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Abstract: This paper proposes an observer-based consensus control strategy for multi-agent system (MAS) with com-
munication time delay. The condition of stability for MIMO agents is derived by Lyapunov theorem. It gives systematic
design procedure under assumed unidirectional network. Furthermore, new consensus control law using observers is pro-
posed for the networked MAS with communication delays.
Experimental results show effectiveness of our proposed output consensus approaches.
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1. INTRODUCTION

There have been rapidly progresses of new theories
that create a fusion of graph theory and system control
theory for cooperative control problem of distributed net-
worked control systems[1],[2]. As one of these research
works, a multi-agent system (MAS) is one of signi cant
topics which each agent autonomously works by using
information of other agents over the network [3]-[9].

Let consider an agent as a vehicle in MAS, then it
is possible to apply formation control problem [3]-[4].
Formation control problems expect at various elds, e.g.
satellites, airship, intelligent transport systems and load
carriage. Therefore control problem of MAS is useful
and practically problem.

In this paper, we proposes an observer-based consen-
sus control strategy for multi-agent system with commu-
nication time delay. In the networked MAS, consensus
means to reach an agreement regarding a certain quan-
tity of interest that depends on the state of of dynamical
agents. Consensus algorithm with graph theory has been
studied as a control problem of MAS in [5]-[8]. In [5] and
[6], proposes a new control law to which consensus algo-
rithm [7] is enhanced. It was shown in [5] that stability
of MAS could be checked graphically using Nyquist-like
criterion. Depending on the agent system, it is dif cult
to design controllers using Nyquist-like criterion. Also,
[6] derive condition of stability of MAS using Lyapunov
stability theorem under assumed unidirectional network
(balanced graph) where an agent is second-order system.
So the MAS is much less common than [5]. Therefore
we consider that each agent is MIMO linear system and
propose the condition of stability using Lyapunov stabil-
ity theorem. Using Lyapunov theorem, controller design
is easier than [5] under assumed unidirectional network.

In addition, there are some problem in network struc-
ture of MAS: communication delay and constrained com-
munication. In this paper, new consensus control law us-

ing observers is proposed for constrained communication
where communication delays are occurred in inter-agent
communications. In [9], a Lyapunov-like criterion was
derived for stability conditon in MAS with constant com-
munication delay. The paper[4] considers parallel esti-
mators for formation control of MAS where the agent is
spacecraft. A spacecraft estimate states of other space
that connected network. Hence order of the estimator un-
der assumed large network is larger than other estimator
under assumed small network. Therefore, the proposed
observer-based output control strategy is much simpler
than the methos in [4]. Finally, the experimental results
show effectiveness of our proposed control law.

2. GRAPH THEORY

Graph is useful to represent network structures [11].
Let G = (V ,A ) be a graph of order N with the set of
nodes V = {v1, · · · ,vN} and set of arcs A ⊆ V ×V . An
arc (vi, v j) of G is shown by an arrow drawn from node
v j to node vi. The set of neighbors of node vi is denoted
by Ni = {v j ∈ V : (v j,vi) ∈ A }.

In MAS, node vi means ith agent and arc (vi,v j) is
communication that jth agent send some information to
ith agent.

In this paper, we use Graph Laplacian for graph struc-
ture expressed mathematically. Graph Laplacian L = [li j]
is matrix that lii = j �=i ai j, li j = −ai j (i �= j) where
ai j = 1 (v j ∈Ni) and ai j = 0 (v j ∈/Ni). If L = LT , Graph
G is called Undirected graph, otherwise G is directed
graph (Digraph). The undirected graph called connected
graph if it is possible to reach any agent starting from
any other agent by traversing network. In digraph case,
the directed graph called strongly connected graph.

Assuming that the graph is (strongly) connected graph,
Graph Laplacian L satis es the following properties:
i) There is unique zero-eigenvalue of L
ii) All eigenvalues of L are nonnegative.
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iii) An eigenvector of zero-eigenvalue of L is Nth column
vector of all ones.

In this paper, we express eigenvalues of N ×N sym-
metric matrix a as

1(a) ≤ 2(a) ≤ ·· · ≤ N(a). (1)

where k(a) is kth eigenvalue of a. It is well-known that
eigenvalues of Graph Laplacian L in connected graph can
be presented as

0 = 1(L) < 2(L) ≤ ·· · ≤ N(L). (2)

3. MULTI-AGENT SYSTEM

In this paper, the Networked MAS is treated. A plant
is the MAS which consists N agents under following as-
sumption.

