Metadata, citation and similar papers at core.ac.uk

Provided by Kanazawa University Repository for Academic Resources

Study of intrinsic localized vibrational modes
in micromechanical oscillator arrays

HEN Sato Masayuki, Hubbard B.E., English L.Q.,
Stevers A.J., Ilic B., Czaplewski D.A.,
Craighead H.G.

journal or Chaos
publication title

volume 1382

page range 702-715
year 2003-06-01

URL http://hdl._handle.net/2297/3822



https://core.ac.uk/display/196708936?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

CHAOS VOLUME 13, NUMBER 2 JUNE 2003

Study of intrinsic localized vibrational modes in micromechanical
oscillator arrays

M. Sato, B. E. Hubbard, L. Q. English, and A. J. Sievers
Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, New York 14853-2501

B. llic
Cornell Nanofabrication Facility and Department of Applied and Engineering Physics, Cornell University,
Ithaca, New York 14853-5403

D. A. Czaplewski and H. G. Craighead
Department of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853-3501

(Received 12 September 2002; accepted 21 November 2002; published 22 May 2003

Intrinsic localized modesILMs) have been observed in micromechanical cantilever arrays, and
their creation, locking, interaction, and relaxation dynamics in the presence of a driver have been
studied. The micromechanical array is fabricated in a 300 nm thick silicon—nitride film on a silicon
substrate, and consists of up to 248 cantilevers of two alternating lengths. To observe the ILMs in
this experimental system a line-shaped laser beam is focused on the 1D cantilever array, and the
reflected beam is captured with a fast charge coupled device camera. The array is driven near its
highest frequency mode with a piezoelectric transducer. Numerical simulations of the nonlinear
Klein—Gordon lattice have been carried out to assist with the detailed interpretation of the
experimental results. These include pinning and locking of the ILMs when the driver is on,
collisions between ILMs, low frequency excitation modes of the locked ILMs and their relaxation
behavior after the driver is turned off. @003 American Institute of Physics.
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An advance of the theory of nonlinear excitations in dis- 1. INTRODUCTION
crete lattices was the discovery that some localized vibra- . S o
tions in perfectly periodic but nonintegrable lattices The concept of nonlinear energy localization in periodic

could be stabilized by lattice discreteness. The modula- lattices characterizes a new class of dynamical excitations,
. . . . 1 .

tional instability of extended large amplitude vibrational ~ namely, intrinsic localized mod&t.Ms)." In addition to the-
modes has been proposed as a mechanism for the realiza- oretical and numerical studies involving nonlinear crystal
tion of dynamical localization on the scale of the lattice dynamicsz,‘_7 applicatici?s to other topics have applegared such
constant. Although theoretically a variety of methods to &S me:jgnenc.sgtengfsl, eltlactrot?_—psonoglszgsterg%,I reac-
excite the instability of a homogeneous vibrational mode 10N dynamics,” molecular biophysics, ™ and_ lattice-
have been proposed, these ideas have yet to be testeq@SSisted energy/charge transfer in polarizable mat®ome

: . . of these efforts devoted to examining the nonlinear dynamics
experimentally. Since the observation of nanoscale local- ) ) )
. o . . . of nanoscale lattices have made contact with other possible
ized vibrational modes still cannot be achieved there is

- . . applications for ILMs such as in frictiéh and crack
definite advantage to examining a macroscopic array, BRI S )

hich i I h so that th tire time d d propagatior?> Still other larger scale applications deal with
which 1s small eénough so that the entire ime dependence , \,¢ 'in - josephson array€?” E&M ILMs in optical
of the instability dynamics occurs in a practical measure-

. | This h iish _ ~ switches®® and in nonlinear photonic crystal wave
ment interval. This has been accomplished by using mi- guides?®3° The largest scale application has to do with lo-
cromechanical silicon technology to fabricate up to 248

) ) ) X ) i calized multibunch modes in acceleratdtdhus from con-
identical cantilevers with a 40 micron lattice constant.  yansed matter physics to arrays used in high technology, one
Optical techniques have been used to track the motion of gaag 5 new class of problems emerging, which share a com-
individual cantilevers in the presence of an inertial 1,0n denominator.

driver. In addition to experimentally characterizing the At the smallest scale, details of ILM quantizatidi?33
modulational instability and identifying the best method  are still to be explored. For a classical nonlinear oscillator
for producing intrinsic localized modes a new discovery is  array, there are a number of characteristic ILM properties,
the locking of the local mode amplitude with the probed theoretically, such as their interaction with an ac
driver frequency. Numerical simulations have been used driver!*3*~3¢their propagation®’~*°and amplitude depen-

to better understand the nature of this synchronization  dent mobility#54°=4?in a discrete lattice potenti&f;** as
effect. well as their interactions with impuriti€S;*° that still need
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to be examined experimentally. Note that strongly excited (a)
ILMs*? can be trapped anywhere in the lattice, so they also
could approach impurity mode behavior. Thus the explora-
tion of the amplitude-dependent properties of ILMs is one of
the important experimental issues at the present time.
Although some experimental studies have been reported
for large scale mechanical systems? for somewhat
smaller Josephson-junction arr&y$/>*%%and for nanoscale
lattices'®~*"®° none of these studies have examined the (b)
driven amplitude dependent trapping phenomena. The low
resonant frequency of the mechanical systems makes the
time scale too long to perform the necessary experiments.
ILMs can be seeded in Josephson-junction arrays and they
are stable so that trapped ILMs can be measured; however,
the high oscillation frequency, 1 GHz to 10 TPfzmakes it
difficult to observe their dynamical motion. Finally, observ-
ing the dynamics in nanoscale lattices has not yet been ac- overhang
complished. Recently micro-electro-mechanical system
(MEMS) silicon technology has matured sufficiently so thatFIG. 1. Characteris'tic dimensions of a qi-element type s.ilico.n nitride canti-
now it is relatively straight forward to make many identical Lf]‘.’er array(a) Top view photograph. White region to the right s the 300 nm
7_59 : . . . . ick SiN, array and overhang, while the dark gray region on the left is the
elements. While previous experimental studies of indi- fiim supported by the substrate. The parameters for this sat@lere
vidual micromechanical oscillators have focused on issues afiven in Table I.(b) 3D sketch showing one unit cell.
nonlinearity and specific applicatiofi%;®%in this paper we
describe our experimental investigation of ILM creation, re-

laxation, locking, and interaction in 1D coupled oscillator ity small arrays composed of nine identical cantilevers.
arrays of the cantilever design. _ These are samples A and B in Table I. A piezoelectric trans-
~In the next section the experimental and numerical-y,cer (PZT) with variable frequency is used to drive the
simulation procedures are described. An optical arrangementqnocantilever array to obtain the frequency dependent re-
with a 1D charge coupled devid€CD) is used to display sponse of individual cantilevers.
the motion of localized modes. Numerical simulations have = ha optical apparatus used to measure the dependence of
been made using coupled nonlinear Klein—Gordon equationg,e spectral bandwidth on the overhang is shown in Fig. 2.
to represent the oscillator array. In Sec. lll, the experimentall—he sample is attached to the PZT and situated in an evacu-
results are presented and compared with the simulations. Thgaq chamber maintained below 1 mTorr at ambient tempera-
breakup of the uniform mode excitation, the development of,.o A cantilever is chosen, and a laser beam focused on it,
localized modes, and stationary localized modes locked 19g can pe seen in the figure. A variable frequency ac voltage
the driver frequency have been observed in this time depenyyjyes the PZT which uniformly shakes the entire sample so
dent investigation. Simulations play an important role as theyy,; the cantilever array experiences a common acceleration.
are used to interpret and understand these experimental Oppg resylting deflection of the laser beam from the oscillat-
servations. The conclusions are presented in Sec. IV. ing cantilever is measured by a position sensitive photodiode
detector(PSD), with output voltage proportional to the opti-

