excitation state with a fixed amplitude, there is value
examining its time dependence at higher resolution. Fig
14~a! shows an expanded image of the pinned ILM from F
8~a!. Clearly the amplitude near the center of the ILM
oscillating with time. Since the experimental signal for t
central site, 58, is saturated, only the signal for the perime
region can be used in any analysis. Let the total signal fr
site 55 to site 61, excluding 58, be called

.

irp

t.

FIG. 14. Low frequency excitations of a pinned ILM.~a! Magnified image
of Fig. 8~a!. Only cantilever sites shown; the darker the image, the stron
the signal. There is one stable, pinned ILM centered at site 58.~b! The total
normalized signalsexp obtained from the signals at site 55 through site 61
described in the text.~c! Normalized lateral difference signaldexp, as de-
scribed in the text. The signal at site 58 is almost saturated and cann
used in the analysis.
P license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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S5 (
n555
nÞ58

61

Sn , ~6!

whereSn is the signal at thenth site. With the time average
of Eq. ~6! represented bŷS&, then the dimensionless quan
tity of interest becomes

sexp5S/^S&. ~7!

The lateral difference signal can be defined in a similar m
ner. Let

A5 (
n555

57

Sn2 (
n559

61

Sn ~8!

then

dexp5A/^S&. ~9!

Figures 14~b! and 14~c! show the measured total ampl
tude,sexp, and the lateral difference,dexp, versus time, re-
spectively. An oscillatingsexp indicates that there are low
frequency amplitude modes of the ILM. Figure 14~c! shows
an oscillation indexp, which identifies slow lateral motion o
the pinned ILM relative to its center. Both of these oscil
tions represent a slow transient response of the pinned
over the entire time that the cw driver is on. The compl
time dependence is shown in Fig. 15~a!. The relaxation time
is very long compared to the linear energy lifetime~8.75 ms!
of a cantilever.

The Fourier transform of the data in Fig. 15~a! gives the
frequencies associated with these small oscillations. Thesexp

FIG. 15. ~a! Transient response of the low frequency excitations of
pinned ILM. The complete time interval of the pinned ILM is shown.~b!
The Fourier transform spectrum of the low frequency excitations of thesexp

type. A broad spectrum centered near 0.011f a is shown by the arrow.~c!
The Fourier transform spectrum of the low frequency excitations of thedexp

type. Several peaks at low frequency region around 0.001→0.009f a indi-
cated by the arrow are observed.
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spectrum, shown in Fig. 15~b! has one broad peak centere
around 0.011f a . Thedexp spectrum displays several peaks
somewhat lower frequencies.

Another experimental property of these small oscil
tions is shown in Fig. 16 where the dependence of th
frequency versus pinning strength can be seen. This figu
a magnified image of part of Fig. 9~b!. The initial traveling
localized modes at short times are pinned by the end of
chirp. At longer times there is the fine-grained oscillati
pattern that appears on all three stationary localized mo
In some regions these patterns suggest that the cente
gravity of the pinned mode is moving side to side while
other regions it appears that the center of gravity is fixed
that the excitation takes a variable intensity character. N
that the period of this oscillation at site 162~region denoted
by the arrow! is larger than for the other two modes shown
the figure. Since the mode at 162 is losing energy and
coming less strongly pinned@see Fig. 9~b! for longer times#,
the period of this fine structure pattern increases. It is a
nature of the pinning strength.

2. Simulations

The oscillatory behavior found for the locked ILM sta
in the experiment provides the motivation to compare
results with simulations. The simulation of the energy vers
time for the three central sites of LS3 during the cw regi
shown in Fig. 11~c! illustrate that a low frequency mono
chromatic oscillation in the ILM strength is an importa
feature. A similar strong oscillatory feature in the ILM
strength has been observed for the single locked ILM at
74 shown in Fig. 12~a!. Besides this prominent oscillation
which has most of the amplitude on the center site, there
other weaker oscillatory properties of the ILM that can
identified.