[Assumption 1] The network structure of MAS is
(strongly) connected graph.

Consider ith agent system as

xi = Axi +Bui, (3)

where A∈Rn×n, B∈Rn×m. xi ∈Rn, ui ∈Rm are ith state
and input. Let x = [xT

1 · · · xT
N ]T and u = [uT

1 · · · uT
N ]T , then

MAS can be presented as

x = (IN ⊗A)x+(IN ⊗B)u, (4)

where IN is Nth-order unit matrix and ⊗ is Kronecker
product.

Throughout this paper, we assume that the agent (3)
satis es the following properties:

[Assumptions 2]
i) There is no positive real eigenvalue of A.
ii) (A,B) is controllable.

In this paper, stability of MAS means

lim
t→ x = 1⊗ (5)

where 1 is Nth column vector of all ones and ∈ Rn is
any vector and we de ne that is consensus vector. We
called consensus of MAS if system (4) achieve Eq. (5).

4. STABILITY OF MULTI-AGENT
SYSTEM

First, we utilize a consensus algorithm[7] as

ui = −K
N

j∈Ni

(xi − x j), (6)

where K ∈ Rm×n is the controller gain. Consensus algo-
rithm (6) can be written in matrix form as

u = −(L⊗K)x. (7)

By Eq. (7), MAS (4) is expressed as

x = ((IN ⊗A)− (L⊗BK))x. (8)

Following theorem is derived about consensus of MAS
(8).

[Theorem 1] Assume that e + T
e > 0 and MAS (8)

satisfy [Assumption 1-2]. Then MAS (8) achieve con-
sensus

= N1/2 exp(At)(lT1 ⊗ In)x(0) (9)

if there is positive de nite matrix P such that

AT P+PA− 1( e
T
e )PBBT P < 0 (10)

and controller gain K is
i) Digraph case

K = N−1( e
T
e )

1 ( e + T
e )

BT P, (11)

ii) Undirected graph case

K =
1
2 N(L)BT P, (12)

where e ∈ RN−1×N−1 is matrix that is gotten by

Jordan form =
�

0 0
0 e

�
= SLS−1 of graph

Laplacian L, where S is any regular matrix which rst
row vector is N−1/21. l1 is left-eigenvector corre-
sponding to zero-eigenvalue of L where lT1 N−1/21 = 1.

proof: Jordan form of graph Laplacian L is expressed
as

=
�

0 0
0 e

�
= S−1LS. (13)

Now, we consider coordinate transformation z =
(S−1 ⊗ In)x, then the system (8) is expressed as:

z =
�
(S−1S⊗A)− (S−1LS⊗BK)

�
z

= ((IN ⊗A)− ( ⊗BK))z, (14)

where z = [zT
1 zT

e ]T ∈ RNn, ze = [zT
2 · · ·zT

N ]T ∈ R(N−1)n.
Eq. (14) can be divided into two equations:

z1 = Az1 (15)

ze = ((IN−1 ⊗A)− ( e ⊗BK))ze, (16)

If ze converge to equilibrium (ze → 0 as t → ), MAS (8)
achieves consensus by Eqs. (15)-(16) and Assumption
2-i). Therefore, we get

lim
t→ x = lim

t→ (S⊗ In)z = (N−1/21⊗ In)z1

= 1⊗N−1/2eAt(lT1 ⊗ In)x(0) (17)

This means each agent goes to a consensus. If we can
prove an asymptotical stability of Eq. (16), then MAS
achieves consensus. Consider a Lyapunov function V1 as:

V1 = zT
e (IN−1 ⊗P)ze. (18)

Differentiate V1 along the trajectories, we get

V1 = zT
e

�
IN−1 ⊗ (AT P+PA)− T

e ⊗KT BT P− e ⊗PBK
�
ze. (19)

If there is positive de nite matrix P such that

IN−1 ⊗ (AT P+PA)− ( T
e ⊗KT BT P)− ( e ⊗PBK) < 0. (20)

Then the system (16) is stable.
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Next, we consider stabilization condition of control
gain K. By assumption 2-ii), (A, 1( e

