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Abstract—We propose a new predictive control method utiliz-
ing a sparse solution of a minimization problem defined by both
online and stored input/output data of the controlled system.
The conventional predictive control methods generally require
a mathematical model of the controlled system to predict an
optimal future input to control the system. The mathematical
model is usually obtained by applying a standard system identifi-
cation method to the measured input/output data. The proposed
method in this paper requires no mathematical model to predict
future control input to achieve the desired output. This model-
free control method, also called just-in-time predictive control,
was originally proposed by Inoue and Yamamoto in 2004 and
simplified by Yamamoto in 2014. In this paper, to develop another
simplified method, we formulate an ℓ1-minimization problem.

I. INTRODUCTION

Predictive control, usually referred to as “model predictive
control,” is widely used in industrial systems such as chemical
processes [1]. To use model predictive control, we need a
mathematical model which appropriately represents the system
dynamics to predict the future behavior of the system. The
mathematical model is derived by many physical modeling
techniques and/or useful system identification techniques in
the development of online control. Normally, the mathematical
model is not updated until a great change occurs in the
controlled system.

The so-called just-in-time model predictive control pro-
posed by Stenman in 1999 [2] can be interpreted as a combina-
tion of predictive control and adaptive control which constantly
updates the mathematical model and/or control parameters
based on the online measured input/output data. The method
constantly maintains the mathematical model to use measured
input/output data and stored past measured input/output data
by Just-In-Time modeling [3], [4] (also referred to as model-
on-demand [9], lazy learning [10], or instance based learning
[11]). The just-in-time method was originally developed for
nonlinear system modeling which adaptively identifies a local
model (not global) that can represent the current input/output
data to use a large amount of stored data obtained from past
events.

Instead of the just-in-time “model” predictive control,
Inoue and Yamamoto [12], [13] proposed a “model-free” pre-
dictive control method in the just-in-time modeling framework.
In the method, an optimal control input is directly predicted not
using any local models, but by online current measured data
and stored past data. As in the just-in-time modeling method,
the neighbors of the current data are searched in the stored data

and the predicted control input is derived as weighted average
of the neighbors. For this weighted average, several methods
are considered in the just-in-time modeling framework. In [14],
the author proposed a simple method to calculate the weighted
average. In the method, the weights are derived as a solution
of a linear equation b = Aw where the vector b represents
the current data and the matrix A contains vectors in the
neighborhoods of b.

In this paper, another way to obtain a weighted mean
of neighborhoods is proposed based on finding a minimum
ℓ1-norm solution to an underdetermined system of the linear
equation b = Aw where for a given full rank wide matrix A
and a vector b, we need to find a vector w with minimum ℓ1
norm. This ℓ1-minimization problem has recently gained much
attention in the signal processing and optimization community
relating to compressive sensing [15].

II. MODEL-FREE PREDICTIVE CONTROL

We consider a nonlinear auto-regressive model with exoge-
nous (NARX) inputs,

y(t) = f(φ(t− 1)) + ε(t) (1)
φ(t− 1) = [y(t− 1), . . . , y(t− n),

u(t− 1), . . . , u(t−m)]
T
, (2)

t = 0, 1, 2 · · ·

where u ∈ ℜ is the input; y ∈ ℜ is the output; φ ∈ ℜr

is the regression vector of the size r = n + m; f(·) is a
nonlinear map; and ε is independent and identically distributed
(i.i.d.) noise, respectively. We assume that n and m are
unknown together with f , but we can determine them with
some uncertainty.

When we are given (1), the goal of control is to make
the future output h steps ahead y(t + 1), y(t + 2), . . . , y(t +
h) follow the desired future (given) reference r(t + 1), r(t +
2), . . . , r(t + h). To reach the goal, we need an appropriate
future input sequence u(t), u(t+ 1), . . . , u(t+ h− 1). In this
paper, we develop a method to predict the future input u and
output y to use a large amount of past data {u(k), y(k)}, not
to identify f explicitly. As proposed by Inoue and Yamamoto,
the just-in-time method is used to find a future sequence of
the input u making the future output y track a given reference
signal r from the large amount of past data {u(k), y(k)}. The
idea is summarized as the next algorithm.



