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ABSTRACT

We use the Kossakowski-Lindblad-Davies formalism to study an open dynamical sys-
tem defined as Markovian extension of the one-mode quantum resonator S, perturbed by
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1 Introduction

A quantum Hamiltonian system with time-dependent repeated harmonic interaction was
proposed and investigated in [TZ]. The corresponding open system can be defined through
the Kossakowski-Lindblad-Davies dissipative extension of the Hamiltonian dynamics. In
our paper [TZ1] the existence and uniqueness of the evolution map for density matrices
of the open system are established and its dual W ∗-dynamics on the CCR C∗-algebra was
described explicitly.

Behind our model [TZ], there is a physical phenomenon known as ”one-atom maser”
[MWM], when the pumping of a resonator (or a quantum cavity) is caused by a chain
of atoms which proceed one-by-one through the cavity. The mathematical study of this
repeated interaction system first appeared in [AP].

The quality factor of the leaky cavity measures the effect of losses and indicates that
the system is open. For mathematical description of the leaky cavity we use in this
paper a well-known Kossakowski-Lindblad-Davies formalism for Markovian approach to
dissipative dynamics of open systems [AJP2].

Note that a subtle point of analysis is the nature of the atom-cavity interaction. A
standard motivated by the quantum optics choice is the Jaynes-Cummings inelastic inter-
action of two-level atoms with a one-mode resonator [BJM]. Instead of this interaction,
a purely elastic one, which does not change the ”hard” atom internal state, was consid-
ered in [NVZ] both for the isolated and for the leaky cavity. It was found there that the
properties of these two models for repeated perturbation are drastically different.

This motivated us to study repeated inelastic interaction for a very ”soft” multi-level
atoms. To this aim we proposed in [TZ] an exactly soluble model of an isolated system
with Hamiltonian dynamics generated by repeated interaction of a one-mode resonator
(cavity) with atoms, which have infinitely many harmonic levels of internal states, when
the interaction is linear. We call it the harmonic perturbation of the cavity.
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In the present paper we consider the open version of the model [TZ] with dynamics à
la Kossakowski-Lindblad-Davies [TZ1]. Our aim is to analyse the long-time asymptotic
behaviour and the quantum correlations of subsystems for this open system.

Let a and a∗ be the annihilation and the creation operators defined in the Fock space
F generated by a cyclic vector Ω (vacuum). That is, the Hilbert space F is the com-
pletion of the algebraic span Ffin of vectors {(a∗)mΩ}m>0 and a, a∗ satisfy the Canonical
Commutation Relations (CCR)

[a, a∗] = 1l, [a, a] = 0, [a∗, a∗] = 0 on Ffin. (1.1)

We denote by {Hk}N
k=0 the copies of F for an arbitrary but finite N ∈ N and by H (N)

the Hilbert space tensor product of these copies:

H (N) :=
N⊗

k=0

Hk = F⊗(N+1) . (1.2)

In this space we define for k = 0, 1, 2, . . . , N the operators

bk := 1l ⊗ . . . ⊗ 1l ⊗ a ⊗ 1l ⊗ . . . ⊗ 1l , b∗k := 1l ⊗ . . . ⊗ 1l ⊗ a∗ ⊗ 1l ⊗ . . . ⊗ 1l , (1.3)

where operator a (respectively a∗) is the (k + 1)th factor in (1.3). They satisfy the CCR:

[bk, b
∗
k′ ] = δk,k′1l, [bk, bk′ ] = [b∗k, b

∗
k′ ] = 0 (k, k′ = 0, 1, 2, . . . , N) (1.4)

on the algebraic tensor product (Ffin)
⊗(N+1).

Recall that non-autonomous system with Hamiltonian for time-dependent repeated
harmonic perturbation proposed in [TZ] has the form

HN(t) := Eb∗0b0 + ε

N∑
k=1

b∗kbk + η

N∑
k=1

χ[(k−1)τ,kτ)(t) (b∗0bk + b∗kb0) . (1.5)

Here t ∈ [0, Nτ), the parameters: τ, E, ε, η are positive, and χ[x,y)(·) is the characteristic
function of the semi-open interval [x, y) ⊂ R. Operator HN(t) is self-adjoint on the
time-independent domain

D0 =
N∩

k=0

dom (b∗kbk) ⊂ H (N) . (1.6)

The model (1.5) presents the system S + CN , � E�where S is the quantum one-mode
cavity, which is repeatedly perturbed by a time-equidistant chain of subsystem: CN =
S1 + S2 + . . . + SN . Here {Sk}k≥1 can be considered as atoms with harmonic internal
degrees of freedom. This interpretation is motivated by certain physical models known
as the “one-atom maser” [BJM], [NVZ]. The Hilbert space HS := H0 corresponds to
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subsystem S and the Hilbert space Hk to subsystems Sk (k = 1, . . . , N), respectively.
Then (1.2) is

H (N) = HS ⊗ HCN
, HCN

:=
N⊗

k=1

Hk . (1.7)

By (1.5) exactly one subsystem Sn (atom) interacts with S for t ∈ [(n − 1)τ, nτ). In this
sense, the interaction is tuned [TZ]. The system S + CN is autonomous on each interval
[(n − 1)τ, nτ) governed by the self-adjoint Hamiltonian

Hn := E b∗0b0 + ε
N∑

k=1

b∗kbk + η (b∗0bn + b∗nb0) , n = 1, 2, . . . , N , (1.8)

on domain D0. Note that if
η2 6 E ε , (1.9)

Hamiltonians (1.5) and (1.8) are semi-bounded from below.
We note that Hamiltonian (1.8) is gauge-invariant : e−iφNN Hne

iφNN = Hn, φ ∈
R (conserve the total number of bosons), but it is not locally gauge-invariant since
e−i(φ0b∗0b0+φnb∗nbn)Hnei(φ0b∗0b0+φnb∗nbn) 6= Hn for nontrivial φ0 6= φn. Here NN =

∑N
k=0 b∗kbk

denotes the total number operator for bosons in the system S + CN .

We denote by C1(H (N)) the Banach space of the trace-class operators on H (N). Its
dual space is isometrically isomorph to the Banach space of bounded operators on H (N):
C∗

1(H
(N)) ' L(H (N)). The corresponding dual pair is defined by the bilinear functional

〈φ |A〉H (N) = TrH (N)(φA) for (φ,A) ∈ C1(H
(N)) × L(H (N)) . (1.10)

The positive operators ρ ∈ C1(H (N)) with unit trace is the set of density matrices.
Recall that the state ωρ over L(H (N)) is normal if there is a density matrix ρ such that

ωρ( · ) = 〈ρ | · 〉H (N) . (1.11)

1.1 Master equation

To make the system S + CN open, we couple it to the boson reservoir R, [AJP3]. More
precisely, we follow the scheme (S + R) + CN , i.e. we study repeated perturbation of the
open system S + R [NVZ].

Evolution of normal states of the open system (S + R) + CN can be described by the
Kossakowski-Lindblad-Davies dissipative extension of the Hamiltonian dynamics to the
Markovian dynamics with the time-dependent generator [AL], [AJP2]

Lσ(t)(ρ) := −i [HN(t), ρ] + (1.12)

+Q(ρ) − 1

2
(Q∗(1l)ρ + ρQ∗(1l)) ,
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for t > 0 and ρ ∈ domLσ(t) ⊂ C1(H (N)). Here the first operator Q : ρ 7→ Q(ρ) ∈
C1(H (N)) in the dissipative part of (1.12) has the form:

Q(·) = σ− b0 (·) b∗0 + σ+ b∗0 (·) b0 , σ∓ > 0 , (1.13)

and the operator Q∗ is its dual via relation 〈Q(ρ) |A〉H (N) = 〈ρ |Q∗(A)〉H (N) :

Q∗(·) = σ− b∗0 (·) b0 + σ+ b0 (·) b∗0 . (1.14)

By virtue of (1.5), for t ∈ [(n − 1)τ, nτ), the generator (1.12) takes the form

Lσ,n(ρ) := −i[Hn, ρ] + Q(ρ) − 1

2
(Q∗(1l)ρ + ρQ∗(1l)) . (1.15)

The mathematical problem concerning the open quantum system is to solve the Cauchy
problem for the non-autonomous quantum Master Equation [AJP2]

∂tρ(t) = Lσ(t)(ρ(t)) , ρ(0) = ρ . (1.16)

For the tuned repeated perturbation, this solution is a strongly continuous family {T σ
t,0}t≥0,

which is defined by composition of the one-step evolution semigroups:

T σ
t,0 = T σ

t,(n−1)τ T σ
n−1 . . . T σ

2 T σ
1 ,

where t = (n − 1)τ + ν(t), n 6 N, ν(t) < τ . Here we put

T σ
k := T σ

k (τ), T σ
k (s) := esLσ,k (s > 0), (1.17)

and then T σ
t,(n−1)τ = T σ

n (ν(t)) holds. The evolution map is connected to solution of the

Cauchy problem (1.16) by
T σ

t,0 : ρ 7→ ρ(t) = T σ
t,0(ρ). (1.18)

The construction of unique positivity- and trace-preserving dynamical semigroup on
C1(H (N)) for unbounded generator (1.15) is a nontrivial problem. It is done in [TZ1]
under the conditions (1.9) and

0 6 σ+ < σ− . (1.19)

for the coefficients in (1.13, 1.14). Then, {T σ
k (s)}s>0 for each k (1.17) is the Markov

dynamical semigroup, and (1.18) is automorphism on the set of density matrices.

