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ABSTRACT

A simultaneous frequency and time domain ap-
proximation method for discrete-time filters is
proposed in this paper. Filter coefficients are
divided into two subsets X4 and Xy which are used
to optimize a2 time response and a frequency re-
sponse, respectively. The optimum solution for X4
is always guaranteed through linear equations dur-
ing the frequency response optimization. The fre-
quency response is optimized by iterative methods.
The proposed method does not impose any constraints
on pole-zero locations and on filter responses,
Hence, sufficient reductions in filter order and in
final hardware size can be achieved.

INTRODUCTION

Simultaneous frequency and time response ap-
proximation methods are inherently necessary and
become very important design techniques for filters
employed in image signal transmitting and process-
ing systems.

Existing approaches. to the simultaneous-ap-
proximation can be summarized as follows:

{1) A subset of filter coefficients which approxi-
mates a time response is independently determined
from the rest of filter coefficients. A frequency
response is optimized through iterative methods r13.
(2) Specific transfer functions are employed, which
can optimize one filter response without the other
response distortions. These transfer functions
include all-pass functions and finite impulse re-
sponse (FIR) filters r21.

{3) A subset of filter coefficients which approxi-
mates stopband attenuation is uniquely solved based
on a closed form using the rest of filter coeffi-
cients employed for time response optimization rC33.
Attainable filter responses by this approach are
restricted to lowpass filters and an equal-ripple
stopband attenuation.

The proposed method, in this paper, is based
on the third approach, and extend the attainable
filter responses by employing linear equations
instead of the closed forms. As is well known,
there exist linear relations between the filter
coefficients and an impulse response in discrete=-
time filters. Many approximation techniques in a
time domain based on the linear relations have been
proposed 41 - (7] . They are, however, directed
toward only time response approximation.
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TIME RESPONSE OPTIMIZATION BY LINEAR EQUATIONS

Desired time responses are mainly classified
into the following itwo categories.
(1) Desired time response values are given.
(2) Desired time response properties are given.
The first category includes, for instance, thas Ny-
quist waveform zero crossing at equally spaced
sampling points., Symmetrical impulse responses
and minimum moment impulse responses are contained
in the second categoery.

The transfer function H(z) can be generally
expressed as

B(z) =gpo(z) , 2 = &7 (1)

where P(z) and Q(z) are polynomials of z=1 and G(z)
is a rational function of z~'. P(z) and Q(z) are
used to optimize a time response, and a frequency
response is approximated by G(z).

Time Response Values Specified
Letting dn be a desired time response, time
response approximation is carried out based on

Pz Ng-1 -
7§%E§G(z) = 350 az™", (2)

where N3 is a number of specified impulse response
samples. G(z) can be assumed to be a fixed func-
tion as will be discussed in an approximation algo-
rithm. From Eq. (2)

Nd"1
P(2)G(2z) = ( X dnz"")q(z) (3)
n=0
Letting
Np—1 .
P(z) = 3 ppz™ (4a)
: n=0
Ng-1
(z) = > qpz® (4b)
n=0
00
G(z) = 3 grz ™™ (4c)
n=0

Eg. (3) can be rewritten as

nq np
Y Pm8n-m = Y 9mdn-ms O =n X N1
m=0 m=0

ny = min{Np-1, n} (5)

n, = min{Nq-1, n}.



When Ny is equal to or less than Ny + Ny - 1,
exact interpolation can be obtaineg by solving
linear equations Eq. (5). On the other hand, if
Ng is larger than Ny + Ng - 1, a least square
approximation technique is required to optimize a

time response through linear equations. A squared
error is evaluated by .
Ng-1 nq np 2
E; = T (Y Pnén-m - qudn-m) (6)
n=0 m=0 m=0

The optimum pp and gy in the least mean square
senge are obtained by solving

ok,

35 = Oy m= 0, 15 oeay Np=1 (72)
E
%q—; =0, m=0, 1, cauy Nq" (Tb)

When P(z) is only employed to optimize a
time response, the error evaluation by Eq. (6) is
directly related to the impulse response error.
However, the employment of the Q(z) coefficients
"or time response approximation does not assure
.irect evaluation of the impulse response error.
Letting the impulse response error be Ahp, Egq. (6)
can be rewritten as

nq n2
¥ Pufaem = 3 9n{dp-m - Ahpom) = 0, 0 £ n < Ng-1
m=0 m=0

(8)
From Eqs. (6) and (8), the following error is
minimized by solving Eq. (7),
Nd—1 n2 2
By = 3 (% anth, ) (9)
n=0 m=0

Thus, the impulse response error is minimized with
Q(z) as a weighting function.