Initialization. Determine m, n, the future horizon hy , and
the control horizon hu. Based on the stored past input and
output data (training data), define vectors as follows:

ai :=

[
yp(ti)
yf(ti)
up(ti)

]
(3)

ci := uf(ti) (4)

where i = 1, 2, . . . , N and

yp(t) = [y(t− n+ 1) · · · y(t)]
T (5)

yf(t) = [y(t+ 1) · · · y(t+ hy)]
T (6)

up(t) = [u(t−m) · · · u(t− 1)]
T (7)

uf(t) = [u(t) · · · u(t+ hu − 1)]
T (8)

Step 1. Let time t = 0.

Step 2. Whenever t ≤ max(n,m), repeat this step. Mea-
sure y(t) and apply u(t) with an appropriate value to the
system. Increment time as t← t+ 1.

Step 3. Based on the given reference signal to be followed
in the future

r(t) =

 r(t+ 1)
...

r(t+ hy)

 , (9)

define a query vector

b =

[
yp(t)
r(t)
up(t)

]
(10)

where the past output vector yp(t) and the past input vector
up(t) are defined as (5) and (7).

Step 4. By the just-in-time algorithm [5], find the k nearest
vectors ai to b together with ci, which have the same index i
with ai as follow:

Ω(b) := {(aij , cij ) | j = 1, . . . , k} (11)

where we assume that all vectors are sorted by the distance to
b as follows:

∥ai1 − b∥ ≤ ∥ai2 − b∥ ≤ · · · ≤ ∥aik − b∥. (12)

Furthermore, from the k nearest vectors ai to b, weights wij
are determined such as

wi1 ≥ wi2 ≥ · · · ≥ wik and wi1 + wi2 + · · ·+ wik = 1 (13)

Step 5. The expected future input sequence

ûf(t) = [û(t|t) . . . û(t+ hu − 1|t)]T (14)

is calculated as follows:

ûf(t) =
k∑

j=1

wijuf(tij ) =
k∑

j=1

wijcij . (15)

Step 6. Apply the first element û(t|t) of ûf(t) to the system
as u(t). Increment time as t← t+ 1 and return to Step 3.

Remark 1: Finding k nearest vectors to b corresponds to
finding a pair of past-future input and output sequences similar
to the current situation containing the desired trajectory for the
future output.

Remark 2: There are several methods to select the nearest
neighbors and the appropriate weights in Step 4 [7], [8]. They
depend on what system generates the data. Without exact
information on the controlled system, it is difficult to determine
the suitable nearest neighbors and weights.

Remark 3: The steps for the same discrete-time t in model-
free control are executed once in every sampling period h. In
general, the just-in-time algorithm computation yields a long
feedback delay. Hence, model-free control is applicable for
systems with slow dynamics.

III. ℓ1-MINIMIZATION FORMULATION

Step 4 and 5 can be interpreted as finding vectors aij , cij
and weights wij such that

min
ij ,wij

,ûf

∥∥∥∥∥∥
k∑

j=1

wij

[
aij
cij

]
−
[

b
ûf(t)

]∥∥∥∥∥∥
2

= min
tj ,wij

,ûf

∥∥∥∥∥∥∥
k∑

j=1

wij

yp(ti)
yf(ti)
up(ti)
uf(ti)

−
yp(t)
r(t)
up(t)
ûf(t)


∥∥∥∥∥∥∥
2

(16)

where ∥ · ∥2 is the Euclidean norm.

In [14], for given vectors ai1 , . . .aik , ci1 . . . cik and b,
weights wi1 , . . . , wik are found by solving

Aw = b (17)

where
A = [ai1 ai2 . . . aik ] ∈ ℜd×k, (18)

w = [wi1 wi2 · · · wik ]
T ∈ ℜk, (19)

and
d = n+ hy +m. (20)

As is well known, when d > k, the solution is given by a
least mean square solution as w = (ATA)−1ATb. When d <
k, the solution is given by a minimum norm solution w =
AT (AAT )−1b of

min
ij ,xij

∥∥∥∥∥∥
k∑

j=1

wijaij − b

∥∥∥∥∥∥
2

. (21)

Also, we can extend the size of A and b from the neighbor
size k to the size of training data N . Then, the new problem
is written as follows:

min
w
∥Aw − b∥ subj. to ∥w∥0 = k (22)

where

A = [a1 a2 . . . aN ] ∈ ℜd×N , (23)

w = [w1 w2 · · · wN ]
T ∈ ℜN , (24)



and the ℓ0 norm ∥w∥0 is a total number of non-zero elements
in w which is defined using set cardinality as follows:

∥w∥0 = card{wi | wi ̸= 0}. (25)

Because of the ℓ0 norm constraint, (22) is the mixed-integer
problem which is generally hard to solve. In addition, before
solving (22), we need to determine the ℓ0 norm k, as usual in
the just-in-time algorithm, using the Akaike’s Final Prediction
Error criterion. Instead, in Step 4 of the proposed method, we
solve an optimization problem to find w and k.