1.2 Evolution in the dual space

In order to control the evolution of normal states, it is usual to consider the W ∗-dynamical
system (L(H (N)), {T σ ∗

t,0 }t>0), where {T σ ∗
t,0 }t>0 are weak*-continuous evolution maps on

the von Neumann algebra L(H (N)) ' C∗
1(H

(N)) [AJP1]. They are dual to the evolution
(1.18) on C1(H (N)) by the relation (1.10):

〈T σ
t,0(ρ) | A〉H (N) = 〈ρ | T σ ∗

t,0 (A)〉H (N) for (ρ,A) ∈ C1(H
(N)) × L(H (N)) , (1.20)
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which uniquely defines the map A 7→ T σ ∗
t,0 (A) for A ∈ L(H (N)). The corresponding dual

time-dependent generator is formally given by

L∗
σ(t)(·) = i [HN(t), · ] + (1.21)

+Q∗(·) − 1

2
(Q∗(1l)(·) + (·)Q∗(1l)) for t > 0 .

When t ∈ [(k − 1)τ, kτ), the above generator has the form

L∗
σ,k(·) = i[Hk, ·] + Q∗(·) − 1

2
(Q∗(1l)(·) + (·)Q∗(1l)) . (1.22)

We adopt the notations

T σ ∗
k = T σ

k (τ)∗ , T σ ∗
t, (n−1)τ = T σ

n (ν(t))∗ , and T σ
k (s)∗ := esL∗

σ,k (s > 0) , (1.23)

dual to (1.17) for t = (n − 1)τ + ν(t), n 6 N , ν(t) < τ . Then, we obtain

T σ ∗
t,0 (A) = T σ ∗

1 T σ ∗
2 ... T σ ∗

n−1T
σ ∗
t,(n−1)τ (A) for A ∈ L(H (N)) . (1.24)

Let A (F ) (or CCR(C) ) denote the Weyl CCR-algebra on F . This unital C∗-algebra
is generated as operator-norm completion of the linear span Aw of the set of Weyl oper-
ators

ŵ(α) = eiΦ(α) ( α ∈ C ), (1.25)

where Φ(α) = (αa + αa∗)/
√

2 is the self-adjoint Segal operator in F . [The closure of
the sum is understood.] Then CCR (1.1) take the Weyl form

ŵ(α1)ŵ(α2) = e−i Im(α1α2)/2 ŵ(α1 + α2) for α1, α2 ∈ C . (1.26)

We note that A (F ) is contained in the C∗-algebra L(F ) of all bounded operators on F .
Similarly we define the Weyl CCR-algebra A (H (N)) ⊂ L(H (N)) over H (N). This

algebra is generated by operators

W (ζ) =
N⊗

j=0

ŵ(ζj) for ζ =


ζ0

ζ1

·
·
·

ζN

 ∈ CN+1 . (1.27)

By (1.3), the Weyl operators (1.27) can be rewritten as

W (ζ) = exp[i
(
〈ζ, b〉 + 〈b, ζ〉

)
/
√

2] , (1.28)

where the sesquilinear form notations

〈ζ, b〉 :=
N∑

j=0

ζ̄jbj, 〈b, ζ〉 :=
N∑

j=0

ζjb
∗
j (1.29)
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are used. Let us recall that A (H (N)) is weakly dense in L(H (N))[AJP1].

Explicit formulae for evolution operators (1.23) acting on the Weyl operators has been
established in [TZ1]. For n = 1, 2, . . . .N , let Jn and Xn be (N + 1) × (N + 1) Hermitian
matrices:

(Jn)jk =

{
1 (j = k = 0 or j = k = n)

0 otherwise
, (1.30)

(Xn)jk =



(E − ε)/2 (j, k) = (0, 0)

−(E − ε)/2 (j, k) = (n, n)

η (j, k) = (0, n)

η (j, k) = (n, 0)

0 otherwise

. (1.31)

We define the matrices

Yn := εI +
E − ε

2
Jn + Xn (n = 1, . . . , N) , (1.32)

where I is the (N + 1)× (N + 1) identity matrix. Then Hamiltonian (1.8) takes the form

Hn =
N∑

j,k=0

(Yn)jkb
∗
jbk. (1.33)

We also need the (N + 1) × (N + 1) matrix P0 defined by (P0)jk = δj0δk0 (j, k =
0, 1, 2, . . . , N). Then one obtains the following proposition which is proved in [TZ1]:

Proposition 1.1 Let n = 1, 2, . . . , N and ζ ∈ CN+1. Then for s > 0, the dual Markov
dynamical semigroup (1.23) on the Weyl C∗-algebra has the form

T σ∗
n (s)(W (ζ)) = Ωσ

n,s(ζ)W (Uσ
n (s)ζ) , (1.34)

where

Ωσ
n,s(ζ) := exp

[
− 1

4

σ− + σ+

σ− − σ+

(
〈ζ, ζ〉 − 〈Uσ

n (s)ζ, Uσ
n (s)ζ〉

)]
(1.35)

and

Uσ
n (s) = exp

[
i s

(
Yn + i

σ− − σ+

2
P0

)]
(1.36)

under the conditions (1.9) and (1.19). Therefore, the k-step evolution (t = kτ, k 6 N in
(1.24)) of the Weyl operator is given by

T σ ∗
kτ,0(W (ζ)) = exp

[
− σ− + σ+

4(σ− − σ+)

(
〈ζ, ζ〉 − 〈Uσ

1 . . . Uσ
k ζ, Uσ

1 . . . Uσ
k ζ〉

)]
× W (Uσ

1 . . . Uσ
k ζ) , (1.37)

where T σ ∗
kτ,0 = T σ ∗

1 T σ ∗
2 . . . T σ ∗

k and Uσ
n := Uσ

n (τ).
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Remark 1.2 The explicit expression of the matrix Uσ
n (t) in (1.36) is given by Uσ

n (t) =
eitεV σ

n (t), where

(V σ
n (t))jk =


gσ(t)zσ(t) δk0 + gσ(t)wσ(t) δkn (j = 0)

gσ(t)wσ(t) δk0 + gσ(t)zσ(−t) δkn (j = n)

δjk (otherwise)

. (1.38)

Here Eσ := E + i (σ− − σ+)/2 and

gσ(t) := eit(Eσ−ε)/2, wσ(t) :=
2iη√

(Eσ − ε)2 + 4η2
sin t

√
(Eσ − ε)2

4
+ η2 , (1.39)

zσ(t) := cos t

√
(Eσ − ε)2

4
+ η2 +

i(Eσ − ε)√
(Eσ − ε)2 + 4η2

sin t

√
(Eσ − ε)2

4
+ η2 . (1.40)

Note that the relation zσ(t)zσ(−t) − wσ(t)2 = 1 holds for any σ± > 0, whereas one has
|gσ(t)|2(|zσ(t)|2 + |wσ(t)|2) < 1 and zσ(−t) 6= zσ(t) for 0 6 σ+ < σ−.

Hereafter, together with (1.37) we also use the following short-hand notations:

gσ = gσ(τ), wσ := wσ(τ), zσ = zσ(τ) and V σ
n := V σ

n (τ) . (1.41)

Remark 1.3 Dual dynamical semigroups (1.34) and the evolution operator (1.37) are
examples of the quasi-free maps on the Weyl C∗-algebra. Using the arguments of [DVV],
we have shown in [TZ1] that they can be extended to the unity-preserving completely
positive linear maps on L(H (N)) under the conditions (1.9) and (1.19).

The aim of the rest of the paper is to study evolution of the reduced density matrices
for subsystems of the total system (S + R) + CN .

In Section 2, we consider the subsystem S. This includes analysis of convergence to
stationary states in the infinite-time limit N → ∞. We also perform a similar analysis for
the subsystems S +Sm and Sm +Sn. Section 3 is devoted to a more complicated problem
of evolution of reduced density matrices for finite subsystems, which include S and a part
of CN . This allows us to detect an asymptotic behaviour of the quantum correlations
between S and a part of CN caused by repeated perturbation and dissipation for large N
in terms of those for small N with the stable initial state.

For the brevity, we hereafter suppress the dependence on N of the Hilbert space H (N)

as well as of the Hamiltonian HN(t) and the subsystem CN , when it will not cause any
confusion.