T
e )−1/2B) is sta-

bilizable. Therefore, there is positive de nite matrix P
such that

AT P+PA− 1( e
T
e )PBBT P < 0. (21)

Because of e
T
e > 0, Eq. (21) is expressed as:

0 > (IN−1 ⊗AT P+PA)− ( 1( e
T
e )⊗PBBT P)

≥ (IN−1 ⊗AT P+PA)− ( e
T
e ⊗PBBT P). (22)

First, let consider gain K in digraph case.
i) Digraph

(22) can be represent as

0 > (IN−1 ⊗AT P+PA)−
�

e
T
e

1 ( e + T
e ) 1

�
e + T

e
�⊗PBBT P

�

≥ (IN−1 ⊗AT P+PA)−
�

e
T
e

1 ( e + T
e )

( e + T
e )⊗PBBT P

�

≥ (IN−1 ⊗AT P+PA)− ( e + T
e )⊗

�
N−1( e

T
e )

1 ( e + T
e )

PBBT P
�

(23)

If there is positive de nite matrix P such that Eq. (21) and
controller gain K de ne Eq. (11), MAS (8) satisfy Eq.
(20). Therefore MAS (8) satisfy consensus.

It is clear that e + T
e is positive de nite matrix if

there is no duplicate eigenvalue of Graph Laplacian L.
And also e + T

e is positive de nite matrix if Graph
is balanced graph by the property of Graph Laplacian.
Therefore, there is e + T

e > 0 at least.
Next, we de ne controller gain K in undirected graph.

ii) Undirected graph
Graph Laplacian L of undirected graph is symmetric

matrix. Therefore, e > 0 is diagonal matrix. Hence Eq.
(22) can be written as

0 > (IN−1 ⊗AT P+PA)− ( 2
e ⊗PBBT P)

≥ (IN−1 ⊗AT P+PA)− ( e ⊗ N−1( e)PBBT P). (24)

By Eq. (24), if there is positive de nite matrix P such
that Eq. (21) and control gain K de ne Eq. (12) when
MAS (8) satis es Eq. (20). Therefore MAS (8) satis es
a consensus.

5. STABILITY OF MULTI-AGENT
SYSTEM WITH COMMUNICATION

DELAY

Consider the stability analysis of MAS with communi-
cation delay. Here a communication time delay is treated
to be constant and a control law is proposed by using
maximum tolerable communication delay .

The proposed control law of ith agent with communi-
cation delay can be represented as

ui(t) = −K
N

j∈Ni

(xi(t − )− x j(t − )). (25)

Hence, the control law of MAS is expressed

u(t) = −(L⊗K)x(t− ). (26)

Therefore, MAS with communication delay can be rep-
resented as

x(t) = (IN ⊗A)x(t)− (L⊗BK)x(t − ). (27)

We analysis that MAS (27) achieve consensus.

[Theorem 2] Assume that MAS (27) satisfy [As-
sumptions 1-2]. Then MAS (27) achieve consensus
if A− 1( e

T
e )1/2BK is stable and there is positive

de nite matrix P such that�
PBK

KT BT P − r1r2
(r1+r2) N−1( e T

e ) In

�
< 0 (28)

= AT P+PA− 1( e
T
e )1/2 �

KT BT P+PBK
�

+r1 AT AT + r2 N−1( T
e e)KT BT BK

where r1, r2 are positive scalar.

Proof: MAS (27) can be divided into two equation well as
theorem 1 by coordinate transformation z = (S−1 ⊗ In)x.

z1(t) = Az1(t) (29)

ze(t) = (IN−1 ⊗A)ze(t)− ( e ⊗BK)ze(t − ) (30)

Therefore it is clear that stability of Eq. (30) and MAS
(27) achieve consensus are equivalent. Consequently, we
prove stability of Eq. (30). Let

ze(t − ) = ze(t)

−
� t

t−
(IN−1 ⊗A)ze( )− ( e ⊗BK)ze( − )d . (31)

Then, Eq. (30) can be expressed as

ze(t) = ((IN−1 ⊗A)− ( e ⊗BK))ze(t)

+( e ⊗BK)
� t

t−
(IN−1 ⊗A)ze( )− ( e ⊗BK)ze( − )d . (32)

