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FINITE ELEMENT ANALYSIS OF NONLINEAR DYNAMIC MAGNETIC FIELD
WITH DC COMPONENT IN THE HARMONIC DOMAIN

S. YAMADA, 1 P.P. BIRINCER, K. HIRANO and K.BESSHO

Faculty of Technology, Kanazawa University, Kodatsuno 2-40-20, Kanazawa, Japan
} Dept. of Electrical Engineering, University of Toronto, Ontario, M55 1A4, Canada

Abstract - This paper describes the harmonic balance
finite element method to analyie steady-state dynamic
nonlinear problems with dc magnetization. The feature
of the approach is that the feld calculation is carried
out in the harmonic domain. We discuss the analysis of

a pot-core type transformer for high frequency convert-
ers.

INTRODUCTION

We have proposed the harmonic balance finite element
method (HBFEM) for the steady-state analysis of nonlinear
dynamic magnetic fields in the harmonic domain(frequency
domain)|1]. However, the earlier published [IBFEM ecan not be
used unless the syslem operates with syminetrical ac waveform.
Therefore, it is impossible to analyze transformers for dc-dc
converters and smoothing reactors. The reason is that all vari-
ables are approximated by the sum of the fundamental com-
ponent and odd-order harmonics. [lere the d¢ component and
even-order harmonics are alse cousidered, thus the HBFEM is
extended to more general nonlinear dynamic problems.

The paper describes the formulation of the HBFEM for non-
linear field problems with superposition of de¢- and ac-
magnetizations. We apply this method Lo the analysis of both a

simple smoothing reaclor and the pot-core type transformer for
high frequency converter.

FORMULATION

We consider nonlinear eddy-current problems and make the
following assumptions:

(1) The field is 2-dimensional.

(2) The problem is quasi-stationary and the displacement
current 18 not considered.

(3) The saturation and hysteresis characteristic of the core
are nonlinear.

{4) The material is isotropic,
(5) All variable are in time-periodic steady-state.
Using Galerkin’s method, the vector potential A=(0,0,4} in
2-D Cartesian coordinates satisfies the following:
]d.’zdy — ff[J, + J,]N,- dzdy= 0
i

e
(1)

gy | By
where ~ 1s the magnetic reluctivity., N, is the shape function

of the [irst-order triangular elemeni as a weighting function.
The eddy-current density J, i3 expressed as
J=—o| A 4 22 (2)

o Jz
where ¢ 13 the scalor potential and ¢ is the conductivity. [n

the eddy-current region, the following complementary condition
is salislied:

\

fﬂ.f, dS=0 (3)

According to the Weierstrass Approximation Theory, any
periodic continuous variable can be approximated by orthonor-

mal functions of finite order within arbitrary error. The
assumption (5) states that the vector potential 4 and other vari-
ables can be expressed by the trigonometric function, Therefore,
vector potential, applied current density, and flux density are
expressed as

A=A+ T ALsin(nwt) + AL, cos(nwt) (4a)
h=123..

J()=Jdo+ ¥ Jpsin(nwt) + J,.cos(nwt) {1b)
n=1123..

B;(t) =8B+ I B:nlsi"{ﬂw"‘) + Binecos(nwt) ('1[")
h=},23.,

Bi{t)=Byo + T Bpsin(nwt) 4+ B, cos(nwl) (4d)

n=l23..

According to the assumption (3), the magnetizing curve of 2
core is expressed as

H(B) = HyulB) + Hy(BY (5)

where B=‘\/BE+B§, . The first term indicates saluration and
the second hysteresis{2]. When the fux density is given, we cal-
culate the waveform of the reluclivity during a single cycle and
obtain in the Fourier expansion

H({B

8 n-E,E...

It) == Uns8it(RWt) + U cos(nuwt) (6)
where v , v,, , and v,, are the coeflicients of the Fourier

transformation. We numerically compute the coellicients when
using the HBFEM.

The term ¢ / dz of [5q.(2) is zero in the 2-dimensional case.
However in order to satisfy the complementary condilion, we
agsume that it is constant. Hence we have

where

By substituting Eq.(4) into (7), we obtain

C= Y C, ‘sin{nwt) + Cp ‘cos{nwt) (9)
e n=1,23..
Co= 5 TEE(AL 4 AL+ AY) (102)
coil element
Cum= B BB (AL + AL+ AY) (10b)
S= ¥ A (10c¢)

coil element
Af indicate the cross-section of an element e. By substituting
Bqs.{4),(6) and (9) into (1), we carry out the formulation of
HBFEM|[1|. We have a malrix equation flor a single clement
with the nodes (z, y,)(1=1,2,3)

i T
(b1b1tc cy)D (bybateycq)D (b1bate,e3)D
(bzbyteae;)D (bybyteyes)D (babyteges)D
L(5351+E3¢1)D (b;b:+¢3¢1)ﬂ (b;b;‘**f;ﬂa)ﬂ
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A 2N N N
+=5 1N 2N Ni{Aa}={K}-{R) (11)
N N 2N
where
biﬂuj—-yk, E,'EI*—II (12&)

A}B{Aé ALAL' Ai"déf‘*' AE A%:AE:ALA‘;:'”

Af AL AL A3, A3 - )T (12b)
ﬁl
{K}= 3 {Jﬂ Jh Jlr J!l J!r' Ju Jh‘!lt J!l J!t
Jo Y1 Jie a2 J2e ¥ (12c)
R oA’
{R}=——{0 G1, G\ C1u Ca -+ 0 Cy, €y Oy, €,
0 Cy Oy Cy, Cyq* }T (12(1)

The reluctivity rnatrix D and the harmonic matrix N are given
by

R 1, Ve Y2 e
21y, ph—ly ta, Vie—ie —iqating,
1 |2¥e Wtine Yty Yty 3
D= 2 | 2t SLp—Vye Vs ( )
p i symmelry 24y,
0 0 0 0 O
O 0 1 0 ¢
0O —-10 0 O
= i4
N 0 0 0 0 2 ( )
O 0 0 -210 )

The structure of the system equation is identical to the one
given in a previous paper|l|. Note that Lhe reluctivity matrix D
and the harmonic matrix N are changed.