2 Time Evolution of Subsystems I

2.1 Subsystem S

We start by analysis of the simplest subsystem S. Let the initial state of the total system
S + C be defined by a density matrix ρ ∈ C1(HS ⊗HC). Then for any t > 0, the evolved
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state ωt
S(·) on the Weyl C∗-algebra A (HS) of subsystem S is given by the partial trace:

ωt
S(A) = ωρ(t)(A ⊗ 1l) = TrHS⊗HCN

(T σ
t,0(ρS ⊗ ρC) A ⊗ 1) for A ∈ A (HS) , (2.1)

where ρ(t) = T σ
t,0ρ and 1l ∈ A (HC). Recall that for a density matrix % ∈ C1(HS ⊗ HC),

the partial trace of % with respect to the Hilbert space HC is a bounded linear map
TrHC : % 7→ %̂ ∈ C1(HS) characterised by the identity

TrHS⊗HC(% (A ⊗ 1l)) = TrHS (%̂ A) for A ∈ L(HS) . (2.2)

If one puts
ρS(t) := TrHC(T

σ
t,0(ρ)) , (2.3)

then one gets the identity

ωt
S(A) = TrHS (ρS(t) A) =: ωρS(t)(A) , (2.4)

by (2.1), i.e., ρS(t) is the density matrix defining the normal state ωt
S .

As initial states ωt
S+C |t=0 of the total system we consider the normal product states

ωt
S ⊗ ωt

C |t=0= ωρS⊗ρC for density matrices, which are stationary for the subsystem C:

ρ = ρS ⊗ ρC for ρS = ρ0 , ρC =
N⊗

k=1

ρk with ρ1 = ρ2 = . . . = ρN . (2.5)

Note that the characteristic function EωS :C→C of the state ωS on the algebra A (HS)
is

EωS (θ) = ωS(ŵ(θ)) (2.6)

and that (2.6) can uniquely determine the state ωS by the Araki-Segal theorem [AJP1].

Lemma 2.1 Let A = ŵ(θ). Then evolution of (2.1) on the interval [0, τ) yields

Eωt
S
(θ) = exp

[
− |θ|2

4

σ− + σ+

σ− − σ+

(
1 − |gσ(t)zσ(t)|2 − |gσ(t)wσ(t)|2

)]
×ωρ0

(
ŵ(eiτεgσ(t)zσ(t)θ)

)
ωρ1

(
ŵ(eiτεgσ(t)wσ(t)θ)

)
, t ∈ [0, τ) . (2.7)

Proof : By (1.27), we obtain that W (θe) = ŵ(θ) ⊗ 1l ⊗ . . . ⊗ 1l for the vector e =
t(1, 0, . . . , 0) ∈ CN+1 , where t(. . .) means the vector-transposition, cf (1.27). Then (2.1)-
(2.4) yield

ωt
S(ŵ(θ)) = ωρ(t)(ŵ(θ) ⊗ 1l ⊗ . . . ⊗ 1l) = ωρS(t)(ŵ(θ)) . (2.8)

By virtue of duality (1.20) and (1.37) for k = 1, we obtain

ωρS(t)(ŵ(θ)) = ωρS⊗ρC((T
σ ∗
t,0 W )(θe)) = ωNN

j=0 ρj
((T σ ∗

t,0 W )(θe))

= exp
[
− |θ|2

4

σ− + σ+

σ− − σ+

(
1 − 〈Uσ

1 (t)e, Uσ
1 (t)e〉

)]
ωNN

j=0 ρj

(
W (θ Uσ

1 (t)e)
)
.

9



Taking into account (1.38) and (2.6), one obtains for (2.8) the expression which coincides
with assertion (2.7). ¤

Similarly, for t = mτ we obtain the characteristic function

Eωmτ
S

(θ) = ωρS⊗ρC(T
σ ∗
mτ,0(W (θe)) = exp

[
− |θ|2

4

σ− + σ+

σ− − σ+

(
1 − 〈Uσ

1 . . . Uσ
me, Uσ

1 . . . Uσ
me〉

)]
×ωNN

j=0 ρj

(
W (θ Uσ

1 . . . Uσ
me)

)
= (2.9)

= exp
[
− |θ|2

4

σ− + σ+

σ− − σ+

(
1 − 〈Uσ

1 . . . Uσ
me, Uσ

1 . . . Uσ
me〉

)] N∏
j=0

ωρj

(
ŵ(θ (Uσ

1 . . . Uσ
me)j)

)
,

where we have used (1.27) and (1.37). By (1.38) we obtain

(Uσ
1 . . . Uσ

m e)k =


eimτε(gσzσ)m (k = 0)

eimτεgσwσ(gσzσ)m−k (1 6 k 6 m)

0 (m < k 6 N) .

(2.10)

Then taking into account |gσzσ| < 1 (Remark 1.2), we find

〈e, e〉 − 〈Uσ
1 . . . Uσ

m e , Uσ
1 . . . Uσ

m e〉 (2.11)

= (1 − |gσzσ|2m)
[
1 − |gσwσ|2

1 − |gσzσ|2
]
.

By setting m = N , (2.6), (2.9)-(2.11) yield the following result.

Lemma 2.2 The state of the subsystem S after N-step evolution has the characteristic
function

EωNτ
S

(θ) = ωρS(Nτ)(ŵ(θ)) (2.12)

= exp
[
− |θ|2

4

σ− + σ+

σ− − σ+

(1 − |gσzσ|2N)
(
1 − |gσwσ|2

1 − |gσzσ|2
)]

×ωρ0

(
ŵ(eiNτε(gσ)N(zσ)Nθ)

) N∏
k=1

ωρk

(
ŵ(eiNτε(gσ)N−k+1(zσ)N−kwσθ)

)
.

To study the asymptotic behaviour of the state ωNτ
S for large time t = Nτ , we assume

that the states {ωρk
}k≥1 are gauge-invariant, i.e., one has

e−i φk b∗kbkρk ei φk b∗kbk = ρk (φk ∈ R) , k ∈ N , (2.13)

for each component of the initial density matrix ρC (2.5) for atoms C but not for the
cavity S. We note that under this condition there exists an example of the cavity-atom
interaction [NVZ], such that the limit state: limN→∞ ωNτ

S , is not gauge-invariant even for
a normal gauge-invariant initial state ωρ0 of the cavity S. We stick to condition (2.13) to
check a possibility of the gauge-invariance breaking for the ”soft” interaction (1.8), see
discussion in Section 1.
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Theorem 2.3 Let ωρk
be gauge-invariant for k = 1, 2, . . . , N and suppose that the product

D(θ) :=
∞∏

s=0

ωρ1(ŵ((gσzσ)sθ)) , (2.14)

converges for any θ ∈ C and let the map R 3 r 7→ D(r θ) ∈ C be continuous. Then for
any initial normal state ω0

S(·) = ωρ0(·) of the subsystem S, the following properties hold.
(a) The pointwise limit of the characteristic functions (2.12) exists

E∗(θ) = lim
N→∞

ωρS(Nτ)(ŵ(θ)) , θ ∈ C . (2.15)

(b) There exists a unique density matrix ρS
∗ such that the limit (2.15) is a characteristic

function of the gauge-invariant normal state: E∗(θ) = ωρS∗
(ŵ(θ)).

(c) The states {ωmτ
S }m>1 converge to ωρS∗

for m → ∞ in the weak*-topology.

Proof: (a) By (1.25) and by the gauge-invariance (2.13), one gets ωρk
(ŵ(eiφkθ)) = ωρk

(ŵ(θ))
for every φk ∈ R. Hence, for 1 6 k 6 N the characteristic functions Eωρk

(θ) depend only

on |θ|, and we can skip the factor eiNτε in the arguments of the factors in the right-hand
side of (2.12). Note that for N → ∞ the factor ωρ0 converges to one, since the normal
states are regular and |gσzσ| < 1 (see Remark 1.2). Hence, the pointwise limit (2.15)
follows from (2.12) and the hypothesis (2.14). It does not depend on the initial state ωρ0

of the subsystem S and the explicit expression of (2.15) is given by

E∗(θ) = exp
[
− |θ|2

4

σ− + σ+

σ− − σ+

(
1 − |gσwσ|2

1 − |gσzσ|2
)]

D(gσwσθ) . (2.16)

(b) The limit (2.16) inherits the properties of characteristic functions Eωmτ
S

(θ) = ωmτ
S (ŵ(θ)):

(i) normalisation: E∗(0) = 1 ,
(ii) unitary : E∗(θ) = E∗(−θ) ,

(iii) positive definiteness:
∑K

k,k′=1 zkzk′e−i Im(θkθk′ )/2 E∗(θk − θk′) > 0 for any K > 1 and
zk ∈ C (k = 1, 2, . . . , K) ,
(iv) regularity: the continuity of the map r 7→ D(rθ) implies that the function r 7→ E∗(r θ)
is also continuous.

Note that by the Araki-Segal theorem, the properties (i)-(iv) guarantee the existence of
the unique normal state ωρS∗

over the CCR algebra A (HS) such that E∗(θ) = ωρS∗
(ŵ(θ)).