Let us de ne a candidate of Lyapunov-like function as

V2(ze, t)=zT
e (t)(IN−1 ⊗P)zex(t)

+r1

� t

t−

� t
�(IN−1 ⊗A)ze(s)�2dsd

+r2

� t

t−

� t
�( e ⊗BK)ze(s)�2dsd (33)

where P is positive de nite matrix. Then, the derivative
V2 along the trajectories as

V2(ze, t) = zT
e

�
IN−1 ⊗ (AT P+PA)

�
ze

− zT
e

� T
e ⊗KT BT P

�
ze + zT

e ( e ⊗PBK)ze

+ 2zTe (IN−1 ⊗P)( e ⊗BK)

×
� t

t−
(IN−1 ⊗A)ze( )− ( e ⊗BK)ze(t − )d

+ r1 �(IN−1 ⊗A)ze(t)�2 + r2 �(( e ⊗BK)ze( )�2. (34)

By Lyapunov krasovskii theorem, if there is positive def-
inite matrix P such tha

�
IN−1 ⊗ (AT P+PA)

�− T
e ⊗KT BT P− e ⊗PBK

+ (
1
r1

+
1
r2

)(IN−1 ⊗P)( e ⊗BK)( T
e ⊗KT BT )(IN−1 ⊗P)

+r1 (IN−1 ⊗AT A)+ r2 ( T
e e ⊗KT BT BK) < 0, (35)

then MAS (27) satisfy consensus.
Next, assumed A− 1( e

T
e )1/2 is stable. Then the

following inequality is derived by (35).

AT P+PA− 1( e
T
e )1/2(KT BT P+PBK)

+ (
1
r1

+
1
r2

) N−1( e
T
e )PBKKT BT P

+r1 AT A+ r2 N−1( T
e e)KT BT BK < 0 (36)
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It is clear that (36) is satis ed then (35) is also satis ed.
Hence, using schur complement, Theorem 2 is derived by
(36).

(36) is more conservative than (35). However, com-
putational load of (36) according to increase of agents is
lower than (35).

6. OBSERVER-BASED MULTI-AGENT
SYSTEM

Let consider output feedback of consensus problem for
reducing of communication traf c. Two control law in
Section II and III are state feedback of consensus prob-
lem. In these case, an agent sends state and receives
other agent state. Assumed MAS which consists N agents
where an agent has n states and the network structure is
complete graph, then an agent gets n(N−1) information
and send n(N −1) information. If an agent sends m out-
puts where m < n case, then an agent get m(N − 1) in-
formation and send m(N − 1) information. Hence using
output information of agents, the communication traf c is
reduced. Therefore, let consider ith information of output
yi and ith controlled information Zi as

yi = Cxi, Zi =
N

j∈Ni

(yi − y j) =
N

j∈Ni

C(xi − x j). (37)

where C ∈ Rm×n. Then, the MAS can be expressed as

x = (IN ⊗A)x+(IN ⊗B)u
y = (IN ⊗C)x (38)

Z = (L⊗ In)y = (L⊗C)x,

where y = [yT
1 yT

2 · · ·yT
N ]T ,Z = [ZT

1 ZT
2 · · ·ZT

N ]T and this
MAS satisfy under following assumption.

[Assumption 3] (A, C) is observable.

ith observer-based control law is proposed as

x̂Fi = (A−HC)x̂Fi +H
N

j∈Ni

(yi − y j)+Bui

ui = −Kx̂Fi, (39)

where x̂Fi is estimation vector that estimate N
j∈Ni

(xi −
x j) and H ∈ Rn×m is observer gain. Then, the observer-
based control law of MAS can be expressed as

x̂F = (IN ⊗A−HC)x̂F +(L⊗HC)x+(IN ⊗B)u
u = −(IN ⊗K)x̂F , (40)

where x̂F = [xT
F1 xT

F2 · · · xT
FN ]T is estimation vector that

estimate (L⊗ In)x. Therefore, observer-based MAS is
represented as
�

x
x̂F

�
=

�
IN ⊗A IN ⊗BK
L⊗HC IN ⊗ (A−HC−BK)

��
x
x̂F

�
. (41)

Let us consider stability of MAS (41).