cantilevers

Il. EXPERIMENTAL DETAILS cal spot position. For a linear response of the array the PZT
A. Physical ac voltage is typically set to 0.05 V, for examining the non-

linear shift of a resonance frequency, and hence the anhar-
1. Fabrication and linear measurements to monicity of the system, the driving voltage is0.1 V. For
characterize cantilever coupling ILM creation it is ~10 V.

To fabricate SiN cantilever arrays on a silicon substrate, Figures 3a) and 3b) show the signal versus driving fre-
the starting film is a low stress silicon nitride layer, silicon quency for test samples A and B, respectively. These two
rich to alleviate tensile stresses. After coating with a photosamples, which are identical except for different overhang
resist mask it is exposed and then etched via af@#&ma in  widths, produce different spectral bandwidths as expected.
a reactive ion chamber. Next, the silicon substrate is underciigures 3a) and 3b) clearly show that the bandwidth in-
using an anisotropic KOH etch, thus releasing the,Siéh-  creases with the length of the overhang. Ignoring for the
tilevers. A top view of the resulting structure is shown in Fig. moment any normal modes of the overhang itself, the canti-
1(a). The relative scale of the cantilevers and overhang catevers should produce nine degrees of vibrational freedom.
be seen. The overhang region provides the coupling betweerhe nine peaks observed are the resonant frequencies of
the cantilevers. A 3D rendition of one unit cell of the result- these nine normal modes. The solid and dotted curves denote
ing array is shown in Fig. (b). The physical characteristics the spectra taken of the center and edge cantilever, respec-
of the four oscillator arrays studied here are given in Table Itively, so that all modes are counted.

To examine the coupling properties of the overhang be-  With the coupling between oscillators characterized, the
tween the cantilevers, some initial tests have been carried odesign of the large oscillator arrays can now be considered. It
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TABLE I. Summary of the characteristics of the micromechanical samples.

Sample label A B C D
Type Mono-element Mono-element Di-element Di-element
Thickness(nm) 300 300 300 300
Pitch (um) 110 110 65 40
Length (um) 50 50 50/55 50/55
Width (um) 10 10 15 15
Total number 9 9 152 248
Overhang(um) 28.5 35.6 70 67
f, (kHz)? 180.43 186.2 136.1 147.0
fy, (kHz)? 133.0 143.2
f. (kHz)? 121.2 127.7
fq (kHz)? 171.43 158.4 72.7 60.8

®Resonant frequencies at the upper zone center, upper zone boundary, lower zone center, and lower zone
boundary, as shown in Fig. 7. For the mono-element type arrays, only two frequencies are specified which
correspond to the same modes in folded dispersion curve as if the samples were of the di-element type.

is known that cantilevers of this design have a hard2. Linear measurements of large di-element cantilever
nonlinearity®%? The procedure of choice for the production arrays

of ILMs is to drive a uniform mode to large amplitude so that . L
it becomes unstable and breaks up into localized excitations. The frequency dep(_endent linear response .Of individual
To achieve the large amplitude uniform mode instability forf:anulevers for a large di-element arregample D) is shown

an array with hard anharmonicity, the highest frequency uni" Fig. _5' The laser beam, shown in Fig. 2, is now fOCU.SEd on
form mode of the array needs to be drivén. a cantilever, near the center of the sample. The drive fre-

For a mono-type cantilever 1D lattice this would be theduency 1s incremented in 100 Hz steps in the lower fre-

zone-boundary excitatiorfAlthough our arrays have fixed quency region and 50 Hz stgps in the higher frequency re-
boundary conditions they are sufficiently large that terminol-9'°N- For each freq_uency point, a measurement tal_<es about
ogy consistent with periodic boundary conditions will be three ;econds._ Optic-like normal modgs can b.e activated by
used throughout the papefo excite the zone boundary the uniform driver, and can be seen |n_th|s figure. As ex-
mode shown in Fig. @ would require a special driver, one pected, there are two pass bands, with the upper band
that could producer out-of-phase amplitude on neighboring (143.2-147.0 kHg much narrower than the lower one

cantilevers. In order to use the PZT driver, which accelerategfso's_|127'd7 k';?]z [:ue to the é:oupllgg of th?tgrlver o the d
the entire lattice uniformly, two different-length cantilevers normal modes the requency dependence of the response de-

per unit cell have been constructed in arrays C and D, aSreases with increasing frequency in the lower band, and

displayed in Fig. 1. With this di-element array, the dispersionIncreases with increasing frequency in the upper band. There

curve is folded ovefsee Fig. 4b)] so that the highest fre- > at least one other band at around 235-240 kHz, which
guency vibrational mode is now at the zone center. Thid"&y be related to the vibration of the overhang. However,
optic-like mode can be excited with the PZT driven at the

appropriate frequency. Any ILMs should appear near the top

of the upper band as shown in the figure.

107 | (a) -
S 0%t _
sample chamber eseillior .% 10° k i
PZT \ 4 » ot |
sampl N
amplifier I ; p
laser P T T T T
n 10 i i
T N < 107 ]
o -3
c 10 4
| - 3 . I
ens | psD || lock-in P i
N\ amplifier 0% o, L™
160 170 180 190
FIG. 2. Experimental setup for a one-cantilever linear response measure- frequency (kHz)

ment. The cantilever array is in a vacuum chamber. A PZT is employed to

drive the sample. A beam from a He—Ne laser is focused on one cantileveEIG. 3. Linear spectra for mono-element arrays showing the dependence of
A position-sensitive photodiode detect®SD which outputs voltage pro- the bandwidth on the overhan@ Sample A with 28.5um overhang, and
portional to the laser beam position is used to pick up the deflection of théb) sample B with 35.6um overhang. Samples A and B contain nine canti-
reflected laser beam. By scanning the frequency of the oscillator and medevers; see Table | for more details. Solid and dotted curves correspond to
suring the ac voltage with the lock-in amplifier, linear spectra are obtainedthe spectrum for the center and for the edge cantilever, respectively.
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FIG. 5. Linear spectrum obtained for a large di-element cantilever array.

The laser was focused on a cantilever near the middle of sample D that
contains 248 cantilevers. Frequency is step incremented in 100 Hz steps
over the lower frequency region and in 50 Hz steps in the higher frequency
region. The lower band begins at 60.8 kHz and ends at 127.7 kHz. The

/ \ upper band begins at 143.2 kHz and ends at 147.0 kHz.