Time Response Property Specified

A symmetrical impulse response is taken as a
desired time response property in the following
discussions.
(1) Numerator Coefficients

When P(z) is only used to optimize the time
response, the impulse response can be expressed as

1= Z Pmfnonm (10)
m=0

Letting K be the sampling point corresponding to
the average delay time, the condition for a sym-
metrical impulse response is expressed as

hyn=hgp, 1€ ngK (1)
From Eqs.(10) and (11),
n1+ n.l_

Z Pm€4n-m = L Pp8-n-ms 1< nS K
m=0 K+ m-=0m

ny, = min{Np-1, K+n} (12)
nq_ = min{Np-1, K-n}

When a number of the sampling points at which Egj.
(11) must be satisfied is equal to or less than Npo
exzct symmetrical impulse response at the specified
sampling points can be obtained through linear
equations by Eq. (12). When the number of the
specified sampling points is larger than N_, the
least square approximation is required. A squared
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error is expressed as

B = x (5 ) )2 (13)
2 = PnfK+4p-m = 2 RySk-n-m

nefoy m=0 n-m m=0pm
where 2, is a set of sampling points at which the

symmetrical conditions must be satisfied, The
optimum solutions are obtained by

.g_%‘ =0, m=0, 1, ey N1 (14)
The error evaluation by Eq. (13) is directly re-
lated to the impulse response error.
(2) Numerator and Denominator Coefficients

When the denominator coefficients are employed,
the time response is not directly optimized through
linear equations.Modification is necessary in order
to formulate linear equations of the filter co-

efficients. In this paper, a two stage approxi-
mation method is proposed. P(z)/0(z) is expressed
as
©
Z: = T fan (15)
n=0

First stage approximation for the symmetrical im-
pulse response is carried out through linear equ-
ations using the modified coefficients fy, and p,
and q, are determined by also linear equations so
as to epproximate the resulting fy at the second
stage. The first stage approximation employs the
same number of the modified coefficients fj, as
that of specified sampling points, and produces no
approximetion errors.

Error evaluation for the symmetry of the im-
pulse response requires further discussions., Let-
ting f¥ be the result at the first stage approxi-
mation, and fn be an impulse response of P(z)/Q(z)
obtained at the second stage, then f,; and f¥ can
be related as

fn = £ + Of% (16)
where Af; is an approximation error produced at

the second stage. From Eq. (9); the following
error function is minimized at the second stage.

n
3

E3 = % (X apaf¥ ), n3 = min{K,-1, n} ()
neﬂz m=0

As mentiomed in Eg. (9), the approximation error
for the impulse respense of P(z)/Q(z) is not
directly evaluated. It includes Q(2) as a weight-
ing function. The whole impulse response using
f;, becomes

ng
hy = mzo(f; + Af%)&n-ms ny = minfNg-1, n} (18)

The difference between the impulse response sam-
Ples located at symmetrical sampling points can
be expressed as
n4+ n4_
(hK+n - hK-n) = 2 fmgK+n—m - E fmg}(-n—mv
m=0 m=0

minfNg-1, K+n}
min{Nd-1 s K-n}

n4+
ny_
The error Af* is minimized with Q(z) as a weighting
function at g}ze second stage, and the final impulse

(19)



response error is evaluated with G(z) as a weight-
ing function. .

APPROXIMATION ALGORITHM

Based on the discussions in the previous

section, the following approximation algorithm is
introduced.

{1) Time response optimization is carried out
through linear equations, and its optimum solution
is always guaranteed during a frequency response
optimization procedure.

(2) A frequency response is optimized through it-
erative methods taking a weighting function P(z)/
Q(z) into account.