[Theorem 3] MAS (38) satisfy [Assumption 1-
3]. Then MAS (41) achieve consensus if A −

1( e
T
e )1/2BK and A−HC are stability.

Proof: Let xF = (L⊗ In)x and uF = (L⊗ Im)u, then the
MAS (38) can be expressed as

xF = (IN ⊗A)xF +(IN ⊗B)uF

Z = (IN ⊗C)xF . (42)

The system (42) can be designed observers. Assumed
the MAS (38) satisfy that A−HC is stable. Hence, x̂F
achieve

lim
t→ x̂F = xF = (L⊗ In)x. (43)

Therefore, it is clear that MAS (41) achieves consensus
by theorem 1.

[Remark 1] It is de ned that xF = (L ⊗ In)x(t − ).
Then a MAS with communication delay satisfy consen-
sus. Then the control law of observer based MVS can be
expressed as

x̂F = (IN ⊗A−HC)x̂F +(L⊗HC)x(t− )+(IN ⊗B)u

u = −(IN ⊗K)x̂F . (44)

Then, observer-based MAS with communication delay
can be represented as
�

x(t − )
x̂F

�
=

�
IN ⊗A IN ⊗BK
L⊗HC IN ⊗ (A−HC−BK)

�

×
�

x(t − )
x̂F

�
. (45)

[Theorem 4] MAS (38) satisfy [Assumption 1-
3]. Then MAS (45) achieve consensus if A −

1( e
T
e )1/2BK , there is positive de nite matrix P

such that (28) and A−HC are stability.

Proof: It is obvious that MAS (45) achieves consensus
by Theorem 2 and 3.

7. EXAMPLE AND ITS EXPERIMENTS

7.1 Multi-vehicle system
We consider a four-vehicle formation problem and a

two-wheel vehicle is treated as an agent as in Fig. 1 (left
below).

It is well-known that two-wheel vehicle has nonholo-
nomic property. Assume that N vehicles can be repre-
sented same dynamics and there are no friction, then ith
vehicle model can be expressed as


xri
yri

ri


 =




cos ri 0
sin ri 0

0 1




�
vi

i

�
, (46)

where (xri,yri) is center of gravity of ith vehicle, ri its
orientation, control input are its velocity vi and its angu-
lar velocity i.
Based on an idea of Virtual Structure, we consider Vir-

tual Vehicle (VV) at each vehicles as Fig. 1 (upper right).
If positional relationship between a real vehicle and a VV
is given as Fig. 1, then position of center of gravity and
angle of VV are expressed as


xvi
yvi

vi


 =




xi + xdi cos ri − ydi sin ri
yi + xdi sin ri + ydi cos ri

ri


 . (47)
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�
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��

���

���

���

���

Vehicle �

VV �

���

���

Fig. 1 ith Real Vehicle and Virtual Vehicle

VV

Vehicle1Vehicle3

Vehicle4 Vehicle2

Fig. 2 Target rri = 0

��1

��2

��4

��3

Vehicle1Vehicle4

Vehicle3 Vehicle2

VV4 VV1

VV2VV3

Fig. 3 Target rri �= 0

Derivatative of (47) gives



xvi
yvi

vi


 =

�
Bvi
B

��
vi

i

�
(48)

Bvi =
�

cos ri −xdi sin ri − ydi cos ri
sin ri xdi cos ri − ydi sin ri

�

B =
�

0 1
�
.

If xdi �= 0, Bvi is regular matrix. In this paper, consider
formation problem at this VS system (48). Let center of
gravity of VV rvi = (xvi, yvi), VV’s velocity vvi and

vvi = uvi,
�

vi i
�T = B−1

vi vvi. (49)

where uvi is new input of VV. Then dynamics of center
gravity of VV can be presented as

vvi = uvi, rvi = vvi. (50)

This dynamics (50) is a linear system.
For VV’s uniform motion, we de ne uvi as

uvi = −kvr(vvi − v∗)+ui, (51)

where kvr > 0 is design parameter, v∗ �= 0 is reference
velocity and ui is new input for consensus. Let vei = vvi−
v∗, r̃vi = rvi − rri, where rri is reference relative deviation
for VV’s system achieve any formation. Then the system
(50) can be expressed as

d
dt

�
r̃vi
vei

�
=

�
0 1

−kvr 0

�
⊗ I2

�
r̂vi
vei

�
+

�
0
1

�
⊗ I2ui

yi =
�

1 0
�⊗ I2

�
r̃vi
vei

�
. (52)

