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Abstract 

NVT ensemble molecular dynamics (MD) simulation has been applied to calculate the self-

diffusion coefficients of carbon dioxide and the tracer diffusion coefficients of naphthalene in 

supercritical carbon dioxide. The simulation was carried out in the pressure range from 8 to 40 

MPa. The Elementary Physical Model proposed by Harris and Yung was adopted for carbon 

dioxide and some approximation models were used for naphthalene. The systems of MD 

simulation for carbon dioxide consist of 256 particles. One naphthalene molecule was added for 

carbon dioxide + naphthalene system. The system can be assumed to be infinite dilution 

condition for carbon dioxide + naphthalene system and the mutual diffusion coefficients are 

equal to the tracer diffusion coefficients of naphthalene. The self-diffusion coefficients of carbon 

dioxide and the tracer diffusion coefficients of naphthalene in supercritical carbon dioxide can be 

calculated by mean square displacement. The calculated results of diffusion coefficients showed 

good agreement with the experimental data without adjustable parameters.  

 

Keywords: Diffusion coefficient, Molecular dynamics simulation, Supercritical carbon dioxide. 
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INTRODUCTION 

One of important physical properties necessary to the design of supercritical extractor, 

separator and reactor is the diffusion coefficients of solutes in supercritical fluids. However, 

measurement of diffusion coefficients under the supercritical conditions is difficult so that the 

diffusion coefficient data in the supercritical region are quite limited. Computer simulation 

would be feasible and helpful to obtain thermodynamic data for mixtures under high pressure. 

In previous works [1-3], the authors have applied single site model molecular dynamics 

(MD) simulation to calculate the tracer diffusion coefficients of aromatic compounds, such as 

naphthalene and dimethylnaphthalene isomers, in supercritical carbon dioxide under the infinite 

dilution condition. The calculated results showed fairly good correlation. However, the 

calculated diffusivities were smaller than the experimental results, as increasing the molecular 

weight. As a result, the assumption of sphere, such as single site model, is not suitable for the 

complicated compounds. More accurate models for complicated compounds are necessary to 

represent the diffusion coefficients of solute in supercritical fluid. In a previous work [4], the 

tracer diffusion coefficients of naphthalene and dimethylnaphthalene isomers in supercritical 

carbon dioxide were calculated by the MD simulation and the influence of molecular models on 

diffusion coefficients was discussed. The simulations by the united atom model and those by the 

all atom model for naphthalene and dimethylnaphthalene isomers are carried out and the 

calculated results of diffusion coefficients show good agreement with the experimental data.  

In this work, as an extension, the MD simulation applied the Elementary Physical Model 

(EPM2) potential [5] for carbon dioxide was performed and the self-diffusion coefficients of 

carbon dioxide and the tracer diffusion coefficients of naphthalene in supercritical carbon 

dioxide were calculated. 
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SIMULATION METHODS 

Models and potential functions 

1. Carbon dioxide 

Carbon dioxide was treated as rigid and flexible model of Elementary Physical Model 

(EPM2). The Lennard-Jones (12-6) potential function with electrical term was used for all sites 

in the simulation, 
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where εij is the energy parameter, σ the size parameter, rij the distance, q the charge,  the relative 

dielectric constant, and i and j denote the sites i and j, respectively. The Ewald sum method was 

used to calculate the electrical interaction. 

The angle potential shown in eq.(2) was used for the flexible model, 

   0angle cos1)(   kU  (2) 

2. Naphthalene 

Naphthalene was treated as a single site model, rigid models of multi sites (united atom 

models) and a rigid model of all atoms (all atom model). The potential functions for naphthalene 

were same as for carbon dioxide. The each models were shown in Figure 1. 

 

Parameters 

1. Carbon dioxide 
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The potential parameters of EPM2 for carbon dioxide were referred from the model proposed 

by Harris and Yung [5]. These parameters were determined by the critical locus of pure carbon 

dioxide. The angle potential for the flexible model was determined by adjusting to the PVT 

relationship of carbon dixoide in this work. The parameters of carbon dioxide used in the present 

study are listed in Table 1. 

2. Naphthalene 

The energy and size parameters of naphthalene for single site model were determined by the 

critical temperature and pressure as the same procedure reported by the previous works [1]. The 

parameters for other models were referred from literatures [4, 6, 7]. The parameters of solute 

used in the present study are listed in Table 2. The interaction parameters between unlike 

molecules were calculated by the Lorenz-Berthelot rule. 