=
=

(b) o

of the excitation pattern for large amplitude ILM creation
and interaction with a driver.
It has been shown theoretically that changing the fre-
guency(chirping of a large amplitude driver is an effective
K method by which to excite a nonlinear system to large am-
FIG. 4. Schematic dispersion curvéal Mono-element cantilever array: an p“tUde so that the resultlng mStablllty prOduces ILWE}'S

ILM can be expected to appear at the zone boundary frequency for har®iNCe the resonant frequency of the nonlinear cantilevers in-
nonlinearity. (b) Di-element cantilever array: the dispersion curve for the
mono-element arraythin dotted ling is folded back and a stop band ap-

A\ 4

pears. For hard anharmonicity ILMs will be created at the zone center. (a) — vco
Pz \ e sl

sampl [y T
this region is beyond the frequency limit of the photosensitve lasar
detector and the lock-in amplifier, and it has not been mea- j \
sured accurately. pulse

To examine the response of the system to large ampli- oylindrical - S sync.

tude excitation and in particular to explore ILM dynamics, it 1D trig. §
is necessary to measure a large number of cantilevers simul- scanner/& CCD L/ computer
taneously. Figure 6 shows the experimental setup for mea- image
suring ILM dynamics versus time. In Fig(#® the He—Ne (b)
laser beam is focused with a cylindrical lens into a line along R T —
the static array. The reflected beam is then imaged onto a 1D g R
CCD camera. The PZT is driven with a voltage-controlled K
oscillator for variable or constant frequency operation as / =._
shown in the figure. The switch and the ramp generator are imaging lens< | > —
synchronized with the camera by using a pulse generator. \ § oca ,p ane
Images are captured by a computer, which is triggered by the o
pulse generator. The speed of the camera, about 18 kHz, is mirror \ = > D
insufficient to monitor the sinusoidal motion of the cantile- ~:1D CCD

vers. However, as the V|brgt|on Of_ a cantilever grows, theFIG. 6. (a) Experimental setup for the ILM measurements. A beam from a
reflected laser beam increasingly misses the 1D CCD camefg&—Ne laser is focused along the array by using a cylindrical lens. The
as illustrated in Fig. @), and the image of that particular elliptical spot from the cylindrical lens is positioned so that the short axis of
cantilever becomes darker. the ellipse lies along the length of the cantilever, while the longer axis

Th . lat | turi d of th encompasses many cantilevers. A 1D CCD is used to detect the beam re-
€ maximum lateéral capturing speed or theé camera Caly toq from the cantilevers. A voltage controlled oscillateco), switch

be defined as the array pitch divided by the camera periodsw) and amplifier are used to drive the PZT. The frequency of the vco is
i.e., 18x 10° al/s, wherea is the cantilever pitch_ This is controlled by a ramp generator. A pulse generator, which controls the switch,
sufficient to observe the fastest traveling ILMs. which moveand the ramp generator are synchronized to the camera. A scanner attached
! . to the mirror is driven by an oscillatainot shown in this figure Two-
at speeds of up to 2410° a/s. It should be empha5|zed that dimensional images can be captured by synchronized scanning of the mirror
ILMs excited near the top of the band are far slower than thisind the camera. This feature is used to observe the amplitude pattern of
maximum speed. Consequently, the capturing speed of tf@ationary ILMs.(b) Schematic showing the re_Iation bgtween cantilever_am-
camera is fast enough to observe both the lateral motion itude and detector response. At large vibration amplitudes the deflection of
L. . . . e laser beam from the cantilever changes and the image at the CCD site
an ILM and its time development. This relatively straightfor- becomes darker. In this picture the elements of the 1D CCD camera are

ward observational method permits a systematic monitorin@rranged horizontally.
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creases with amplitude, it is necessary to increase the driver The masses are estimated from the density of silicon
frequency with time to track the highest resonant frequencynitride and the size of the cantilevers. The lifetimés ex-
In addition, since the oscillators are necessarily damped, c\perimentally determined. In order to determine the spring
driving is required for steady state observation of the resulteonstantk,,, k,,, andk, experimentally, four frequencies
ant ILMs. have been measured: the maximum and minimum frequen-
A scanner attached behind the mirror in front of the CCDcies for the upper and for the lower bands. These points on a
as shown in Fig. @ can be used to obtain a two- dispersion curve are identified in Table I.
dimensional image of the cantilevers. This oscillator driven By choosing the top three experimental frequencies for
scanner is synchronized with the camera. During the timéhe fit to the small oscillation case, a good approximation to
development measurement of ILMs, which is the main focughe upper branch of the dispersion curve can be obtained.
of most experiments, this mirror is mechanically fixed to The lowest experimental frequen@pwer branch, zone cen-
observe individual cantilever motion. ter) is not reproduced within our model. One way to obtain
different bandwidths is to introduce longer-range interac-
tions, which would stem from the dynamical properties of
the overhang. To reproduce the entire experimental disper-
sion curve takes up to sixth nearest-neighbor interactions.
The lowest frequency of a simple cantilever with one Since ILMs are created at the top of the upper branch, the

B. Numerical

end fixed is given bY? exact shape of the lower branch is not expected to play a
2_(3_52)2 El| (3.52?2 Et3 B K . ngJrcg?rInLolzisﬁsthls long-range interaction is not included in
T w2 m e @ '

With the harmonic spring constants of the model chosen,
HereE is the Young’s modulus, the second moment-of-aredts linear response can be determined and the dispersion
| =t3w/12, wheret is the thickness of the beam, andis its ~ curve obtained. The system is driven with a uniform distri-
width (see Table | for these valugd. is the length of the bution of acceleration noise, withw ranging between
beam, and is the density of the material. +10"2 m/s? (compared to ther ~10"* m/s’* that will be
Our experimental system consists of an array of cantileneeded for ILM production The beam displacements of the
ver beams that are coupled together by the overhang regigntire array are recorded as a function of time. A Fourier
between them. Since the two cantilevers in a unit cell havdransform(FT) of a single oscillator displacement as a func-
different lengths, then, according to Ed), both their linear  tion of time yields the frequencies that the particular cantile-
spring constants and masses will be different. As a first apver experiences during the given time interval. Likewise, a
proximation, the dynamics of the overhang will be ignored,FT (taken over a finite spatial interyadf the displacements
so that it acts only as a massless coupler between cantileve®. all the cantilevers at any instant of time will yield the
For small oscillations an individual cantilever in the array is€excited wave vector modes that are participating in the col-
assumed to obey Eq1) but with an effective spring and lective motion. Performing FTs in both space and time
mass, in order to include some contribution of the overhangechanges the real-space datat} representation to reciprocal
For the large amplitude problem, each cantilever is then repspace {,k). Such a two-dimensional FT of the beam dis-
resented by a mass and an onsite potential which has bofiacement data is shown in Fig(aJ. The time interval is
harmonic(quadrati¢ and anharmoni¢hard quartig terms.  equivalent to 1000 periods of oscillation. A one-dimensional
The coupling between cantilevers is assumed to be harmonlcT for the oscillations of a single cantilever from the middle
for all cantilever amplitudes. Such a di-element lattice modepf the sample is shown in Fig(@3). In both of these frames

obeys the nonlinear Klein—-Gordon equatfdmamely, it is clear that the simulated bandwidth is almost the same for
42 d the acoustic and optic branches.