Taking into account (a) and (2.16) we conclude that in contrast to the initial state ω0
S the

limit state ωρS∗
is gauge-invariant.

(c) The convergence (2.14) can be extended by linearity to the algebraic span of the set
of Weyl operators {ŵ(α)}α∈C. Since it is norm-dense in C∗-algebra A (HS), the weak*-
convergence of the states ωmτ

S to the limit state ωρS∗
follows (see [BR1], [AJP1]). ¤

Remark 2.4 (a) By Theorem 2.3 (a)-(b), one has ρS
∗ = ρS

∗ (τ), i.e. the limit state ωρS∗

is invariant under the one-step evolution T σ
τ,0. Comparing (2.7) and (2.16) one finds that

ρS
∗ 6= T σ

t,0(ρ
S
∗ ) for 0 < t < τ . Instead, the evolution for repeated perturbation yields the

asymptotic periodicity (cyclicity):

lim
n→∞

(ωρS(t)(ŵ(θ)) − ωρS∗ (ν(t))(ŵ(θ)) = 0 for t = (n − 1)τ + ν(t) . (2.17)
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(b) Consider the simplest case when density matrix ρ1 in (2.5) corresponds to the gauge-
invariant quasi-free Gibbs state for the inverse temperature β > 0:

ρ1 = Z−1 e−β ε b∗1b1 , Z = TrHS1
e−β ε b∗1b1 , (2.18)

and let ωρ0(·) be any initial normal state of subsystem S. Since

ωρ1(ŵ(θ)) = exp
[
− 1

4
|θ|2 coth

β ε

2

]
, (2.19)

holds, we obtain for (2.14):

D(θ) = exp
[
− 1

4

|θ|2

1 − |gσzσ|2
coth

β ε

2

]
. (2.20)

Put λσ(τ) := |gσwσ|2(1 − |gσzσ|2)−1 ∈ [0, 1) (Remark 1.2). Then for the characteristic
function of the limit state in Theorem 2.3, we get

ωρ∗(ŵ(θ)) = exp

[
−|θ|2

4

(
(1 − λσ(τ))

σ− + σ+

σ− − σ+

+ λσ(τ) coth
β ε

2

)]
. (2.21)

If there is no such cavity-atom repeated interaction (i.e., wσ = 0 and λσ(τ) = 0), then
the open subsystem S is only in contact with reservoir R, and it evolves to a steady state
with characteristic function

E∗0(θ) = exp

[
−|θ|2

4

σ− + σ+

σ− − σ+

]
, 0 ≤ σ+ < σ− , (2.22)

which corresponds to the gauge-invariant quasi-free Gibbs state for the inverse temperature
β∗0 := E−1 ln(σ−/σ+). It describes a thermal equilibrium between S and R for the effective
temperature 1/β∗0 of reservoir R measured in the harmonic cavity S.

If wσ 6= 0, the steady state (2.21) of subsystem S has the characteristic function

E∗(θ) = exp

[
−|θ|2

4
coth

βσ
∗ (τ)E

2

]
, (2.23)

where the inverse temperature βσ
∗ (τ) is defined by equation

coth
βσ
∗ (τ)E

2
= (1 − λσ(τ)) coth

β∗0E

2
+ λσ(τ) coth

β ε

2
.

Note that now βσ
∗ (τ) has an intermediate value between β∗0 and β ε/E and satisfies either

(i) β∗0 6 βσ
∗ (τ) 6 β ε/E, or (ii) β∗0 > βσ

∗ (τ) > β ε/E.

Taking into account Remark 2.4(b), the physical interpretation of (a) is the following.
Since at the moment t = (n − 1)τ a new atom in the state (2.18) comes into cavity S,
which is different to that of the state of the outgoing atom, for the tuned interaction (see
Section 1) the cavity starts to evolve on the interval [0, τ) as in Lemma 2.1 for the Gibbs
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state with temperature 1/βσ
∗ (τ) as the initial. Since in the limit n → ∞ this Gibbs state is

invariant under the one-step evolution T σ
τ,0, the cavity return back at the moment t = nτ

to the initial Gibbs state with temperature 1/βσ
∗ (τ) and the atom at this moment leaves

the resonator in the same state as the previous atom. This steady cyclic evolution of S
is forced by repeated perturbation due to atoms and it is expressed by the limit (2.17).

As it follows from Remark 2.4(b) the cavity can be either heated (i) or cooled (ii) by
the atomic beam as a function of the value of its temperature 1/β. Note that we control
the temperature βσ

∗ (τ) only at the moments t = nτ . Out of these moments the cavity S
performs a cyclic evolution from the Gibbs state with temperature 1/βσ

∗ (τ) to itself with
the period of repeated perturbation τ .

Note that if the atomic beam temperature is given by 1/β = ε/(Eβ∗0), then by Re-
mark 2.4(b), (i)-(ii) the cavity temperature 1/βσ

∗ (τ) at t = nτ coincides with equilibrium
temperature β∗0 for the non-interacting case. Although this temperature varies on the
interval [0, τ).

2.2 Correlations: subsystems S + Sn and Sm + Sn

To study quantum correlations induced by repeated perturbation, we cast the first glance
on the bipartite subsystems S + Sn and Sm + Sn. We consider the initial density matrix
(2.5) satisfying

ωρ0(ŵ(θ)) = exp
[
− |θ|2

4
coth

β0E

2

]
, ωρj

(ŵ(θ)) = exp
[
− |θ|2

4
coth

β ε

2

]
. (2.24)

From (1.20) and (1.37), we have:

Proposition 2.5 For evolved density matrix ρ(Nτ) = T σ
Nτ,0 ρ the characteristic function

of the state ωρ(Nτ)(·) is

ωρ(Nτ)(W (ζ)) = 〈ρ |T σ ∗
Nτ,0(W (ζ))〉H = exp

[
− 1

4
〈ζ,Xσ(Nτ)ζ〉

]
, (2.25)

where Xσ(Nτ) is the (N + 1) × (N + 1) matrix given by

Xσ(Nτ) = Uσ ∗
N . . . Uσ ∗

1

[(
− σ− + σ+

σ− − σ+

+
1 + e−βε

1 − e−βε

)
I +

(1 + e−β0E

1 − e−β0E
− 1 + e−βε

1 − e−βε

)
P0

]
×Uσ

1 . . . Uσ
N +

σ− + σ+

σ− − σ+

I. (2.26)

Remark 2.6 In the theory of quantum correlation and entanglement for quasi-free states
the matrix Xσ(t) is known as the covariant matrix for Gaussian states, see [AdIl], [Ke].
Indeed, differentiating (2.25) with respect to components of ζ and ζ at ζ = 0, one can
identify the entries of Xσ(t) with expectations of monomials generated by the creation and
the annihilation operators involved in (1.28), (1.29).
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Subsystem S + Sn. For 1 < n 6 N the initial state ω0
S+Sn

(·) on the Weyl C∗-algebra
A (H0 ⊗ Hn) ' A (H0) ⊗ A (Hn) of this composite subsystem is given by the partial
trace

ω0
S+Sn

(ŵ(α0) ⊗ ŵ(α1)) = ωρ(ŵ(α0) ⊗
n−1⊗
k=1

1l ⊗ ŵ(α1) ⊗
N⊗

k=n+1

1l)

= exp
[
− |α0|2

4
coth

β0E

2

]
exp

[
− |α1|2

4
coth

β ε

2

]
. (2.27)

This is the characteristic function of the product state corresponding to two isolated
systems with different temperatures. Put ζ(0,n) := t(α0, 0, . . . , 0, α1, 0, . . . , 0) ∈ CN+1 (cf.
(1.27)), where α1 occupies the (n + 1)th position. Then we get

ωNτ
S+Sn

(ŵ(α0) ⊗ ŵ(α1)) = ωρ(Nτ)(W (ζ(0,n))) . (2.28)

For the components of the vector Uσ
1 . . . Uσ

Nζ(0,n), we get from Remark 1.2 that

(Uσ
1 . . . Uσ

N ζ(0,n))k = (2.29)
eiNτε [(gσzσ)N α0 + (gσzσ)n−1gσwσ α1], (k = 0)

eiNτε[(gσzσ)N−kgσwσα0 + (gσzσ)n−k−1(gσwσ)2 α1], (1 6 k < n)

eiNτε [(gσzσ)N−ngσwσ α0 + gσzσ(−τ) α1], (k = n)

eiNτε (gσzσ)N−kgσwσα0 (n < k 6 N).

Substitution of these expressions into (2.25) and (2.26) allows to calculate off-diagonal
entries of the matrix Xσ(Nτ) for ζ = ζ(0,n), which correspond to the cross-terms involving
α0 and α1.