Step 4’ (the proposed method)

Solve the optimization problem:

min
w
∥w∥1 subj. to Aw − b = 0, (26)

where ∥w∥1 =
∑

i=1 |wi|.

When A ∈ ℜd×N is of full row rank and d < N ,
infinite many solutions w for Aw = b exist. Among them, by
penalizing ∥w∥1 we can find a sparse solution with many zero
elements in the vector. This optimization problem is referred
to as ℓ1-minimization.

To solve ℓ1-minimization, several methods have
been developed. In particular, a number of accelerated
algorithms have been proposed. In [15], we have a
comprehensive review of representative approaches,
namely, Gradient Projection, Homotopy, Iterative Shrinkage-
Thresholding, Proximal Gradient, and Augmented Lagrange
Multiplier. In this paper, we use the DALM (Dual
Augmented Lagrange Multiplier) method described
in next section (Solvers in MATLAB are available at
http://www.eecs.berkeley.edu/˜yang/software
/l1benchmark/l1benchmark.zip).

IV. SIMULATIONS

In this section, we show several simulation results to
illustrate the performance of the model-free predictive control
by solving ℓ1-minimization. We use the DALM algorithm to
solve ℓ1-minimization.

A. Linear System

We consider a linear system

y(t) = y(t− 1)− 0.16y(t− 2)− 1.5u(t− 1) + ε(t) (27)

where ε is a noise term whose entries are i.i.d. according to
Gaussian distribution with zero mean and variance of 0.05.
The transfer function from u to y has stable poles at 0.8 and
0.2.

The training data was created to use u(k) with a 300
i.i.d. random sequence generated from a uniform distribution
[−5, 5]. We stored 300 pairs of u(t) and y(t) as shown in
Fig. 1.

We first set the order of the system and horizons as n = 2,
m = 1, hy = 3, and hu = 3. The order n and m are the same
with the linear system (27). The reference input is generated
by

r(t) = 2 sin
2π

40
t (28)
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Fig. 1: Stored measurement data of the linear system (27) for model-free
predictive control.
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(a) When the same order n = 2 and m = 1 is used.

100 150 200 250 300
-2

0

2

y

100 150 200 250 300
-0.5

0

0.5

u

100 150 200 250 300
-0.2

0

0.2

t

r-
y

(b) When an over-estimated order n = 3 and m = 2 is used.

Fig. 2: Simulation results of model-free predictive control using ℓ1 minimiza-
tion for the linear system (27) with n = 2 and m = 1.

Figure 2a shows the output y, the control input u, and
the tracking error e = r − y in a simulation result by ℓ1
minimization when n = 2, m = 1, hy = 3, and hu = 3.
In this case, A ∈ ℜ5×296.

When we used an over-estimated order n = 3, m = 2 (in
this case, A ∈ ℜ8×296), we obtained a similar result with that
in Fig. 2a as shown in Fig. 2b. It is difficult to distinguish the
difference.
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Fig. 3: A noisy case result of model-free predictive control using ℓ1 mini-
mization for the linear system (27). The variance of noise is four times larger
than that in Fig. 2.
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Fig. 4: A simulation result of model-free predictive control by solving the
linear equation (17) in [14] for the linear system (27).

We were also interested in the noisy case where the
measurement contains much noise. Here, we apply the i.i.d.
noise with Gaussian distribution with zero mean and variance
of 0.2 (four times larger than that in Fig. 2) when creating the
training data and control. Figure 3 shows a simulation result
of model-free predictive control using ℓ1 minimization for the
noisy case.

To compare the proposed method with that in [14], we
solved (17) in Step 4 for (27). Figure 4 shows a simulation
result of model-free predictive control when we used the same
parameters with that in Fig. 2a and k = 10. To find k nearest
vectors ai ∈ ℜd, we used the infinity distance ∥ai − b∥∞ =
maxj=1,...,d |aij − bj |.

B. Switched Linear System

We consider a switched linear system

y(t) =


y(t− 1)− 0.16y(t− 2)
− 1.5u(t− 1) + ε(t), for 0 ≤ t ≤ ts

0.3y(t− 1) + 0.1y(t− 2)
− 1.8u(t− 1) + ε(t), for ts + 1 ≤ t

(29)

where ε is a noise term whose entries are i.i.d. according
to Gaussian distribution with zero mean and variance 0.05.
This system is exactly the linear system (27) before ts and it
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(a) 300 samples used in Fig. 6a.
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(b) 600 samples used in Fig. 6b.