If VVs achieve

lim
t→ r̃vi = r̃v j, lim

t→ vei = ve j , (53)

then real vehicles make formation as Figs.2,3.
Because of the experimental setup can not be de-

tected vehicles’s velocities, we use observer based con-
troller for achieve uniform motion of ith vehicle. Let be

Modem 
(receiving side)

H8  
microcomputer

Stepping 
motor

Stepping 
motor

Vehicles

Computer
Camera

Modem 
(sending side)

HALCON 
MATLAB/ 

 SIMULINK 
DSPACE

Field 1.8(m) 2.7(m)

Front

Back
 

Revolution speeds

Image

Fig. 4 experimental setup

1 2

34

1 2

34

(a) undirected graph (b) digraph

Fig. 5 Network structure

xi = [r̃T
vi vT

ei
ˆ̃rT
viv̂

T
ei]

T , then ith vehicle system can be ex-
pressed by Eq. (4), where

A =




0 1 0 0
0 0 −kvr 0
h1 0 −h1 1
h2 0 −h2 − kvr 0


⊗ I2, B =




0
1
0
1


⊗ I2,

C =
�

1 0 0 0
�⊗ I2, (54)

ˆ̃rvi is estimate vector of r̃vi, v̂ei is estimate vector of vei,
h1, h2 > 0 are design parameters. In observer combined
system case, (A,B) is not controllable but stabilizable if
(Al ,Bl) is controllable where Al , Bl is system matrix be-
fore observer combined system. In this case, assumption
2-ii) can be replaced controllable to stabilizable. And also
(A,C) is observable.

7.2 Experimental Evaluation
Fig.4 shows our experimental setup. This experi-

ment shows the effectiveness of observer-based MAS
with communication delay (Section VI). Network struc-
tures are considered two pattern: undirected graph and
digraph as shown in Fig. 5. We consider virtual network
and communication delay because it can not use inter-
vehicle communication in our experimental setup. And
inter-vehicle communication delay i j to ith agent from
jth agent is de ned as

i j = 0.1�rvi − rv j�+0.1. (55)

For satisfy this conditions, maximum communication de-
lay is set = 0.3[s]. Let make set to parameters satisfy
Theorem 4, these parameters are shown in Table I

Figs. 6-11 show our experimental result. “×”and “◦”
are rst position and nal position of real vehicles in Figs.
6, 9. In undirected graph case, real vehicles achieve for-
mation. It is clear in Figs. 6, 7. In Fig. 7, VV achieve
consensus. And also Fig. 8 shows calculated velocities
and gives that VVs achieve reference velocity. In digraph
case, Fig. 9 shows Trajectories, VV do not completely
make formation in the experiment eld. Fig. 10 shows
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Table 1 Parameters

VV’s parameter (xdi,ydi) (0.05,0) [m]
Reference VV’s velocity v∗ [0.05 0]T [m/s]

Reference relative deviation rr1 [0.3 0.3]T [m]
Reference relative deviation rr2 [0.3 0]T [m]
Reference relative deviation rr3 [0 0.3]T [m]
Reference relative deviation rr4 [0 0]T [m]

Design parameter kvr 0.23
Design parameter [h1h2] [2.0 2.0]

Controller gain K [0.0012 0.63 0.011 −0.012]⊗ I2
Observer gain H [3.25 0.96 1.51 1.10]T ⊗ I2

consensus error L ˆ̃r(t − ) and gives VV toward consen-
sus because L ˆ̃r(t − ) converge equilibrium. And also
Fig. 11 shows calculated velocities and gives that VVs
achieve reference velocity.

8. CONCLUSIONS AND FUTURE
WORKS

In this paper, a new control law of observer-based
MAS is proposed for consensus problem. An agent has
MIMO system, stability problem of MAS is extended
from undirected graph to digraph. And also condition
of stability was derived using lyapunov stability theorem.
We consider MAS with communication delay that present
a problem in MAS. Consensus problem is extended from
state feedback to output feedback case. The proposed al-
gorithm was applied to Multi-vehicle formation control
problem to demonstrate the effectiveness of our proposed
strategies.
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