Because of |gσzσ| < 1 (Remark 1.2), these non-zero off-diagonal entries will disappear
when N → ∞ for a fixed n. Hence, in the long-time limit the composite subsystem S+Sn

evolves from the product of two initial equilibrium states (2.27) to another product-state:

ω∞
S+Sn

(ŵ(α0) ⊗ ŵ(α1)) = exp

[
−|α0|2

4

(
(1 − λσ(τ))

σ− + σ+

σ− − σ+

+ λσ(τ) coth
β ε

2

)]
× exp

[
−|α1|2

4

(
(1 − µσ(τ) − νσ(τ))

σ− + σ+

σ− − σ+

+ µσ(τ) coth
β ε

2
+ νσ(τ) coth

β0E

2

)]
,

where λσ(τ) is the same as in (2.21),

µσ(τ) := |gσwσ|4 1 − |gσzσ|2(n−1)

1 − |gσzσ|2
+ |gσzσ(−τ)|2 ,

and νσ(τ) := |gσwσ|2|gσzσ|(n−1).
On the other hand, the cross-terms will not disappear in the limit N,n → ∞, when

N −n is fixed [TZ]. It is interesting that in this case the steady state of the subsystem S
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keeps a correlation with subsystem Sn in the long-time limit and the limit reduced density
of the combined subsystem S + Sn is expressed in terms of ρ∗. In fact, for n = N , we
obtain

lim
N→∞

ωNτ
S+SN

(ŵ(α0) ⊗ ŵ(α1))= lim
N→∞

ωT σ
τ,0(ρS((N−1)τ)⊗ρ1)(ŵ(α0) ⊗ ŵ(α1))

= ωT σ
τ,0(ρ∗⊗ρ1)(ŵ(α0) ⊗ ŵ(α1)) .

This observation and the implication of the following example for subsystem Sm + Sn

will be generalised in the next Section 3.

Subsystem Sm + Sn. We suppose that 1 6 m < n 6 N . Then the initial state ω0
Sm+Sn

(·)
on A (Hm ⊗Hn) ' A (Hm)⊗A (Hn) of this composed subsystem is given by the partial
trace

ω0
Sm+Sn

(ŵ(α1) ⊗ ŵ(α2)) = ωρ(
m−1⊗
k=0

1l ⊗ ŵ(α1) ⊗
n−1⊗

k=m+1

1l ⊗ ŵ(α2) ⊗
N⊗

k=n+1

1l)

= exp
[
− |α1|2

4
coth

β

2

]
exp

[
− |α2|2

4
coth

β

2

]
. (2.30)

This is the characteristic function of the product-state corresponding to two isolated
systems with the same temperature.

We define the vector ζ(m,n) := t(0, 0, . . . , 0, α1, 0, . . . , 0, α2, 0, . . . , 0) ∈ CN+1, where α1

occupies the (m + 1)th position and α2 occupies the (n + 1)th position, then

ωNτ
Sm+Sn

(ŵ(α1) ⊗ ŵ(α2)) = ωρ(Nτ)(W (ζ(m,n))) . (2.31)

Again with help of Remark 1.2, we can calculate the components of Uσ
1 . . . Uσ

N ζ(m,n) as

(Uσ
1 . . . Uσ

N ζ(m,n))k = (2.32)

eiNτε (gσzσ)m−1 gσwσ[α1 + (gσzσ)n−mα2] (k = 0)

eiNτε (gσzσ)m−k−1(gσwσ)2 [α1 + (gσzσ)n−m α2] (1 6 k < m)

eiNτε [gσzσ(−τ) α1 + (gσwσ)2 (gσzσ)n−m−1 α2] (k = m)

eiNτε (gσzσ)n−k−1 (gσwσ)2 α2 (m < k < n)

eiNτε gσzσ(−τ) α2 (k = n)

0 (n < k 6 N)

.

The correlation between Sm and Sn, i.e. the corresponding off-diagonal elements of
Xσ(Nτ) are non-zero when w 6= 0, and large for small n − m and they decrease to zero
as n − m increase. Note that in contrast to the case S + Sn (2.29) the last components
n < k 6 N in (2.32) as well as the state (2.31) do not depend on N . This reflects the fact
that correlation involving Sm and Sn via subsystem S is switched off after the moment
t = nτ . If w = 0, then (2.32) implies that Xσ(Nτ) is always diagonal and that dynamics
(2.31) keeps Sm + Sn uncorrelated.
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3 Time Evolution of Subsystems II

The results of Section 2.2 indicate that the two-component subsystems S+Sn and Sm+Sn

of S + SN + . . . + SN−n have important correlations for small n at the moment t = Nτ ,
even when N is large. Moreover, these correlations are asymptotically stable as N → ∞.

In this section, we consider the corresponding many-component correlations for the
initially uncorrelated product states. To this aim, for any fixed moment t = kτ we split
the total system into two subsystems Sn,k and Cn,k, where

Sn,k = S + Sk + Sk−1 + . . . + Sk−n+1, (3.1)

and
Cn,k = SN + . . . + Sk+1 + Sk−n + . . . + S1. (3.2)

Here, n ∈ N is supposed to be fixed and small with respect to large N ∈ N. Then cavity
S and atomic beam S1, . . . ,SN at the moment t = kτ can be visualised as the line:

SN , . . . ,Sk+1, S, Sk, . . . ,Sk−n+1, Sk−n, . . . ,S1 . (3.3)

Note that since the interaction between S and each of S1, . . . ,Sk is already ended, and
they may be correlated. Whereas atoms Sk+1, . . . ,SN have not yet interacted with S and
hence they are still in uncorrelated initial product state.

From now on, we are going to treat Sn,k (3.1) as a configuration of the subsystem (or
the object) denoted by S∼n at the moment t = kτ . In other words, the subsystem S∼n

possesses S,Sk, . . . ,Sk−n as components, i.e. it contains those atoms passed up to the
moment t = kτ the cavity S that are visible in the ”window of observation” of the size n
including the subsystem S, see (3.3).

Note that the subsystem S∼n is an open system: when time passes from t = kτ to
t = (k + 1)τ the atom Sk+1 enters into S∼n and the atom Sk−n+1 leaves S∼n.

We are interested in analysis of S∼n since it can be interpreted as a model of subsystem
which is open for exchange of its constituent particles as well as of the energy with
environment.

Below we concentrate on the large-time asymptotic behaviour of the state of S∼n. To
this aim we consider initial product states (2.5) with general density matrices ρ0, ρ1 ∈
C1(F ) for subsystems Sn,k. Here we fix n and we treat k as a large varying parameter.

To express the state of S∼n at t = kτ , we decompose the Hilbert space H into a
tensor product of two Hilbert spaces

H = HSn,k

⊗
HCn,k

.

Here HSn,k
is the Hilbert space for the subsystem (3.1) and HCn,k

for (3.2):

HSn,k
= H0

⊗( k⊗
j=k−n+1

Hj

)
, HCn,k

=
( k−n⊗

j=1

Hj

) ⊗ ( N⊗
l=k+1

Hl

)
. (3.4)
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If ρ ∈ C1(H ) is the initial density matrix of the total system Sn,k + Cn,k, the reduced
density matrix ρS∼n(kτ) of S∼n at t = kτ is given by the partial trace

ρS∼n(kτ) = TrHCn,k
(T σ

kτ,0 ρ) = TrHc1

(
TrHc2

(T σ
kτ,0 ρ)

)
, (3.5)

for k > n as in (2.2), where we decompose HCn,k
as

HCn,k
= Hc1

⊗
Hc2 , Hc1 =

k−n⊗
j=1

Hj , Hc2 =
N⊗

l=k+1

Hl .

3.1 Preliminaries

Here we introduce notations and definitions to study evolution of subsystems in somewhat
more general setting than in the previous sections.

In order to avoid the confusion caused by the fact that every Hj coincides with F
in our case, we treat the Weyl algebra on the subsystem and the corresponding reduced
density matrix of ρ ∈ C1(H ) in the following way. On the Fock space F⊗(m+1) for
m = 0, 1, . . . , N , we define the Weyl operators

Wm(ζ) := exp
(
i
〈ζ, b̃〉m+1 + 〈b̃, ζ〉m+1√

2

)
, (3.6)

where ζ ∈ Cm+1, b̃0, . . . , b̃m and b̃∗0, . . . , b̃
∗
m are the annihilation and the creation operators

in F⊗(m+1), which are constructed as in (1.3) satisfying the corresponding CCR and

〈ζ, b̃〉m+1 =
m∑

j=0

ζ̄j b̃j, 〈b̃, ζ〉m+1 =
m∑

j=0

ζj b̃
∗
j .