Fig. 5: Stored measurement data of the switched system (29).

changes the dynamics with stable poles at 0.5 and −0.2 after
ts.

To obtain the training data, we set ts = 150 and we stored
300 pairs of u(t) and y(t) as shown in Fig. 5a for u(k)
with a 300 i.i.d. random sequence generated from a uniform
distribution [−5, 5].

By setting ts = 200, we performed a simulation. Figure 6a
shows the output y, the control input u, and the tracking error
e = r − y in a simulation result by ℓ1 minimization when
n = 2, m = 1, hy = 3, and hu = 3. In this case, A ∈ ℜ5×296.
The tracking errors are worse than the linear system in Fig. 2a.
In particular, after ts = 150 it shows large tracking errors.

Next, by setting ts = 300, we increased training data (the
number of samples) to 600 pairs of u(t) and y(t), as shown
in Fig. 6b.

When we used the training data shown in Fig. 6b, we
obtained the simulation result in Fig. 6b where ts = 200,
n = 2, m = 1, hy = 3 and hu = 3, and A ∈ ℜ5×296.
Although the tracking errors are worse than the linear system
in Fig. 2a, it shows slightly better tracking errors than Fig. 6a.

C. Nonlinear System

We consider a nonlinear system

y(t) =
y(t− 1)

1 + y(t− 1)2
+ u(t− 1)3 + ε(t) (30)
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(a) Stored measurement data (300 samples) in Fig. 5a are used.
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(b) Stored measurement data (600 samples) in Fig. 5b are used.

Fig. 6: Simulation results of model-free predictive control using ℓ1 minimiza-
tion for the switched system (29).
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Fig. 7: Stored measurement data of the nonlinear system (30).

where ε is a noise term whose entries are i.i.d. according to
Gaussian distribution with zero mean and variance of 0.05.
The linearized system around origin is not stabilized.

The training data was created to use u(k) with a 600
i.i.d. random sequence generated from a uniform distribution
[−2, 2]. We stored 600 pairs of u(t) and y(t) as shown in
Fig. 7.
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(a) model-free predictive control using ℓ1 minimization
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(b) model-free predictive control by solving (17) in [14]

Fig. 8: Simulation results for the nonlinear system (30).

When we directly use Step 4’ for all stored data in Fig. 7,
very poor results are obtained. Hence, before solving the ℓ1
minimization problem in Step 4’, we modified the algorithm
to select nearest data according to the method in [14] by the
infinity distance ∥ai − b∥∞. Figure 8a shows a simulation
result where n = 1, m = 1, hy = 1, hu = 1, and A ∈ ℜ5×10.
To compare the proposed method with that in [14], we also
show a result in Fig. 8b where n = 1, m = 1, hy = 1, and
hu = 1, and k = 10. As we see in the two figures, the tracking
errors are larger than those in linear systems and there is no
significant difference between the two methods.

Next, we changed the reference signal as

r(t) =


0, 0 ≤ t < 50
1, 50 ≤ t < 100
0, 100 ≤ t < 150
−1, 150 ≤ t < 200

...
...

(31)

For the step reference signal r, we applied two methods.
Figure 9a shows a simulation result where n = 1, m = 1,
hy = 1, hu = 1, and A ∈ ℜ5×10. Figure 9b shows a simulation
result by [14] with the same parameters, respectively. As we
see in these figures, the tracking errors by the proposed method
in Fig. 9a are smaller than those in Fig. 9b by [14].
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(a) model-free predictive control using ℓ1 minimization
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(b) model-free predictive control by solving (17) in [14]

Fig. 9: Simulation results for the nonlinear system (30) when the reference is
(31).

V. CONCLUSION

In this paper, a new method is proposed for model-free
predictive control in the just-in-time modeling framework in
which online data and stored data of the input/output of
the controlled system are utilized. In the original model-free
predictive control proposed by Inoue and Yamamoto [12], [13],
as in just-in-time modeling, we need to determine several
tuning parameters for obtaining the k nearest neighbors. Our
proposed method can avoid such oppressiveness for the users
similarly as in [14]. In contrast to l2-norm minimization in
[14], we introduce an l1-norm minimization problem to obtain
the weighting average in model-free predictive control.
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