 

Simulation conditions and analysis 

1. Pure carbon dioxide system  

Fujitsu Materials Explorer V3.0 and COGNAC 6.0.4 in OCTA2007 [8] were used to 

simulate the rigid model and flexible model, respectively. NVT ensemble MD simulation was 

applied in this work. The simulations were performed at 308.2 and 323.2 K. The time step of the 

calculations was set to 1 fs. The time step, 1 fs, was short enough to prevent from particle 

overlapping also for the model. After more than 2 × 104 equilibration steps (20ps), 2 × 106 

production steps (2ns) was performed. The system consists with 256 molecules. The cut-off 

length was set to be the half-cell. The diffusion coefficients were calculated by mean square 

displacement (MSD) of the center of mass for carbon dioxide by using the Einstein relationship,  
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where r is the position of molecules and t is the time. The diffusion coefficients could be 

calculated by the slope of MSD. 

2. Carbon dioxide + naphthalene system  

COGNAC 6.0.4 in OCTA2007 was used for the simulation. NVT ensemble MD simulation 

was also applied for this system. The simulations were performed at 308.2K. The time step of the 

calculations was set to 1 fs. The SHAKE algorithm was used to keep the shape of molecules. 

One naphthalene molecule was added in the 256 carbon dioxide system. The systems are 

assumed to be at the infinite dilution condition of naphthalene and the cut-off length was set to 

be the half-cell. The calculated diffusion coefficients are considered to correspond to the infinite 

dilution diffusion coefficients of naphthalene in supercritical carbon dioxide. The diffusion 

coefficients were calculated by MSD of the center of mass for naphthalene. 

 

RESULTS AND DISCUSSION 

1. Carbon dioxide system 

The calculated result of PVT relationship at 308.2 K and 323.2 K was shown in Figure 2. The 

calculated results of MD simulation by rigid and flexible models are in good agreement with the 

EOS calculation. The simulated results with 80 % confidence interval for self-diffusion 

coefficients of carbon dioxide as a function of molar volume were shown in Figures 3 and 4. The 

simulated results by single site model of carbon dioxide [1] are also plotted in the figures. The 

calculated results by the MD simulation of this work show well agreement with the experimental 

data under the wide range of density. 
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2. Carbon dioxide + naphthalene system 

The calculated results of diffusion coefficients for naphthalene in supercritical carbon 

dioxide by each models were shown in Figures 5 to 8. The experimental results and the 

simulated results by the single site model of carbon dioxide were cited from the previous work 

[1]. Although the adjustable parameters determined by the solubility data were used for the 

simulations by the single site atom models in the previous work [1], no adjustable parameter 

were adopted in the simulations of this work. The simulated results of naphthalene by the single 

site model and the all atom model are slightly smaller than those of the united atom models (two 

site model and ten site model). The estimated molecular size for the single site model will be 

larger than the real molecular size. The Lennard-Jones parameters for the all atom model were 

determined except the electric interaction and the parameters for the united atom models were 

determined by containing the electric interaction. Although the difference among the diffusion 

coefficients of naphthalene calculated by the MD in the present study was not remarkable for 

each models, the united atom models are well applicable to estimate the diffusion coefficient of 

naphthalene in supercritical carbon dioxide.  

Since the deviation of calculated diffusion coefficients by single site model is large in the 

range of high pressure, the size parameter of naphthalene for single site model was adjusted to 

the diffusion coefficient. The size parameters between carbon and naphthalene and between 

oxygen and naphthalene were set to 0.9 times as long as the original values. The calculated 

results are also shown in Figure 5. The calculated results of diffusion coefficients at high 

pressure region improve by using the adjusted size parameters. However, the results over 50 

MPa did not improve. It is difficult to represent the diffusion coefficients under wide pressure 

range by the single site model of solute. 
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CONCLUSION 

The MD simulations applied the EPM2 model of carbon dioxide were performed to calculate 

the self-diffusion coefficients of carbon dioxide and the tracer diffusion coefficients of 

naphthalene in supercritical carbon dioxide. Some approximation models were used for 

naphthalene. The calculated results of diffusion coefficients were compared with the 

experimental results. The calculated results show the united atom models are well applicable to 

estimate the diffusion coefficient of naphthalene in supercritical carbon dioxide. The calculated 

results of diffusion coefficient at high pressure by single site model for naphthalene improve by 

adjusting the size parameters. 
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LIST OF SYMBOLS 

D diffusion coefficient, m2 s-1 

k angle potential parameter, - 

kB Boltzman constant (1.38×10-23), J K-1 

P pressure, Pa 

q charge, |e| 

rij  distance, m 

r position of molecule, m 

t time, s 

Uangle angle potential function, J mol-1 
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Unonbond  non bond (van der Waals) interaction potential, J mol-1 

v  molar volume, m3 mol-1 

Greek Letter 

  relative dielectric constant, - 

ij  enegy parameter, J 

 size parameter, m 

  circle ratio, - 

 angle, degree 

 molar density, mol m-1 

Subscripts 

i, j  sites i and j 

1 carbon dixoide 

 

 

REFERENCES 

 [1] Y. Iwai, H. Higashi, H. Uchida, Y. Arai, "Molecular dynamics simulation of diffusion 

coefficients of naphthalene and 2-naphthol in supercritical carbon dioxide", Fluid Phase 

Equilibria, 127 (1997) 251-261. 