By A (F⊗(m+1)), we denote the C∗-algebra generated by the Weyl operators (3.6).
Below, we adopt the abbreviations:

A (m) = A (F⊗(m+1)) and C (m) = C1(F
⊗(m+1)) (3.7)

for the Weyl C∗ algebra on F⊗(m+1) and the algebra of all trace class operators on F⊗(m+1)

for m = 0, 1, 2, . . ., respectively. Note that the bilinear form

〈 · | · 〉m : C (m) × A (m) 3 (ρ,A) 7→ Tr[ρA] ∈ C (3.8)

yields the dual pair (C (m),A (m)). Indeed, the following properties hold:

(i) 〈ρ |A〉m = 0 for every A ∈ A (m) implies ρ = 0;

(ii) 〈ρ |A〉m = 0 for every ρ ∈ C (m) implies A = 0;

(iii) |〈ρ |A〉m| 6 ‖ρ‖C1‖A‖L.
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These properties are a direct consequence of the fact that A (m) is weakly dense in
L(F⊗(m+1)) the dual space of C (m). Below we shall use the topology σ(C (m), A (m)) in-
duced by the dual pair (C (m),A (m)) on C (m). We refer to it as the weak∗-A (m) topology,
see e.g. [Ro], [BR1].

For k 6 N , we need the (k +1)× (k +1) matrix U
σ(k)
` whose components are given by

(U
σ(k)
` )ij =


eiτεgσ(τ)(δj0z

σ(τ) + δj`w
σ(τ)) (i = 0)

eiτεgσ(τ)(δj0w
σ(τ) + δj`z

σ(−τ)) (i = `)

eiτεδij (otherwise)

, (3.9)

for ` = 1, 2, . . . , k (c.f. Remark 1.2 Here N in the remark is replaced by k.). Then the

one step evolution T
σ(k)
` on C (k) is given by

〈T σ(k)
` ρ |Wk(ζ)〉k = 〈ρ |T σ(k)∗

` Wk(ζ)〉k

where

T
σ(k)∗
` Wk(ζ) = exp

[
− σ− + σ+

4(σ− − σ+)

(
〈ζ, ζ〉k+1 − 〈Uσ(k)

` ζ, U
σ(k)
` ζ〉k+1

)]
Wk(U

σ(k)
` ζ) , (3.10)

ρ ∈ C (k) and ζ ∈ Ck+1 (see Proposition 1.1).
Now we introduce the “free” one-step evolution T : C (0) 7−→ C (0) of density matrix

corresponding to any of subsystems Sk by its dual

T ∗ŵ(θ) := ŵ(eiτεθ) . (3.11)

From (3.9) and (3.10), we have

T
σ(k+m)∗
l

(
Wk(ζ) ⊗ ŵ(ζk+1) · · · ⊗ ŵ(ζk+m)

)
=

(
T

σ(k)∗
l ⊗ (T ∗)⊗m

)(
Wk(ζ) ⊗ ŵ(ζk+1) · · · ⊗ ŵ(ζk+m)

)
(3.12)

for l = 1, · · · , k and ζ ∈ Ck+1, ζk+1, · · · , ζk+m ∈ C. By composition, we also have

T
σ(k+m)∗
kτ,0 = T

σ(k)∗
kτ,0 ⊗ (T ∗k)⊗m (3.13)

and its pre-dual
T

σ(k+m)
kτ,0 = T

σ(k)
kτ,0 ⊗ (T k)⊗m . (3.14)

Now the calculation of the partial trace over Hc2 in (3.5) for the initial normal product
state (2.5) is obvious:

TrHc2
(T

σ (N)
kτ,0

N⊗
j=0

ρj) = T
σ (k)
kτ,0

k⊗
j=0

ρj (3.15)

since T does not affect the trace:

Tr[T ρj] = 〈T ρj | ŵ(0)〉 = 〈ρj | T ∗ŵ(0)〉 = 〈ρj | ŵ(0)〉 = Tr[ρj] .
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To calculate the partial trace with respect to Hc1 in (3.5), we introduce the imbedding:

rm+1,m : Cm+1 3 ζ =



ζ0

ζ1

ζ2

·
·
·

ζm


7−→



ζ0

0
ζ1

ζ2

·
·
·

ζm


= rm+1,mζ ∈ Cm+2 (3.16)

for m = 0, 1, 2, . . . , N and the partial trace over the second component Rm,m+1 : C (m+1) →
C (m) characterised by

〈Rm,m+1ρ|ŵ(ζ0)⊗ ŵ(ζ1)⊗ . . .⊗ ŵ(ζm)〉m = 〈ρ|ŵ(ζ0)⊗1l⊗ ŵ(ζ1)⊗ . . .⊗ ŵ(ζm)〉m+1 (3.17)

for ρ ∈ C (m+1), where 1l = ŵ(0) is the unit in A (0). Therefore, its dual operator R∗
m,m+1

has the expression:

R∗
m,m+1Wm(ζ) = Wm+1(rm+1,mζ) for ζ ∈ Cm+1 . (3.18)

Lemma 3.1 For m ∈ N and ` = 1, 2, . . . ,m,

U
σ(m+1)
`+1 rm+1,m = rm+1,mU

σ(m)
` , (3.19)

holds.

Proof : In fact, for the vector ζ = t(ζ0, ζ1, · · · , ζm) ∈ Cm+1, one obtains

(U
σ(m+1)
`+1 rm+1,mζ)j = (rm+1,mU

σ(m)
` ζ)j

=



eiτεgσ(τ)(zσ(τ)ζ0 + wσ(τ)ζ`) (j = 0)

0 (j = 1)

eiτεζj−1 (2 6 j 6 `)

eiτεgσ(τ)(wσ(τ)ζ0 + zσ(−τ)ζ`) (j = ` + 1)

eiτεζj−1 (` + 2 6 j 6 m + 1)

by explicit calculations. This proves the claim (3.19). ¤
For k ∈ N and m = 0, 1, 2, . . . , k − 1, let the maps rk,m : Cm+1 → Ck+1 and Rm,k :

C (k) → C (m) be defined by composition of the one-step maps (3.16), (3.17):

rk,m = rk,k−1 ◦ rk−1,k−2 ◦ . . . ◦ rm+1,m ,

and
Rm,k = Rm,m+1 ◦ Rm+1,m+2 ◦ . . . ◦ Rk−1,k ,
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respectively. These definitions together with (3.17) and (3.18) imply that R∗
m,k : A (m) →

A (k) and

R∗
m,k ŵ(ζ0) ⊗ ŵ(ζ1) ⊗ . . . ⊗ ŵ(ζm) = ŵ(ζ0) ⊗ 1l ⊗ . . . ⊗ 1l ⊗ ŵ(ζ1) ⊗ . . . ⊗ ŵ(ζm) . (3.20)

Hence, by (3.17) the map Rm,k, which is predual to (3.20), acts as the partial trace over

the components with indices j = 1, 2, . . . , k − m of the tensor product
⊗k

j=0 ρj ∈ C (k).
Therefore, the map Rn,k coincides with the partial trace Trc1 in (3.5). Then Rn,k combined
with (3.15) gives the expression

ρS∼n(kτ) = Rn,kT
σ(k)
kτ,0 (

k⊗
j=0

ρj) for k > n + 1 . (3.21)

Obviously, it follows from (3.20) that

R∗
m,m+k

(
ŵ(ζ0)⊗ ŵ(ζ1)⊗ · · · ⊗ ŵ(ζm)

)
=

(
R∗

0,k ⊗ I⊗m
d

)
ŵ(ζ0)⊗

(
ŵ(ζ1) · · · ⊗ ŵ(ζm)

)
(3.22)

and its predual identity
Rm,m+k = R0,k ⊗ I⊗m

d (3.23)

for m, k ∈ N, where Id is the identity operator on L(F ) ⊃ C1(F ).
The formulae (3.14), (3.19) and (3.23) represent the general aspects of repeated per-

turbation systems in the words of our conclete model. We will use them in the following
fashon in the remaining arguments.

Lemma 3.2 For m, k ∈ N, ` = 1, 2, . . . ,m, the following properties hold:

(i) Rm,m+kT
σ(m+k)
`+k = T

σ(m)
` Rm,m+k ; (3.24)

(ii) Rm,m+kT
σ(m+k)
kτ,0 =

(
Rm,m+1T

σ(m+1)
1

)
· · ·

(
Rm+k−1,m+kT

σ(m+k)
1

)
; (3.25)

(iii) Rm,m+kT
σ(m+k)
kτ,0 =

(
R0,kT

σ(k)
kτ,0

)
⊗

(
T k

)⊗m
. (3.26)

Proof : (i) It is enoough to show that T
σ(m+k)∗
`+k R∗

m,m+kWm(ζ) = R∗
m,m+kT

σ(m)∗
` Wm(ζ).

However, it is reduced to U
σ(m+k)
`+k rm+k,m = rm+k,mU

σ(m)
` , which is given by multiple use

of (3.19).

(ii) is derived by multiple application of (i) to T
σ(m+k)
kτ,0 = T

σ(m+k)
k · · ·T σ(m+k)

1 .
(iii) is a composition of (3.23) and (3.14). ¤

Note that the free one-step evolution T is nothing but a gauge transformation. In this
sense, it is applied not only to subsystems Sk’s but also to S. Since the present model is
made as a gauge invariant theory, the following simple assertions on gauge transformations
hold.