My 5 Xai + Ma —Xai+ KoaXai+ KaaXs, The nonlinear onsite quartic spring constant in EG3.
dt 7 dt and (3) is determined in the following mannefl) k,, and

7 ks, are set equal to each other af®) the value is deter-

+ K (2X5;— Xpi— Xpi—1) = My, ! . ) .
1(2Xa = Xpi~ Xpi—1) = Mact mined so that the upper-branch frequency in a simulation

d? p d 3 shows the same frequency shift as for experiment at a power
My g2 Xbi t Gy Xbi T KaoXbi+ KapXp; level below the threshold for the uniform mode instability.
This power still needs to be sufficiently high so that the

+ Ky (2Xpi = Xai+ 1~ Xai) = Mpa, (3 nonlinear frequency shift of the resonant frequency can be

t determined accurately. A complete list of simulation param-

where the subscripta and b correspond to the differen -
eter values can be found in Table II.

length cantileversx,; andx,; are the displacements of the
cantilever endsm, and m,, are their masses; is a linear
(energy lifetime, k,, andks, are the onsite harmonic spring !l RESULTS AND DISCUSSION

consta_nts,k4a and k4p are onsite quartic spring constants, 5 Trapping and locking

andk, is the harmonic coupling constant. The PZT does not )

apply a force directly to the cantilevers, but causes acceleral: Experiment

tion and deceleration of the cantilever’s inertial frame with Two sequential time-dependent response measurements
magnitudec. of the 152-cantilever arragsample @ for a large amplitude
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FIG. 7. Simulated linear response for a di-element cantilever array. The
physical parameters of the di-element array are given in Table II. Applying
low noise amounting ter=0+10 3 m/<, the displacements are measured
as a function of time(a) The time-space Fourier transform of the shorter
cantilever displacements gives the excitation patterk gpace only where
normal modes exist. The three experimental frequencies, 147.0, 143.2, and
127.7 kHz at the top and bottom of the upper band, and top of the lower 0
band of sample D are reproduced. The bottom of the lower band frequency
(123.3 kH2 in simulation is much higher than the experimental ¢6@.8

kHz). (b) The time Fourier spectrum of a single cantilever displacementFIG. 8. Cantilever excitation versus time showing the production, interac-
pattern. tion and decay of ILMs. These experimental results for sample C are taken

with the 1D CCD camera. Framéa) and (b) have identical starting condi-
tions. The PZT frequency is chirped froly=136.3 kHz to 1.01%,. The

driver are shown in Fig. 8. The cantilever positions can be"P_ends at 14.2 mgdotted ling. The dark regions identify localized
excitations. Highlighted region corresponds to the time where the pulse is

identified by the white lines to the left of the tim@® marker.  on some localized excitations become trapped during this cw phase. Pulse
The high-power, PZT driver- 20 V) is chirped from the top duration is 72.7 ms.
of the optic bandf,, to 1.011f, between time-0 and 14.2

ms as indicated by the dotted vertical line in the figure. The ) i i i
CCD camera images a portion of the sample, which is 100 Figure 9 shows cantilever responses versus time with the

cantilevers in this case. The dark tracks versus time identif{}!9n-Power, chirped driver for the 248-element array, sample
large amplitude localized excitations. Although the starting® I Table |. Before the pulse is turned on (tim8), each
conditions are the same for the experiments shown in FigsIP€ COIresponds to a stationary cantilever. The PZT voltage
8(a) and 8b) different results are observed as would be ex-'S 2gain about 20 V. The viewing size is now 230 cantilevers.
pected for a process initiated by random noise. Note thafi9ures % and 9b) show different results for identical
some moving ILMs form during the chirp phase. At |0ngerstart|ng conditions. Here, .the driver frequency is chirped
times between 14.2 ms and 72.7 ms, with a cw driver som&©m 0-9986f, to 1.016, . Figure 9c) shows the results for
ILMs continue to receive energy while the others die out. At Slightly different starting condition, where the driver fre-
some point the large amplitude ILMs become trapped at JUency is chirped from 0.9986 to 1.034f, . As long as the
lattice site. This can be seen around lattice site 60 in Fig. 8 ChirPing starts near the top of the band and ends 2-3%

and at two locations, namely, 38 and 80 in Figh)8 After higher thanf,, the different chirping schemes give similar
the driver is turned off at time 72.7 ms the trapped ILMs results. The pulse duration is 48.9 ms and the chirp time is
decay. 16.2 ms(dotted ling. The pulse interval is highlighted in

these figures. At early times ILMs are observed to form,
move, oscillate and hop until the chirp ends; then a few
ILMs continue to pick up energy and become trapped at
lattice sites. Using an optical probe coupled to a spectrum

20

40
time (ms)

80 120

TABLE II. List of parameters used in the simulations.

Parameters Cantilever Cantileverb . .
analyzer to monitor the center of such a pinned ILM con-
Mass 5.46¢107 kg 4.96<10 " kg firms that the fixed mode is frequency-locked to the driver.
Damping constanty 8.75 ms 8.75 ms After the pulse, these stationary ILMs lose energy, become
Harmonic.k; 0303 kgf$ 0353 kg/$ broader, break free from the trapping site, and sometimes
Anharmonic,k, 5.0x 10° kg/s* n? 5.0 10° kg/s m? - ' : pping >,
Harmonic intersitek, 0.0241 kg/3 0.0241 kgi2 oscillate about it. Note that these oscillations range over

10-20 lattice sites and hence they have a much larger am-
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time (periods)

0 5000 10000 15000
| 1 |
200
150 ]
Q
v
100
50
0
T e |
200 [e—————lattice -
150 FIG. 10. Two-dimensional image of the amplitude pattern for sample D
% 100 showing two trapped ILMs. Note that each ILM is centered on a short
cantilever site. The two stationary ILM patterns are obtained by scanning the
50 mirror in front of the CCD shown in Fig. 6. A scanner, synchronized with
the CCD, is used to vibrate the mirror. The cantilevers and the overhang
0 region are illuminated by the laser and the small amplitude ones appear
bright in this image. Strongly vibrating cantilevers appear darker. The shape
200 of each pinned ILM is single peaked.
150
180 2. Simulations
50 To understand in more detail a number of the features
0 ) = observed in Figs. 8 and 9 it is necessary to turn to numerical
0 40 80 120 simulations, which have parameters very similar to those in
time (ms) the experiment. Figure 11 summarizes some of the results of