We consider the formulation of the HBFEM in axisymmetric
coordinates. Fortunately the process is the same as the one
shown above, We have for a single element with the nodes
[I"',*, !t')(l':=1, 2, 3)

(blbl+¢1l:1]ﬂ (b1b1+ﬂiﬂg)ﬂ tblba,'i'ﬂl#;)ﬂ
(b2by+egei)D (babdategea)D (brby+eses)D|{ Ay )
(bgbl'}'t;cl)ﬂ (flgb=+¢3ﬂg}ﬂ [b;bg+¢3¢3)ﬂ

Fe

4A"

] T -
| (by+by)D (by+b3)D (b;+b3)D . |DDD
+ Py (by+8,)D (b2+85)D (by+b3)D|{ Ay} +T D D D|{4,}
(63401 )}D (b3+b)D (b3+bs)D e D DD
2N N N]
r.OWA
~+ T N 2N N {A;}ﬂ{ff;}—{ﬂi} (15)
N N 2N
where
b" TR T Ly & = Tk — rj (16)
Here the vectors are given by
(A ) ={A) AL, Al AL AL -+ A§ AL, AL A), AL -+
A% A:lll -A?, Agl A-gc e }T (173)
T
{Kl}“[{fﬂ YK Y (K} }T} (17b)

(R4 }= [{Rl ¥ { R} }* { R} }T}T (17¢)

where
.{1' r

(k)= 2"

{ JD I-',I'lll Jit Jh J!: }T {183)

gA*

{Ri-i}""ﬂ"_{n Cil cﬂh C‘h C‘h }T (181))
Cl, = nwh + =)A!
™ E#ﬂEMHI 15 l'-l,l.-i(r: 3] " [ISE]
T il v+ L)AL 18
coil Emm 45 i-?!.l( 3 (184)

The block matrices D and N are idenlical to the ones in Ees.(13)
and (14).

YERIFICATION OF THE FORMULATION

Let us consider the eddy current-free smoothing reactor with
an air gap as shown in Fig.1{a). The magnetic core is composed
of Mn-Zn ferrite with the magnetizing curve shown in Fig.1{b).
The hysteresis is not taken into consideration in this model.
Figs.2 and 3 show the flux distribution for each harmonic and
the waveform of flux density when the wavelorm of the magnel-
izing current is approximately triangular as shown in [Mig.3. T'he
caleulation takes into account + all harmonics up to the 5-Lh.
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Number of turns = 120 - (b) Magnetizing curve
(a) Configuration and dimensions (Mn-Zn ferrite)

Fig.1 Smoothing reactor
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Fig.2 Flux distribution of each component of magnetization
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Fig.3 Waveform of flux density in the core
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(a) Experimental resulis (b) Calculated results

Fig.4 Comparisons of lux density waveforms
The circles in Fig.3 indicate the calculated values obtained by
the static FEM[3]. Good agreement exists between the values
obtained by the FEM and the HBFEM.

Fig.4 shows the comparison between the calculated and the
experimental results. The harmonics of current density up to
the 5-th are considered in the HBI'EM. The de magnetization
yields an asymmetric waveform of flux density in spite of the
triangular magnetizing current density waveform.

APPLICATION TO HIGH FREQUENCY TRANSFORMERS

Fig.b shows the axisymmetrical pot-core transformer of a high
frequency resonant-type converter. The transformer has rela-
tively high wide air-gap to store the resonant energy. Due to
leakage Aux, eddy currents are induced in the low-voltage wind-
ing. As the cross-section of the high-voltage primary winding is
smaller than that of the secondary, it is sufficient to consider
the eddy currents in the secondary winding. The operating fre-
quency is about 1 MHz. Fig.6(a) shows the B-H curve at the
operating frequency. Based on the measured data, we approxi-
mate the magnetizing curve with hysteresis by Eq.(19):

H = 5.15X10°B + 9.o1><10-5-“£ {19)

Fig.5 Pot-core type
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The approximated B-H cutve is shown in Fig.6(b).

Fig.7 shows the flux distribution of each harmonic. In this
analysis, both dc and ac components up to the 2-nd harmonic
are taken into consideration. Note that the eddy currents in the
low-voltage coil prevent the fundamental flux leakage al the
air-gap. ¥ig.8 shows the current density distribution in the coil.
The dotted line indicates the average current density. Since
the total current equals to the applied current, the result shows
high current density at the surfaces of the coil. Unforty-
nately, this distribution yields high eddy-current losses.
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Fig.8 Distribution of current density

CONCLUSIONS

We proposed a new type of finile element analysis in the har-
monic domain, The merit of the HBFEM is that the calculated
results of the frequency characteristics arc applicable for
design.
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