Lemma 3.3 For any m, k ∈ N and ` = 1, · · · ,m, the following properties hold:

(i) (T ±1)⊗mRm−1,m−1+k = Rm−1,m−1+k(T ±1)⊗(m+k) , (3.27)

(ii) (T ±1)⊗(m+1)T
σ(m)
` = T

σ(m)
` (T ±1)⊗(m+1) , (3.28)

(iii) T −kR0,kT
σ(k)
kτ,0 = T −1R0,1T

σ(1)
1 (T −1)⊗2R1,2T

σ(2)
1 · · · (T −1)⊗kRk−1,kT

σ(k)
1 . (3.29)
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Proof : It is easy to see that the dual identities of (i) and (ii) hold on the Weyl operators.
For (iii), it is enough to apply the above (ii) and the formula

(T −k+`−1)⊗`R`−1,` = (T −1)⊗`R`−1,`(T −k+`)⊗(`+1) ,

which follows from the above (i), to Lemma 3.2 (ii). ¤

3.2 Reduced density matrices of finite subsystems

In this subsection, we consider evolution of the subsystem S∼n. Our aim is to study the
large-time asymptotic behaviour of its states, when initial density matrix is given by (2.5).

For the density matrix ρ1 in (2.5), we assume the condition:

[H] D(θ) =
∞∏
l=0

〈ρ1 | ŵ((gσzσ)lθ)〉0 converge for any θ ∈ C

and the map R 3 t 7→ D(tθ) ∈ C is continuous.

Here, we do not assume gauge invariance of ρ1. (c.f. Theorem 2.3)
Under the condition [H], one obtains the following theorem:

Theorem 3.4 There exists a unique density matrix ρ∗ on F such that R0,1T
σ(1)
1 (ρ∗ ⊗

ρ1) = T ρ∗ holds. And ρ∗ also satisfies

(1) ωρ∗(ŵ(θ)) = exp
[
− |θ|2

4

σ− + σ+

σ− − σ+

(
1 − |gσwσ|2

1 − |gσzσ|2
)]

D(gσwσθ);

(2) R0,kT
σ(k)
kτ,0 (ρ∗ ⊗ ρ⊗k

1 ) = T kρ∗ for k > 1;

(3) For any density matrix ρ0 on F , the convergence lim
k→∞

T −kR0,kT
σ(k)
kτ,0 (ρ0⊗ρ⊗k

1 ) = ρ∗

holds in the weak∗-A (0) topology on C (0).

Remark 3.5 (a) The weak*-A (0) topology on C (0) induced by the pair (C (0),A (0)) (3.8)
is coarser than the weak*-L(F ) topology, which coincides with the weak and the norm
topologies on the set of normal states [Ro, BR1].
(b) When ρ1 is gauge-invariant, the characteristic function in (1) coincides with (2.16) and

the present theorem reduces to Theorem 2.3. Especially, the free evolution R0,1T
σ(1)
1 (ρ∗ ⊗

ρ1) = T ρ∗ reduces to the invariance R0,1T
σ(1)
1 (ρ∗ ⊗ ρ1) = ρ∗

Proof : By the use of versions of (1.37), (2.10) and (2.11), we get

Ek(θ) := 〈T −kR0,kT
σ(k)
kτ,0 (ρ0 ⊗ ρ⊗k

1 | ŵ(θ)〉0 = 〈ρ0 ⊗ ρ⊗k
1 |T σ(k)∗

kτ,0 Wk(e
−ikετθe)〉0

= exp
[
− |θ|2

4

σ− + σ+

σ− − σ+

(
1−‖Uσ(k)

1 · · ·Uσ(k)
k e‖k+1

)]
〈ρ0⊗ρ⊗k

1 |Wk(e
−ikετU

σ(k)
1 · · ·Uσ(k)

k e〉k+1

= exp
[
− |θ|2

4

σ− + σ+

σ− − σ+

(1 − |gσzσ|2k)
(
1 − |gσwσ|2

1 − |gσzσ|2
)]

〈ρ0 | ŵ((gσzσ)kθ)〉0 (3.30)
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×
k∏

j=1

〈ρ1 |ŵ((gσzσ)k−jgσwσθ)〉0 .

Thanks to the assumption [H], limk→∞ Ek exists and equals to the right-hand side of (1)
in the theorem. We note that limk→∞〈ρ0|wσ((gσzσ)kθ)〉0 = 1 because of |gσzσ| < 1 and
of the weak continuity of the normal state ωρ0 = 〈ρ0| · 〉0.

The right-hand side of (1) satisfies: (i) normalization, (ii) unitarity and (iii) positivity,
and (vi) regularity, since it is a limit of characteristic function Ek(θ). Hence from the
Araki-Segal theorem as in Section 2.1, there exists a state ω∗ on the CCR-algebra A (F )
such that its characteristic function is given by the right-hand side of (1). Moreover, the
continuity assumption about the function D yields that the state ω∗ is normal by the
Stone-von Neumann uniqueness theorem [BR2]. Hence, there exists a density matrix ρ∗
such that ω∗ = ωρ∗ , which conclude (1). Now, (3) is obvious.

Put ρ0 = ρ∗ in (3.30). Then we get

〈T −kR0,kT
σ(k)
kτ,0 (ρ∗ ⊗ ρ⊗k

1 ) | ŵ(θ)〉0

= exp
[
− |θ|2

4

σ− + σ+

σ− − σ+

(
1 − |gσwσ|2

1 − |gσzσ|2
)] ∞∏

j=1

〈ρ1 |ŵ((gσzσ)jgσwσθ)〉0

= 〈ρ∗ |ŵ(θ)〉0
for k ∈ N.

To prove the uniqueness of ρ∗, let ρ♠ be another density matrix satisfying R0,1T
σ(1)
1 (ρ♠⊗

ρ1] = T ρ♠. Combining Lemma 3.3(iii) with Lemma 3.2(iii), we get

T −kR0,kT
σ(k)
kτ,0 =

(
T −1R0,1T

σ(1)
1

)((
T −1R0,1T

σ(1)
1

)
× 1l

)
· · ·

((
T −1R0,1T

σ(1)
1

)
⊗ 1⊗(k−1)

)
,

which yields
T −kR0,kT

σ(k)
kτ,0 (ρ♠ ⊗ ρ⊗k

1 ) = ρ♠ .

Then, ρ♠ = ρ∗ follows from (3). ¤
Now we consider the large-time behaviour of the states (3.5) of subsystems S∼n. Let

ρ1 be a density matrix on F satisfying the condition [H]. Then we have the following
theorem.

Theorem 3.6 For any density matrix ρ0 on F and n,m ∈ N, m > n, the limit:

(T −k)⊗(m+1)Rm,m+kT
σ(m+k)
(n+k)τ,0

(
ρ0 ⊗ ρ

⊗(m+k)
1

)
−→ T

σ(m)
nτ,0

(
ρ∗ ⊗ ρ⊗m

1

)
as k → ∞ ,

holds in the weak*-A (m) topology on C (m). Here ρ∗ is the density matrix on F given in
Theorem 3.4.
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Proof : From Lemma 3.2 and Lemma 3.3, we obtain

(T −k)⊗(m+1)Rm,m+kT
σ(m+k)
(n+k)τ,0

(
ρ0 ⊗ ρ

⊗(m+k)
1

)
= T

σ(m)
nτ,0 (T −k)⊗(m+1)Rm,m+kT

σ(m+k)
kτ,0 (ρ0⊗ρ

⊗(m+k)
1 ) = T

σ(m)
nτ,0

(
(T −kR0,kT

σ(k)
kτ,0 )⊗(1l⊗m)

)
(ρ0⊗ρ

⊗(m+k)
1 )

= T
σ(m)
nτ,0

((
T −kR0,kT

σ(k)
kτ,0 (ρ0 ⊗ ρ⊗k

1 )
)
⊗ (ρ⊗m

1 )
)

By Theorem 3.4, one has

lim
k→∞

T −kR0,kT
σ(k)
kτ,0 (ρ0 ⊗ ρ⊗k

1 ) = ρ∗

in the weak*-A (0) topology. Then, we obtain also the weak*-A (m) convergence(
T −kR0,kT

σ(k)
kτ,0 (ρ0 ⊗ ρ⊗k

1 )
)
⊗ (ρ⊗m

1 ) −→ ρ∗ ⊗ ρ⊗m
1 as k → ∞ .

By the continuity of T
σ(m)
nτ,0 , one gets the weak*-A (m) convergence

(T −k)⊗(m+1)Rm,m+kT
σ(m+k)
(n+k)τ,0

(
ρ0 ⊗ ρ

⊗(m+k)
1

)
−→ T

σ(m)
nτ,0

(
ρ∗ ⊗ ρ⊗m

1

)
as k → ∞ ,

claimed in the theorem. ¤
Let us put m = n in the theorem. Then by (3.21), we obtain the limit of the reduced

density matrix ρS∼n(·) for the subsystem S∼n:

Corollary 3.7 The convergence

lim
k→∞

(T −k)⊗(n+1)ρS∼n((n + k)τ) = T
σ(n)
nτ,0 (ρ∗ ⊗ ρ⊗n

1 ) (3.31)

holds in the weak*-A (n) topology on C (n).