6. 0. Canil o e showing h duct id such an investigation. The chirping scheme used in this
. 9. Cantilever excitation versus time s 0W|ngt e pro uction an ecay.; H H H H e TAitiall

of ILMs. Experimental results for sample D taken with the 1D CCD (:amera.)él_mulatlon is shown in Fig. 1&). The, system Is |n|t|aI|.zed
Frames(a) and (b) have identical starting conditions. The frequency of the With & small amount of rar!dom noise. The system is then
PZT is chirped from 0.9986, to 1.016f, . For frame(c) the chirp extends ~ allowed to settle for 500 periods of the resonant frequency, at
from 0.9986f , to 1.034f,. Chirp ends at 16.2 malotted ling. Dark pat-  which point the driver is turned on (timxe0). The driver

terns identify localized excitations. The pulse is on over the highlighted tim T
interval and its duration is 48.9 ms. Ovals indicate some of the many regior?grequency starts at the top of the upper band, then continu

where fairly uniform background excitations can be seen. The amplitude o_pus'y increases ”ne_arly to frequency _1.0’%70ver a time
this normal mode noise is larger {8) and(b) than it is in(c). After Ref. 68.  interval of 2500 periods. When the uniform mode becomes

highly excited the noise perturbation triggers the modula-
tional instability. In the cw mode the fixed driver frequency
is 1.027f, until the driver is turned off at 7500 periods.

plitude than the one unit cell oscillations described in Refs Figure 11b) shows a density-plot of the energy of each

: . attice site as a function of time for a typical simulation re-

E?tigdsigégg mﬁl\i/!;%cl)hgﬂST??:Zr?gﬁlec)jdlier?:r:)%%%:re%n:ozt_hésuIt' The energy of a particular lattice site in the di-element

! : ' . ) eélrray, at a given instant of time, is
maximum possible speed of an optic branch linear mode
wave packet of about 13 lattice sites per millisecond. The 1 2
oval identifiers in Figs. @) and 9c) indicate regions where Eaa: Emé\(axai
fairly uniform background excitations can be seen. Such pat-
terns exist even after the pulse. The amplitude of such exci-
tations in Fig. %) is less than in frame$a) and (b) and
probably accounts for the absence of any motion of the
trapped ILM after the pulse is turned off. A brief description Ep =
of some of these results has already been gifen. '

Close inspection of the large-amplitude trapped ILMs in 1 1
Fig. 9 reveals an experimental artifact in the central region of + Zk'(xbi _Xai+l)2+ Zk'(xbi —xai)z,
the ILM image. The experiments indicate a smaller ampli-
tude at the center of the mode than actually exists there. &vherei indexes the unit cell number, and the actual lattice
systematic investigation shows this feature is false. By takingite number is given by=2i—1 andj=2i for the long
a 2D image of two trapped ILMs, which are shown in Fig. (cantilevera) and shor{cantileverb) sites, respectively. The
10, it is possible to identify the single peaked nature of theenergy consists of the kinetic energy and onsite potential
excitation. The two arrows in the figure identify the center ofterms, as well as the potential energy stored in the coupling
the two localized excitations. In each case the large amplisprings. The parameter set used here for sample D is given in
tude peak is centered on the short cantilever. Table Il. The total number of cantilevers is 250 with fixed-

1 5 1 4
+ E kZaXai + Z k4aXai

1 2 1 2
+Zkl(xai_xbi) +Zkl(xai_xbi71) ’

1 d 2 ) 1 A (4)
E my a + E kZbXbi + Z k4bxbi

Xp,
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time (periods) Figure 11c) shows the average energy for a particular
= 0 2000 4000 6000 8000 locked ILM (LS3) as a function of time as determined by
z 152—; "1 puse ' @ i
> y g !
5 | l Eis= 2 F, (5)
3 148f ! - ‘ . j=43
2 Ve . top ofthe upper band
-)f/h°pp‘”9 () where theE; are defined by Eq(4). The low frequency
200 : . Q oscillation of the average mode energy at frequency
- 0.0056f , decays slowly over a long time interval. It requires
Ls2 . . . . .
2 150 b o the presence of the driver and disappears immediately after
§ repukslon the driver is turned off. The figure shows that during the
£ 100 j ] chirp, the energy of this mode increases with time to an
e amplitude value compatible with the fixed synchronization
A A frequency of the driver. Thus, the amplitude of such a locked
ILM is rigidly connected to the driver frequency.
To explore the development of locked ILMs from an-
%A B © A other view, the double Fourier transform of the cantilever
s2 [ energy of LS3 ] motion over a specific time interval is taken. The resulting
&2 - time development of excitations both in real space ankl in
g8 [ ' . . . p ] space is shown in Fig. 12. The energy density as a function
® 0 10 20 30 40 50 60 of time for this particular simulation is presented in Fig.
time (ms) 12(a). The same parameters are used as those for Fig. 11;

fG 11 © er simulat £ ILM oroduction. d ) 4 only the initial noise is different. The frequency chirp,(
. 11. Computer simulations o production, dynamics, and decay. ; ; ; P
Cantilever parameters are listed in Table(#). Driver frequency as a func- —1.027f,) lasts for 2500 periodeft solid vertical line in

tion of time for this simulation. Pulse is on from 0 to 7500 periods. Driver (@]. At long times only one locked ILM appears. An exami-
frequency starts at, , increases up to 1.047 linearly until 2500 periods,  nation of the energy versus time for the center cantilever and
and then, remains at that frequency. The magnitude of the acceleration igyo neighboring sites shows a monochromatic strength os-
kept constanta=1.0<10" m/s’. (b) A density plot of the energy versus ciyavion frequency at 0.0058, the same as was described
time. Dark regions identify localized modes. During the time that the cw . . .
driver is on three locked stationary ILM&S1, LS2, LS3 are found. NL1 ~ @bove for LS3. The pulse is turned off at tim&500 periods
identifies an ILM, which is not locked to the driver. Hopping motion of [right solid vertical line in(a)]. By time—space Fourier trans-
ILMs can be seen in the oval markets) Energy as a function of time for  forming the displacement over the different time intervals

the ILM labeled LS3 averaged over three lattice sites. The characteristi e . . .
oscillation frequency of the slowly decaying feature is 0.0056vith a Q fdentified by the dotted lines, ¢, d, e, 1, andg, in Fig.

~13. Horizontal arrow shows a linear energy lifetii®75 ms used in this 12(3-)_' the (,k) excitation p|0t§ shown in_ frame(b)—.(g) are
simulation. obtained. The dotted curves in these six frames identify the

linear dispersion curve of the optic branch for the di-element

cantilever array. Figures 12 and 12Zc) show time cuts dur-
end boundary conditions. As expected there is no qualitativeng the chirp. The position of the nonlinear dispersion curve
difference between simulations with the periodic- and fixed-and the interference between different ILMs can be seen in
end boundary conditions except near the boundaries. Fig. 12c). The early and late stages of the single locked state

During the chirping phase of the driver many moving appear in Figs. 1@2) and 12e). Figures 1%) and 12g) iden-