[2] H. Higashi, Y. Iwai, H. Uchida, Y. Arai, "Diffusion coefficients of aromatic compounds in 

supercritical carbon dioxide using molecular dynamics simulation", J. Supercritical Fluids, 

13 (1998) 93-97. 

[3] H. Higashi, Y. Iwai, Y. Arai, “Calculation of self-diffusion and tracer diffusion coefficients 

near the critical point of carbon dioxide using molecular dynamics simulation”, Ind. Eng. 

Chem. Res., 39 (2000) 4567-4570. 



 10 

 [4] H. Higashi, Y. Iwai, Y. Arai, "Comparison of molecular models used in molecular dynamics 

simulation for tracer diffusion coefficients of naphthalene and dimethylnaphthalene isomers 

in supercritical carbon dioxide", Fluid Phase Equilibria, 234 (2005) 51-55. 

[5] J. G. Harris, K. W. Yung, “Carbon dioxide’s liquid-vapor coexistence curve and critical 

properties as predicted by a simple molecular model”, J. Phys. Chem., 99 (1995) 12021-

12024. 

[6] M. G. Abunbay, J. Perez-Pellitero, R. O. Contreras-Camacho, J.-M. Teuler, P. Ungerer, A. D. 

Mackie, V. Lachet, “Optimized intermolecular potential for aromatic hydrocarbons based on 

anisotropic united atoms. III. Polyaromatic and naphthenoaromatic Hydrocarbons”, J. Phys. 

Chem., 109 (2005) 2970-2976. 

[7] A. K. Rappe, C. J. Casewit, K. S. Colwell, W. A. Goddard III, W. M. Skiff, “UFF, a full 

periodic table force field for molecular mechanics and molecular dynamics simulation”, J. Am. 

Chem. Soc., 114 (1992) 10024-10035. 

[8] http://www.octa.jp/ 

[9] R. Span, W. Wagner, “A new equation of state for carbon dioxide covering the fluid region 

from the triple-point temperature to 1100 K at pressures up to 800 MPa”, J. Phys. Chem. Ref. 

Data, 25 (1996) 1509-1596. 

[10] J. H. A. O'hern, J. J. Martin. “Diffusion in carbon dioxide at elevated pressures”, Ind. Eng. 

Chem., 47 (1955) 2081-2086. 

[11] P. Etesse, J. A. Zega, R. Kobayashi, A. Akgerman, “High pressure nuclear magnetic 

resonance measurement of spin-lattice relaxation and self-diffusion in carbon dioxide”, J. 

Chem. Phys., 97 (1992) 2022-2029. 

[12] S. Takahashi, H. Iwasaki, “The diffusion of gases at high pressures. I. The self-diffusion 

coefficient of carbon dioxide”, Bull. Chem. Soc. Japan, 39 (1966) 2105-2109. 



 11 

[13] M. B. Iomtev, Y. V. Tsekhanskaya, “Diffusion of naphthalene in compressed ethylene and 

carbon dioxide”, Russ. J. Phys. Chem., 38 (1964) 485-487. 

[14] G. Knaff, E. U. Schlüder, “Diffusion coefficients of naphthalene and caffeine in 

supercritical carbon dioxide”, Chem. Eng. Process, 21 (1987) 101-105. 

[15] D. M. Lamb, S. T. Adamy, K. W. Woo, J. Jonas, “Transport and relaxation of naphthalene 

in supercritical fluids”, J. Phys. Chem., 93 (1989) 5002-5005. 

[16] A. Akgerman, C. Erkey, M. Orejuela, “Limitting diffusion coefficients of heavy molecular 

weight organic contaminants in supercritical carbon dioxide”, Ind. Eng. Chem. Res., 35 

(1996) 911-917. 

[17] H. Higashi, Y. Iwai, Y. Nakamura, S. Yamamoto, Y. Arai, “Correlation of diffusion 

coefficients for naphthalene and dimethylnaphthalene isomers in supercritical carbon 

dioxide”, Fluid Phase Equilibria, 166 (1999) 101-110. 