A magnified density plot of the energy for an ILM
pinned at site 74 in Fig. 12~a! is presented in Fig. 17~a!. In
this time window where the cw driver has been on for so
time the energy at sites nearby the center of the locked I
oscillates with time. These time dependent data are now a
lyzed using similar notation in the same way as the exp

FIG. 16. Another experimental example of small amplitude excitation ab
a stable ILM state. Magnified section of part of Fig. 9~b!. Three ILMs are
seen and the lower two become locked. Initially all three show a fi
grained oscillation but the top ILM at around time515– 22 ms, in the region
of the arrow, loses energy, the period of the small oscillation increases
finally the ILM becomes unpinned.
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ments were analyzed with Eqs.~7! and ~9!. The two quanti-
ties of interest are~1! the total energy over a restricted regio
around the pinned mode, excluding the central site, defi
as

E5 (
n572
nÞ74

76

En , ~10!

whereEn is the energy atnth site. With the time average o
Eq. ~10! identified aŝ E&, the normalized value is

s5E/^E&. ~11!

The second quantity~2!, the lateral difference energy, is de
fined as

D5 (
n572

73

En2 (
n575

76

En , ~12!

to obtain the normalized value

d5D/^E&. ~13!

Equations~11! and~13! now can be used to characterize t
small scale oscillatory behavior shown in Fig. 17~a!. Figure
17~b! gives the oscillations in the total energy,s, the central
site, while Fig. 17~c! shows oscillations ind, indicating lat-
eral motion of the pinned ILM relative to its center.

To identify the significant spectral regions, the Four
transforms of the two curves in Figs. 17~b! and 17~c! are
taken and displayed in Fig. 18. As with the monochroma
low frequency oscillation of the central peak at 0.0056f a

FIG. 17. Simulated demonstration of low frequency excitations about
pinned locked ILM state.~a! Magnified section of Fig. 12~a! which shows
one stable ILM pinned at site574. Oscillation of energy between sites 7
and 76 can be seen.~b! Normalized total energys over sites 72–76 while
the cw mode driver is on to bring out low frequency oscillations, as
scribed in the text.~c! Normalized lateral difference energyd to bring out
other types of low frequency oscillations, as described in the text.
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discussed earlier, the characteristic frequencies for the
quantities presented here are very small compared to
highest frequency normal mode,f a . There are two broad
peaks in thes spectrum, 0→0.015f a and 0.02→0.04 f a as
shown in Fig. 18~a!. The lateral mode spectrumd also has
two broad peaks, 0.003→0.011f a and 0.02→0.04 f a as
shown in Fig. 18~b!.

3. Discussion

With regard to the stability and rigidity of the locke
ILM, several types of deformations from that stable sha
have been observed experimentally. One broad frequenc
gion of response is seen for each of the excitation typ
namely,sexp anddexp. Since the experimental signal for th
central site of such an ILM is saturated, the identities for
different kinds of modes cannot be made as yet. Using
same kind of analysis in the simulations, two broad f
quency responses are found for the two kinds of dynam
signatures. In addition a single large amplitude, low f
quency mode is found for the central cantilever of the ILM
which appears to represent oscillations in the ILM streng
Given the basic model used to describe the experimental
tem and the absence of experimental data for the cen
cantilever, the fact that the small oscillation spectra do
match in detail is perhaps not too surprising. Still a key res
has been obtained: both experiment and simulations s
that low frequency oscillations are a natural feature of lock
ILMs. The strength oscillation found in simulations indicat
that the central cantilever response of the ILM must be m
sured in experiment in order to develop a more compl
understanding of these low frequency oscillatory modes
to determine whether or not a more detailed simulat
model is warranted.

D. Trapped ILM oscillations

1. Experiment

After the finish of the cw pulse, oscillatory features c
still be detected. The excitation region around site 80 in F
8~b! shows interesting behavior as the pinned ILM deca

e

-

FIG. 18. Fourier transform spectra showing low frequency modes. The
driver time interval time52500– 7500 periods in Fig. 12~a! is used.~a! The
s spectrum shows response in two different frequency regions
→0.015f a and 0.02→0.04 f a , illustrated by the arrows.~b! The two broad
peaks in thed spectrum, 0.003→0.011f a and 0.02→0.04 f a are due to
lateral oscillations.
P license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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Figure 19 can be characterized as an oscillating wavepa
trapped by the pinned ILM. Only pixels corresponding
cantilever sites are shown in this figure in order to enha
the excitation pattern. The main feature is the pinned IL
which has evolved from a previously locked ILM at the e
of the pulse. As time passes, the amplitude of the ce
region decreases, and the ILM broadens. Additionally, s
eral running wavepackets trapped within the center reg
can be identified.