ILMs appear which then coalesce into several trapped ILMstify the decaying state. A brief description of these findings
Most of the ILMs appear to die out after only a few hundredhas been presented earfir.
periods of oscillation. In this particular simulation, four The time evolution of Fig. 12 shows that initially the
modes can be identified that persist much longer than theegion above the linear dispersion curve is almost uniformly
others. These are identified in Fig.(bhlas LS1, LS2, LS3, excited[Fig. 12b)] in k space, while in real space there are
and NL1. The first three of these are trapped at particulamany different levels of excitations and localized excitation
lattice sites and in addition, have their frequency locked tcspeeds. By the middle of the chirp, several horizontal-line
that of the driver. Because of this synchronization with thetracks, characteristic of stationary ILMs, emerge in the
driver there is a continual transfer of energy to the ILMs,k-space representatigfrig. 12c)]. In the initial stage after
which keeps them pinned at the particular lattice sites anthe chirp one strong horizontal excitation is accompanied by
prevents them from decaying. The fourth large-amplitudefat, relatively weak side bands as shown in Fig(d2The
ILM, NL1, fails to frequency lock to the driver in the cw side bands are caused by the strength modulation of the
region, and hence ultimately decays after a time lapse dbcked ILM. Both the background and these side bands to the
~2600 periods. Once the driver has been turned off, thédocked mode are nearly gone by Fig.(&2 The blue line at
three locked states decay. Mode LS3 is seen to decay peadbe 151 kHzk=0 point, in Fig. 12e), is a real feature which
fully, maintaining its symmetry without further motion in the occurs at the driver frequency. It comes about because the
lattice. In contrast, LS1 and LS2 are close enough togetharenter of the locked ILM is in phase with the driver, while
so that once the decay begins and they become unpinnetihe rest of the lattice is out of phase. krnspace, the locked
they repel one another, and move in the lattice. ILM is represented by a near uniform distribution while the
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d a fg The general picture from observations and simulations is
o JEEET that a number of moving localized modes are created ini-
tially, but that there are only very few modes, which grow in
amplitude and survive until the end of the chirp and even
fewer survive until the end of the cw pulse. From our simu-
: A . £ lations, these ILMs are frequency locked to the driver. In this
2000 4000 6000 8000 way sufficient energy can be transferred to maintain their
strongly localized state and fixed vibrational amplitude.
Other ILMs that fail to lock their frequency to the driver are
seen to decay. In theoretical work §&ter and Pagé have
reported a locked in-phase driven single-peaked ILM with
out-of-phase background for a realistic anharmonic potential.
Their description is somewhat similar to that observed here
in Figs. 12d) and 12e).

Simulations demonstrate that the mobility of localized
modes decreases with increasing amplittidend if the am-
plitude becomes large enough, the localized mode is trapped
at a site®? Although the nonlinear KG lattice does not sup-
port a Peierls—Nabarro potenfiaf* due to the presence of
internal degrees of freedofft®® a pinning potential of some
sort still appears to be a valid concept.

The two trapped ILMs shown in Fig. 10 have maximum
amplitude at the short cantilever site, as do the locked ILMs
in the simulations shown in Fig. 14). Thus, the single-
peaked mode is more stable than the double peaked mode, in
agreement with the early studies of stationary and moving

) _ _ _ ILMs in antiferromagnet$ which have both anharmonic in-
FIG. 12. (Color) Simulated formation, locking and decay of an ILM in the trasite and intersite potentials.

k space(a) Energy density as a function of time. All parameters used are the
same as for Fig. 11, except for the initial noise. The pulse is turned on at
time=0 and off at 7500 periods. Chirping starts from the top of the band
f,, and ends at 1.02f7, at time=2500 periods. The solid lines show when B. Interactions
the chirp ends and when the pulse is turned off. Only one ILM is trapped
during the cw part of the pulse. A low frequency oscillation of 0.0056

observed at the center ILM site, similar to that shown in FigclLliThe

Q~15. (b)—(g): Time—space Fourier transform of the displacement in sev- Various types of interactions have been identified in

ﬁ;:('e:'smbe_"gv'n:t?gfe' L:lem"er?:).W}%io‘;‘{;feordtsfesii;ﬁms ;L:‘:‘ir:gd'tﬁeﬁiiziith?/vh|c_h alocked/pinned ILM participates. Figure 13 addresses
chirped excitation are shown in framés and(c) locked state in frame&) the interaction of a pinned ILM with traveling ILMs. The
and(e), and the decaying ILM state in framé® and(g). Dotted curves in  data, a magnified image of a section of Fi¢p)9is presented
framc_es(b)—(g) io_Ientify the linear dispers_ion curve_for the upper band. Note j Fig. 13b), and a schematic representation of the time
ghge. side bands in fram@l) and the blue line a=0 in frame(e). After Ref. evolution identifying important features is given in Fig.
13(a). After the pulse is turned on at timed, the initial
excitation stage followed by modulational breakup into sev-
eral small amplitude localized excitations is marked as re-

Gfon (A) in Fig. 13a). Compare with the data in Fig. (3.

site

time (penods)

frequency (kHz)

1. Experiment

out of phase component of the lattice is represented by a ne

deltg function. These two contrlbutlon_s cancekat0 pro- At longer time, three main excitation sequences appear as
ducing the blue Spot. After the pulse is turned off, the. ”‘M outlined in Fig. 18a). The chirp interval extends to 16.2 ms.
loses energy, and its frequency decreases as shown in FidRsithin the center sequendeegion B, hopping of an ILM
12(f) and 12g). across the lattice can be observed. The random hopping mo-
tion of an otherwise pinned ILM is a consequence of its
interaction with traveling ILMs and/or background excita-
tions associated with the other normal modes of the array.
Due to the lack of dynamic range and linearity of the Markers C-1 and C-2 identify collisions between traveling-
amplitude measurement only limited experimental informa-1LMs and/or other excitations and a strongly pinned ILM. In
tion about ILM sizes has been obtained. Even though theach case the traveling excitation appears to be reflected
sizes of ILMs shown in Figs. 8 and 9 appear broader than ifirom the stationary one.
the simulation shown in Fig. 11, this may be a feature of the  In addition to pinned ILMs, an underlying normal mode
experiment, since the measured darkness is not proportionakcitation pattern is another characteristic feature. The ovals
to the amplitude of the cantilever due to the nonlinearity inshown in Fig. 9 mark three of the many regions where fine
the optical response of the cantilever motion and the electrigrained, small amplitude background excitation patterns can
cal response of the CCD. be seen, even after the end of the pulse. These excitations are

3. Discussion
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65- @

site

site

site

-0.2¢ | 1 1 I | 1 [
50 52 54 56 58 60 62 64
time (ms)

FIG. 14. Low frequency excitations of a pinned ILK&) Magnified image

of Fig. 8@). Only cantilever sites shown; the darker the image, the stronger

the signal. There is one stable, pinned ILM centered at sité38he total

- . . o . normalized signadr,, obtained from the signals at site 55 through site 61 as
G. 13. Experimental demonstration of pinning and hopping of ILMS. yogcribed in the textc) Normalized lateral difference signal.,,, as de-

Magnified se_ction of part of Fig'@' Enhanced contrast to gmphas_ize only_ scribed in the text. The signal at site 58 is almost saturated and cannot be
strongly excited modes. Even sites are the shorter cantilever sites. Ch'rBsed in the analysis.