Design Flow Chart

Fig.1 shows a flow chart for the proposed sim-
ultaneous frequency and time domain approximation
method. In Fig.1, X4 and Xp mean sets of the P(z)/
Q(z) coefficients and the G%z) coefficients, res-
pectively. A matrix [A] and a vector C include X
as constant coefficients. The iterative Chebyshev
approximation method 183 is employed for frequency
response optimization.

(4) Initial Guess for X,

A transfer function is usually identified by
two kinds of frequency responses. On the other
hand, a time response can uniquely identify the
transfer function. For this reason, the filter co-
efficient initialization based on a desired time
response is effective.

(5) ~ (8) Iterative Chebyshev Approximation

The frequency response is optimized in blocks
(5) ~ (8) using the G(z) coefficients. The trans-
fer function in these blocks can be expressed as

H(z, Xy, Xp) (21)
X, is obtained as the solution of the linear equ~
ations in block (5), including X, optimized through
the iterative method. By evaluating the frequency
response error using X; obtained in block (5), the
time response optimization is automatically
achieved.

DESIGN EXAMPLE

Image signal transmitting filters are taken
as design examples.
Specifications and Design Parameters

Table 1 shows filter response specifications
and design parameters.
Initial Guess for Filter Coefficients: The initial
guess for the filter coefficients is obtained
through the Padé approximation using the ideal im-
pulse response shown in Fig.2(b). The frequency
response is also shown in Fig.2(a) where fp and fg
are taken as 45Hz and 55Hz, respectively. The fac-
tors, consisting of two zeros appear in the pass-
band, are taken as X1. The remaining factors are
used as Xp.
Specification for Time Response: The exact symme-
trical condition is imposed on the impulse response
samples designated by the symbol * in Fig.2(b).
Desired Time Response

Both passband ripple and stopband attenuation
are specified in such filters. Time response
distortion is caused by group delay distortion and
an asymmetrical waveform results. Hence, a symme-
trical waveform is taken as the time domain target.
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Filter Responses Optimized
Among the design parameters, 12/12th-order
allocation and 20T average delay time provide

excellent frequency response. In the case of
12/12th-order filter approximation, a pole and zero

Pair which mostly cancel each other appear in the
passband. Therefore, the optimization was conti-
nued after removing them, and the 11/11th-order fil-
ter results, Figs.3(a), (b) and (c) show the re=
sulting amplitude response in dB, impulse response
and pole-zero locations, respectively. The zeros
shown by ® in Fig.3(c) correspond to Xq and are
used for the time response optimization,.

Comparison with Conventional Methods: Linear phase
FIR filters designed through the Remez-exchange
method require 73 tap filter lengths to meet the
same frequency response in Fig.3(a). Thus, the
proposed method can reduce the filter circuit com-
plexity. As mentioned previously, all-pass func-
tions can be used for time response optimization.

This approach was tried in this paper, and a 6th-
order elliptic filter with a 8th-order all-pass
function results. The conventional method requires
high filter order compared with the proposed ap-
proach,

CONCLUSION

A simultaneous frequency and time domain ap-
proximation method for discrete-time filters is
proposed, Time response optimization is carried
out through linear equations. The optimum solution
is always guaranteed during the frequency response
optimization. This approach does not impose any
constraints on pole-zero locations and filter res-
ponses. Hence, sufficient reduction in filter cir-
cuit complexity can be achieved.

Approximation error criteria in the linear
equation algorithm are resiricted to two categories
including exact interpolation and the least mean
square error. By extending the linear equation
method to linear programming methods, it will be
possible to approximate a time response in the
weighted Chebyshev sensge.
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Fig.1 Design flow chart for proposed simultaneous response

frequency and time domain approximation method. 0.2
Table 1 Specifications and design parameters
Sampling Rate 400Hz
Passband 0 — 49Hz
Stopband 59 — 200Hz 0l
Filter Order Allocations 20/4,16/8,12/12 * *
Average Delay Time 127, 16T, 20T, 24T,
T=1/400Sec. * *
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Fig.2 Ideal filter responses for initial guess cal-~ Fig.% Optimized filter responses with 11/11th-order
culation., (a)implitude response. (b)Impulse res- and 20T average delay. (a)Amplitude response in
ponse. Symmetrical conditions are imposed on dB. (b)Impuse response. (c)Pole-zero locations.
samples designated by *. Zeros shown by ® correspond to Xj.
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