An example of another kind of trapped oscillation abo
a pinned ILM is shown in Fig. 20. Figure 20~a! presents the
magnified image of a portion of Fig. 9~a!, which shows a
stationary ILM just after the end of the pulse. The brig
center in Fig. 20~a! is an optical artifact. The change in th

FIG. 19. Trapped excitations oscillating around a pinned ILM. The data
from a section of Fig. 8~a!. Only cantilever sites are shown and the dark
the image, the stronger the signal. The pulse is turned off at time572 ms.
Decay of the pinned ILM is shown. From time592 ms, traverse pattern
due to running wave packets trapped in the ILM envelope appear as ob
lines.

FIG. 20. A trapped excitation oscillating around a pinned but decaying IL
~a! Experimental image. The ILM becomes unpinned at time;56 ms during
which time the period of the lateral oscillation increases.~b! Schematic
image. This ILM starts to oscillate laterally from time;50 ms, which is
shown as the dotted line.
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darkness of the center region with time indicates that
amplitude of the pinned mode is decreasing. Superimpo
on this pinned excitation is an oscillating mode. Its period
oscillation increases with time, as shown schematically
Fig. 20~b!.

2. Simulations

Figure 21 shows the evolution of ILM-trapped wav
packets in simulation. This is a magnified picture of a reg
of Fig. 12~a!, after the end of the pulse~dotted line!. Initially
a variable intensity mode pattern can be seen. Later, a
ning wavepacket pattern becomes prominent.

Since there is no driver, all the energy for these trapp
modes comes from the locked state before the pulse is tu
off. Part of this locked mode is converted into the trapp
running wave packets, still confined to the original spat
region of the ILM. When the amplitude in the central regio
becomes sufficiently small so that the pinning effect we
ens, and if enough energy is converted to the trapped run
modes, then the pinned mode can move. Thus, the trap
running modes and the lateral oscillation of the perimeter
the precursors to the ILM launching from the pinned loc
tion.

IV. CONCLUSIONS

Experiments have been carried out in which the creati
interaction, and relaxation of intrinsic localized modes p
duced in di-element cantilever arrays have been imaged
recorded. The experimental method permits examination
the vibration envelope of a micromechanical oscillator arr
By using this experimental setup together with a chirp
driver, the evolution of the unstable uniform mode into ILM
has been examined in some detail. Initially traveling ILM
are created but finally locked ILMs are pinned at spec
sites in the array. The ILM hopping motion and subsequ
stationary behavior can be explained by an amplitude dep
dent pinning effect plus the collision with traveling ILMs
wave packets which stems both from unlocked ILM exci
tions and normal-mode excitations created by the str
driver. A repulsive interaction between a stable, locked IL
and a moving unlocked ILM has been observed. Small a

e

ue

.

FIG. 21. Simulation of trapped modes in a decaying but pinned ILM. Thi
a magnified section of Fig. 12~a!. The pulse is turned off at time57500
periods. The decay of the pinned ILM is evident from its broadening. Af
8700 periods, running wave packets trapped in the ILM envelope appe
oblique patterns.
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plitude excitations of the pinned ILM from the stable lock
state, and trapped excitations by a pinned ILM also h
been identified. The stability and rigidity of locked ILM
depend on the existence of the cw driver plus damping.
modeling the array with a nonlinear Klein–Gordon lattic
many of the experimental observations can be identified
examined in more detail, such as the synchronization
pinning, the rigidity and dynamics of the locked ILM mod
and the repulsive interaction.

Three possible extensions to these experiments, w
would provide more dynamical information, should be me
tioned. ~1! The combination of single cantilever optics
Fig. 2 with the experimental setup of Fig. 6 to identify th
low frequency modulation of the ILM center.~2! Modulate
the laser beam close to the driver frequency to observe
displacement amplitude and phase using the same CCD.
cantilever would again modulate the laser beam, and
slow CCD would then pick up the difference frequency s
nal as long as the difference is smaller than the speed o
camera. This method could be used to observe both the
tionary and traveling locked mode.~3! Another extension
would be to use optimal control65 in this finite array to excite
the individual eigenvector of a specific ILM.
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