ends at 16.2 mgb) Experimental data: The initial excitation stag®) is

followed by breaking up into several localized excitations, tBg region

shows the hopping of an ILM, regidi€-1) and(C-2) illustrate collision and o . o

repulsive interaction, and regiof) identifies the final stationary locked locked ILM is fixed and there is no remaining freedom, col-

state. Note that long-lived strongly excited modes are only at ¢sieor) liding ILMs are reflected, as though from a boundary.
cantilever sites. The bright center of these ILMs is an experimental artifact. ~ Ngst [LMs created during the initial breakup stage of
the uniform mode do not lock to the driver, instead they
decompose into small amplitude traveling ILM/wavepackets
maintained by the strong driver via nonlinear effects. Thewhich continually collide with locked ILMs. Near the middle
exact mechanism of this normal mode excitation is still notof the chirping stage some locked ILMs are still easily
completely under experimental control. moved by collisions with such traveling modes, since the
The fact that an identical experimental starting conditionpinning effect is still weak. Due to the stability difference
in Figs. 9a) and 9b) give different end results demonstrates petween the single- and double-peaked modes, ILMs remain
the importance of the Underlying excitation SpeCtrUm of tthnger as Sing|e-peaked modesl and when the pinning effect
array. Even when some level of impurities is pres@m- s weak, an ILM appears to hop among its preferred sites as
avoidable for a fabricated syst¢ntandom ILM creation is  shown by the oval near LS1 in Fig. M. Collisions of an
possible if the normal mode excitation effect is larger thanunlocked ILM with small amplitude traveling ILM/wave
the impurity effect, which is the case in these experimentspackets can also be seen in the oval associated with NL1.
Also the observation of random final conditions during theThe hopping process is evident.
cw driver interval is experimental evidence that the intrinsic  The repulsive interaction between two strong ILMs can
pinning effect dominates any underlying impurity effects.pe seen in Fig. 1b) to start at around 9000 periods. After
Hence the nonrepeatability of the pinning location stronglythe pulse is turned off at 7500 periods, the two ILMs, LS1,
Supports our claim that the localized excitations in the cangnd LS2 lose energy, broaden and unpin_ Once they are mo-
tilever array are intrinsic localized modes, as opposed to impjle the repulsion between them can be observed.
purity modes.

C. Excitation of a pinned ILM
2. Simulations 1. Experiment

Numerical studies show behavior similar to experiment  Since a locked ILM appears to be a stable, somewhat
regarding the interaction of a pinned ILM with traveling rigid excitation state with a fixed amplitude, there is value in
ILMs. Examination of Fig. 1(b) in the vicinity of the pinned examining its time dependence at higher resolution. Figure
ILMs LS2 and LS3 in the time interval 2000—4000 periods, 14(a) shows an expanded image of the pinned ILM from Fig.
shows the reflection of localized wavepackets. The reflectio(a). Clearly the amplitude near the center of the ILM is
of a moving ILM wave packet from a locked ILM comes oscillating with time. Since the experimental signal for the
about because of the effective rigidity of the latter. The am-entral site, 58, is saturated, only the signal for the perimeter
plitude and frequency of a locked ILM are fixed by the fre- region can be used in any analysis. Let the total signal from
guency and strength of the driver. Since the amplitude of theite 55 to site 61, excluding 58, be called
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1.2 T T T
180
0.8
Y 160
@ r )
0.0 3
® 140
-0.4
20 30 40 50 60 70
time (ms) 120
0 5 10 15 20
= time (ms)
=}
g FIG. 16. Another experimental example of small amplitude excitation about
= a stable ILM state. Magnified section of part of Figbp Three ILMs are
% seen and the lower two become locked. Initially all three show a fine-
‘» grained oscillation but the top ILM at around timé5—22 ms, in the region
of the arrow, loses energy, the period of the small oscillation increases and
finally the ILM becomes unpinned.
0 1
0 1 2 3x107

frequency (f,) spectrum, shown in Fig. 1B) has one broad peak centered
_ o around 0.01%,. The ¢, spectrum displays several peaks at
FIG. 15. (a) Transient response of the low frequency excitations of the

pinned ILM. The complete time interval of the pinned ILM is showvii) somewhat lower fr_equenmes. .

The Fourier transform spectrum of the low frequency excitations o&the ) Arl‘Other eXp_e”memal property of these small OSC|IIa'_

type. A broad spectrum centered near 0.011s shown by the arrow(c) tions is shown in Fig. 16 where the dependence of their

The Fourier transform spectrum of the low frequency excitations obthe  frequency versus pinning strength can be seen. This figure is

type. Several peaks at low frequency region around 6:00009f, indi- a magnified image of part of Fig.(lﬁ)). The initial traveling

cated by the arrow are observed. localized modes at short times are pinned by the end of the
chirp. At longer times there is the fine-grained oscillation
pattern that appears on all three stationary localized modes.

61 In some regions these patterns suggest that the center of
S= E S,, (6) gravity of the pinned mode is moving side to side while in
N other regions it appears that the center of gravity is fixed and

that the excitation takes a variable intensity character. Note
that the period of this oscillation at site 162gion denoted

by the arrow is larger than for the other two modes shown in
the figure. Since the mode at 162 is losing energy and be-
Texp=SI(S). 7) coming less strongly pinndaee Fig. &) for longer times,

) ) ] ) o the period of this fine structure pattern increases. It is a sig-
The lateral difference signal can be defined in a similar mang 5+ re of the pinning strength.

whereS, is the signal at thath site. With the time average
of Eq. (6) represented byS), then the dimensionless quan-
tity of interest becomes

ner. Let
57 61 2. Simulations
A=n§55 Sn_n;Q S (8) The oscillatory behavior found for the locked ILM state
in the experiment provides the motivation to compare the
then results with simulations. The simulation of the energy versus
time for the three central sites of LS3 during the cw region
Bexp=AI(S). 9) g g

shown in Fig. 11c) illustrate that a low frequency mono-

Figures 14b) and 14c) show the measured total ampli- chromatic oscillation in the ILM strength is an important
tude, o¢,p, and the lateral differencele,,, versus time, re- feature. A similar strong oscillatory feature in the ILM
spectively. An oscillatingo,, indicates that there are low strength has been observed for the single locked ILM at site
frequency amplitude modes of the ILM. Figure(@d4shows 74 shown in Fig. 1@). Besides this prominent oscillation,
an oscillation inde,, Which identifies slow lateral motion of which has most of the amplitude on the center site, there are
the pinned ILM relative to its center. Both of these oscilla- other weaker oscillatory properties of the ILM that can be
tions represent a slow transient response of the pinned ILNHentified.
over the entire time that the cw driver is on. The complete A magnified density plot of the energy for an ILM
time dependence is shown in Fig.(&b The relaxation time pinned at site 74 in Fig. 13) is presented in Fig. 13@). In
is very long compared to the linear energy lifetit®75 mg  this time window where the cw driver has been on for some
of a cantilever. time the energy at sites nearby the center of the locked ILM

The Fourier transform of the data in Fig.(&bgives the  oscillates with time. These time dependent data are now ana-
frequencies associated with these small oscillations.alhg  lyzed using similar notation in the same way as the experi-
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1.2
b 0 I 1 I .
1.0 0 1 2 3 4 5 6x10°
L frequency (f,)
0.8 FIG. 18. Fourier transform spectra showing low frequency modes. The cw
0.2 driver time interval time= 2500— 7500 periods in Fig. 18 is used.(a) The
0.1 o spectrum shows response in two different frequency regions, 0
: —0.015f, and 0.02—0.04f,, illustrated by the arrowsb) The two broad
w 0.0 peaks in thed spectrum, 0.003-0.011f, and 0.02-0.04f, are due to
0.1 lateral oscillations.