 



 12 

 Figure Captions 

 

Figure 1: Schematic images of naphthalene molecule. 

 

Figure 2: PVT relationship of pure carbon dioxide 

(      ) calculated by EOS 

(      ) simulated by rigid model, (      ) simulated by flexible model. 

 

Figure 3: Self-diffusion coefficients of carbon dioxide at 308.2 K. 

(      ) Experimental data [10] 

(      ) simulated by rigid model, (      ) simulated by flexible model 

( × ) simulated by single site model [1]. 

 

Figure 4: Self-diffusion coefficients of carbon dioxide at 323.2 K. 

(      ,       ) Experimental data [11, 12] 

(      ) simulated by rigid model, (      ) simulated by flexible model 

( × ) simulated by single site model [1]. 

 

Figure 5: Diffusion coefficients of naphthalene in supercritical carbon dioxide at 308.2 K (Single 

site model of naphthalene). 

(      ,       ,      ,      ,      ) Experimental data [13-17] 

(      ) simulated by single site model of naphthalene (original size parameters) 

(       ) simulated by single site model of naphthalene (adjusted size parameters) 

 ( × ) simulated by single site model for all components [1]. 
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Figure 6: Diffusion coefficients of naphthalene in supercritical carbon dioxide at 308.2 K (Two 

site model of naphthalene). 

(      ,       ,      ,      ,      ) Experimental data [13-17] 

(      ) simulated by two site model of naphthalene 

( × ) simulated by single site model for all components [1]. 

 

Figure 7: Diffusion coefficients of naphthalene in supercritical carbon dioxide at 308.2 K (Ten 

site model of naphthalene). 

(      ,       ,      ,      ,      ) Experimental data [13-17] 

(      ) simulated by ten site model of naphthalene 

( × ) simulated by single site model for all components [1]. 

 

Figure 8: Diffusion coefficients of naphthalene in supercritical carbon dioxide at 308.2 K (All 

atom model of naphthalene). 

(      ,       ,      ,      ,      ) Experimental data [13-17] 

(      ) simulated by all atom model of naphthalene 

( × ) simulated by single site model for all components [1]. 
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Table 1:  EPM2 potential parameters of carbon dioxide [5] 

Atom   / kB Q k  

Site [nm] [K] [|e|] [kJ/mol] [deg] 

nonbond      

C 0.2757 28.129 -0.3256   

O 0.3033 80.507 +0.6512   

angle *1      

O=C=O    50 0 *2 

C=O bond length, l=0.1149 nm 

*1 angle potential was used by flexible model  and k was adjusted to PVT relationship 

*2 The angle was defined by external angle in OCTA 
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Table 2:  Potential parameters of naphthalene.  

   / kB 

Atom or Site [nm] [K] 

Single site [1]   

Naphthalene 0.6547 554.4 

Two site [4]   

Benzene ring 0.4480 322.4 

Ten site [6]   

CH 0.3246 89.42 

C 0.3246 37.72 

All atom [7]   

C 0.3430 52.9 

H 0.2570 22.2 
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   Two site model                       Ten site model                       All atom model 

 

 

 

 

Figure 1: Schematic images of naphthalene molecule. 
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Figure 2: PVT relationship of pure carbon dioxide. 

 

 

 

 

 

 

 

 

 

Figure 2   Higashi et al. 
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Figure 3: Self-diffusion coefficients of carbon dioxide at 308.2 K. 

 

 

 

 

Figure 3   Higashi et al. 
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Figure 4: Self-diffusion coefficients of carbon dioxide at 323.2 K. 

 

 

 

 

Figure 4   Higashi et al. 
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Figure 5: Diffusion coefficients of naphthalene in supercritical carbon dioxide at 308.2 K (Single 

site model of naphthalene). 

 

 

 

 

Figure 5  Higashi et al. 
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Figure 6: Diffusion coefficients of naphthalene in supercritical carbon dioxide at 308.2 K (Two 

site model of naphthalene). 

 

 

 

 

 

 

Figure 6  Higashi et al. 
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Figure 7: Diffusion coefficients of naphthalene in supercritical carbon dioxide at 308.2 K (Ten 

site model of naphthalene). 

 

 

 

 

 

 

Figure 7  Higashi et al. 
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Figure 8: Diffusion coefficients of naphthalene in supercritical carbon dioxide at 308.2 K (All 

atom model of naphthalene). 

 

 

 

 

 

 

Figure 8  Higashi et al. 
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