Since T is the free evolution (3.11), the limit (3.31) means that dynamics of subsystem
S∼n is the asymptotically-free evolution of the state, which is given by the n-step evolution
of the initial density matrix ρ∗ ⊗ ρ⊗n

1 of the system S + Cn.
From the continuous time point of view, the subsystem S∼n shows the asymptotic

behaviour, which is a combination of the free and periodic evolutions, cf Remark 2.4(a).

Remark 3.8 There are three energy parameters E, ε and η in the Hamiltonian (1.5)
and two corresponding parameters σ± in the dissipative term. However, the subsystems
described above indicate asymptotically free evolution governed by the energy ε alone. For
an intuitive understanding of this phenomenon, let us consider an example of evolution
of a coherent state.

Let both density matrices ρ0 and ρ1 be the pure state corresponding to coherent vector-
state |α〉 satisfying a|α〉 = α|α〉, where α ∈ C − { 0 }. Then, we obtain

〈ρ0 | ŵ(θ)〉0 = 〈ρ1 | ŵ(θ)〉0 = 〈α | ŵ(θ) |α〉 = exp
[
− |θ|2

4
+

i(αθ + αθ)√
2

]
. (3.32)
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Put ρ(k) = R0,kT
σ(k)
kτ,0 (ρ0 ⊗ ρ⊗k

1 ). Then the recursion formulra

ρ(k+1) = R0,1T
σ(1)
1 (ρ(k) ⊗ T kρ1), (k ∈ N) (3.33)

and ρ(0) = ρ0. This relation follows from

R0,k+1T
σ(k+1)
(k+1)τ,0 = R0,1T

σ(1)
1 R1,k+1T

σ(k+1)
kτ,0 = R0,1T

σ(1)
1

[(
R0,kT

σ(k)
kτ,0

)
⊗ T k

]
/, ,

where we have used Lemma 3.2(i), (iii).
As the expectation of the Weyl operator by ρ(k),

〈ρ(k) | ŵ(θ)〉0 = exp
[
− |θ|2

4
Ak +

i(αBkθ + αBkθ)√
2

]
is valid for the sequences {Ak}k≥0, {Bk}k≥0 ⊂ C given by recursions

Ak+1 = |gσzσ|2Ak +
σ− + σ+

σ− − σ+

(1 − |gσzσ|2 − |gσwσ|2) + |gσwσ|2 ,

Bk+1 = eiετgσzσBk + ei(k+1)ετgσwσ ,

and A0 = B0 = 1. From the second recursion, it is easy to see that

lim
k→∞

e−ikετBk =
gσwσ

1 − gσzσ
.

This implies that asymptotic behaviour of Bk is described by oscillating factor eikετ

and the constant which depend on the other parameters E, η and σ± as well as ε through
gσ, zσ and wσ.

We comment that this recursion can be read as that (k + 1)-th state of S results from
a mixed evolution of the k-th state of S and the k-th state of Sk, where subsystem Sk

has evolved k times freely with parameter ε corresponding to the atomic energy oscillator
spectrum. The example demonstrates how the asymptotic behaviour is imposed by these
oscillations. It also indicates that the asymptotic evolution is analogous to the forced
oscillator, when a beam of atoms plays the roll of an external force.

As an example to Corollary 3.7, we consider the asymptotic form, when the state ρ1

is coherent.
Let ρ∗ be the state given by Theorem 3.4 for ρ1 with characteristic function (3.32).

Then the density matrix in the right-hand side of (3.31) has the characteristic function:

〈T σ(n)
nτ,0 (ρ∗ ⊗ ρ⊗n

1 )|Wn(ζ)〉n (3.34)

= exp
[
− 1

4
〈ζ,Xσ

nζ〉 +
i√
2

(
α
(
Cσ

nζ0 + Dσ
n

n∑
j=1

ζj

)
+ α

(
Cσ

nζ0 + Dσ
n

n∑
j=1

ζj

))]
,
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where ζ ∈ Cn+1,

Xσ
n =

σ− + σ+

σ− − σ+

I+
(
1−σ− + σ+

σ− − σ+

)
Uσ(n)∗

n . . . U
σ(n)∗
1

(
I+

( |gσwσ|2

1 − |gσzσ|2
−1

)
P0

)
U

σ(n)
1 . . . Uσ(n)

n .

is a (n + 1) × (n + 1) matrix and

Cσ
n := einτε gσwσ

1 − gσzσ
, Dσ

n := einτεgσ zσ(−τ) − gσ

1 − gσzσ
.

In order to obtain (3.34), we first note that the function of condition [H] has the form:

D(θ) = exp
[
− |θ|2

4

1

1 − |gσzσ|2
+

i√
2

(
α

θ

1 − gσzσ
+ α

θ

1 − gσzσ

)]
.

This yields

〈ρ∗ | ŵ(θ)〉0 = exp
[
− |θ|2

4

(σ− + σ+

σ− − σ+

(
1 − |gσwσ|2

1 − |gσzσ|2
)

+
|gσwσ|2

1 − |gσzσ|2
)]

× exp
[ i√

2

(
ᾱ

gσwσθ

1 − gσzσ
+ α

gσwσθ

1 − gσzσ

)]
. (3.35)

Now taking into account (3.35), by duality (1.20), (1.24), by (3.10), we obtain the repre-
sentation

〈T σ(n)
nτ,0 (ρ∗ ⊗ ρ⊗n

1 )|Wn(ζ)〉n

= exp
[
− 1

4

σ− + σ+

σ− − σ+

(
‖ζ‖n − ‖Uσ(n)

1 . . . Uσ(n)
n ζ‖n

)]
×〈ρ∗ ⊗ ρ⊗n

1 |Wn(U
σ(n)
1 . . . Uσ(n)

n ζ)〉n

= exp
[
− 1

4

σ− + σ+

σ− − σ+

(
‖ζ‖n − ‖Uσ(n)

1 . . . Uσ(n)
n ζ‖n

)]
×〈ρ∗|ŵ((U

σ(n)
1 . . . Uσ(n)

n ζ)0)〉0
n∏

j=1

〈ρ1|ŵ((U
σ(n)
1 . . . Uσ(n)

n ζ)j)〉0 .

Then the assertion (3.34) follows if one notes that

gσwσ

1 − gσzσ
(U

σ(n)
1 . . . Uσ(n)

n ζ)0 +
n∑

j=1

(U
σ(n)
1 . . . Uσ(n)

n ζ)j

= einτε
( gσwσ

1 − gσzσ
ζ0 + gσ zσ(−τ) − gσ

1 − gσzσ

n∑
j=1

ζj

)
,

which is a consequence of a straightforward calculation using (3.9) and of identity zσ(τ)zσ(−τ)−
(wσ(τ))2 = 1, see Remark 1.2.
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4 Conclusions

In this paper we addressed to the problem: how interaction with resonator of a beam of
initially independent atoms (product state) might produce correlated/entengled states in
the beam ?

We note in Remark 2.6 that the answer is given by the properties of the matrix Xσ(t)
(2.26). This matrix is initially diagonal since it corresponds to uncorrelated at t = 0
tensor product of states (2.24). For k > 0 the off-diagonal elements of Xσ(kt) encode the
quantum correlations between subsystems of ensemble S+{Sk}N

k=1. Although there is still
a room for approximating this state by a trace-norm convergent convex sum of product
states (known as the separability), the next level of correlation leads to entanglement
[AdIl], [Ke].

A transition between separable and entangled states is explicitly established for the
model of two-mode quasi-free squeezed thermal state for large squeeze parameter [MMS].
This bipartite model is similar to our case (Proposition 2.5), when only two components
of the vector {ζj}N

j=0 are non-zero.
In the present paper we do not aim to study a subtle problem of the separability-

entanglement transition, but instead we concentrate our attention on correlations for the
multipartite case, see Sections 2 and 3. To elucidate the setup of the problem we first
analysed correlations for the two bipartite cases: S + Sm and Sm + Sn, see Sections 2.

Then in Section 3, we treated a more general case of the subsystem S∼n. For any
moment it constitutes of the cavity S and the closest to it n atoms just after interaction
with the cavity. The atomic constituents in S∼n are exchanging with environment with
the running time t = kτ , Section 3. The constituents evolve asymptotically freely with
the energy parameter of the atoms.

In other words, the subsystem S∼n is similar to a ”grand-canonical ensemble”, which
is open for exchange of particles. They are the atoms migrating through S∼n . Again,
similar to the grand-canonical ensemble the configurations Sn,k of S∼n are visible in a
”window of observation” of the size n, which includes S and n atoms that passed S when
k ≥ n.
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