02 1 1 | | 1
4600 4700 4800 4900 discussed earlier, the characteristic frequencies for the two
quantities presented here are very small compared to the
highest frequency normal modé,. There are two broad
FIG. 17. Simulated demonstration of low frequency excitations about thgpeaks in thes spectrum, 6-0.015f, and 0.02-0.04f, as
pinned locked ILM state(a) Magnified section of Fig. 1@&) which shows  shown in Fig. 183). The lateral mode spectruf also has

one stable ILM pinned at site74. Oscillation of energy between sites 72 two broad peaks, 0.0630.011f, and 0.02-0.04f, as
and 76 can be seefth) Normalized total energyr over sites 72—76 while . . o ’ a ’ ’ a

the cw mode driver is on to bring out low frequency oscillations, as de—ShOWn in Fig. 180).
scribed in the text(c) Normalized lateral difference energyto bring out

other types of low frequency oscillations, as described in the text. 3. Discussion

time (periods)

With regard to the stability and rigidity of the locked
ILM, several types of deformations from that stable shape
have been observed experimentally. One broad frequency re-
ion of response is seen for each of the excitation types,
amely, oy, and Je,,. Since the experimental signal for the

ments were analyzed with EqgS) and(9). The two quanti-
ties of interest arél) the total energy over a restricted region
around the pinned mode, excluding the central site, defineﬁ

as 76 central site of such an ILM is saturated, the identities for the
_ different kinds of modes cannot be made as yet. Using the
E= D E,, (10 ; e . ;

n=72 same kind of analysis in the simulations, two broad fre-
”*_74 _ _ _ quency responses are found for the two kinds of dynamical
whereE, is the energy anth site. With the time average of signatures. In addition a single large amplitude, low fre-
Eq. (10) identified as(E), the normalized value is quency mode is found for the central cantilever of the ILM,
o=EI(E). (11) which appears to represent oscillations in the ILM strength.

_ _ _ Given the basic model used to describe the experimental sys-
The second quantit{2), the lateral difference energy, is de- tem and the absence of experimental data for the central

fined as cantilever, the fact that the small oscillation spectra do not
73 76 match in detail is perhaps not too surprising. Still a key result
A= E,— > E,, (12 has been obtained: both experiment and simulations show
n=r2 n=75 that low frequency oscillations are a natural feature of locked
to obtain the normalized value ILMs. The strength oscillation found in simulations indicates
that the central cantilever response of the ILM must be mea-
6=A/(E). (13 sured in experiment in order to develop a more complete

Equations(11) and(13) now can be used to characterize the understanding of these low frequency oscillatory modes and
small scale oscillatory behavior shown in Fig.(4)7 Figure to determine whether or not a more detailed simulation
17(b) gives the oscillations in the total energy, the central model is warranted.

site, while Fig. 17c) shows oscillations in9, indicating lat-
eral motion of the pinned ILM relative to its center. )

To identify the significant spectral regions, the Fourier- Experiment

transforms of the two curves in Figs. (by and 17c) are After the finish of the cw pulse, oscillatory features can
taken and displayed in Fig. 18. As with the monochromaticstill be detected. The excitation region around site 80 in Fig.
low frequency oscillation of the central peak at 0.0056 8(b) shows interesting behavior as the pinned ILM decays.

D. Trapped ILM oscillations
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FIG. 19. Trapped excitations oscillating around a pinned ILM. The data ard~1G. 21. Simulation of trapped modes in a decaying but pinned ILM. This is
from a section of Fig. @). Only cantilever sites are shown and the darker & magnified section of Fig. 18. The pulse is turned off at tine7500

the image, the stronger the signal. The pulse is turned off at=tifi®ems. periods. The decay of the pinned ILM is evident from its broadening. After
Decay of the pinned ILM is shown. From tirs®2 ms, traverse patterns 8700 periods, running wave packets trapped in the ILM envelope appear as
due to running wave packets trapped in the ILM envelope appear as obligu@dlique patterns.

lines.

darkness of the center region with time indicates that the

Figure 19 can be characterized as an oscillating wavepackamplitude of the pinned mode is decreasing. Superimposed
trapped by the pinned ILM. Only pixels corresponding toOn this pinned excitation is an oscillating mode. Its period of
cantilever sites are shown in this figure in order to enhancéscillation increases with time, as shown schematically in
the excitation pattern. The main feature is the pinned ILM,Fig. 20b).
which has evolved from a previously locked ILM at the end
of the pulse. As time passes, the amplitude of the cente?. Simulations
region decreases, and the ILM broadens. Additionally, sev-  Figure 21 shows the evolution of ILM-trapped wave
eral running wavepackets trapped within the center regiomackets in simulation. This is a magnified picture of a region
can be identified. of Fig. 12a), after the end of the pulgelotted ling. Initially

An example of another kind of trapped oscillation abouta variable intensity mode pattern can be seen. Later, a run-
a pinned ILM is shown in Fig. 20. Figure @) presents the ning wavepacket pattern becomes prominent.
magnified image of a portion of Fig.(&®, which shows a Since there is no driver, all the energy for these trapped
stationary ILM just after the end of the pulse. The bright modes comes from the locked state before the pulse is turned
center in Fig. 2(a) is an optical artifact. The change in the off. Part of this locked mode is converted into the trapped
running wave packets, still confined to the original spatial
region of the ILM. When the amplitude in the central region
becomes sufficiently small so that the pinning effect weak-
ens, and if enough energy is converted to the trapped running
modes, then the pinned mode can move. Thus, the trapped
running modes and the lateral oscillation of the perimeter are
the precursors to the ILM launching from the pinned loca-
tion.

IV. CONCLUSIONS

Experiments have been carried out in which the creation,
T®) interaction, and relaxation of intrinsic localized modes pro-

i duced in di-element cantilever arrays have been imaged and
recorded. The experimental method permits examination of

site
[(e]
o
|

TR A the vibration envelope of a micromechanical oscillator array.
100 PN NNAAANA A B)_/ using this e>_<perimental setup together with a chirped
] driver, the evolution of the unstable uniform mode into ILMs
has been examined in some detail. Initially traveling ILMs
90 | | | | | are created but finally locked ILMs are pinned at specific
50 52 54 56 58 sites in the array. The ILM hopping motion and subsequent
time (ms) stationary behavior can be explained by an amplitude depen-
dent pinning effect plus the collision with traveling ILMs/
FIG. 20. Atrapped excitation oscillating around a pinned but decaying ILM.\ygye packets which stems both from unlocked ILM excita-
(a) Experimental image. The ILM becomes unpinned at tin6 ms during tions and normal-mode excitations created by the strong
which time the period of the lateral oscillation increasés. Schematic : L. 1
image. This ILM starts to oscillate laterally from time50 ms, which is driver. A repulswe interaction between a stable, locked ILM
shown as the dotted line. and a moving unlocked ILM has been observed. Small am-
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