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SUMMARY A Field Programmable Sequencer and Memory (FPSM), 
which is a programmable unit exclusively optimized for peripherals on a 
micro controller unit, is proposed. The FPSM functions as not only the 
peripherals but also the standard built-in memory. The FPSM provides 
easier programmability with a smaller area overhead, especially when 
compared with the FPGA. The FPSM is implemented on the FPGA and 
the programmability and performance for basic peripherals such as the 8 
bit counter and 8 bit accuracy Pulse Width Modulation are emulated on the 
FPGA. Furthermore, the FPSM core with a 4K bit SRAM is fabricated in 
0.18 µm 5 metal CMOS process technology. The FPSM is an half the area 
of FPGA, its power consumption is less than one-fifth. 
key words: FPGA, MCU peripherals, field programmable devices, 
sequencer, SRAM. 

1. Introduction 

Nowadays Micro Controller Units (MCUs), or 
microcomputers, are widely used in a variety of different 
systems and for various applications. The various needs of 
many customers and systems require many types of chips 
and MCU vendors provide MCU chips as families for these 
requirements. Furthermore, the individual needs of 
customers and system requirements generates various chips 
even in a family, called products lineup, with different 
memory capacities, memory organizations, and/or 
peripherals although the chips have the same basic 
architecture. Amongst them, requirements for peripherals 
are extensive. Usually, standard peripherals are provided as 
hard wired logics on the MCU. However, some customers 
will require more than one timer or an FIFO memory in 

addition to the peripherals provided. Other customers might 
need multiple serial interfaces. These customers’ 
requirements increase products lineup. 

Recently, the MCU markets for sensor network 
systems and medical applications have been growing 
rapidly. These systems will require even a greater variety of 
MCU peripherals [1]-[6], so realizing these variations on 
one MCU chip is very important. One solution is to embed 
programmable devices for MCU peripherals. If MCU 
peripherals can be easily configured on programmable 
devices, it will drastically reduce the number of products 
lineup and greatly improve productivity, cost, and quick 
turn around time (QTAT). Thus, programmable peripherals 
will be important for future MCUs. 

A straightforward solution is to embed a small Field 
Programmable Gate Array (FPGA) like core connected to 
an internal peripheral bus on the MCU. The FPGA is a fine 
grained programmable device, however, great overheads 
exist in its areas, cost and performance in compensation for 
the fine grained programmability when compared to ASIC 
in the same function under the same process technology. In 
addition, MCU vendors must develop their original FPGA 
like core and dedicated mapping tools. A large number of 
metal layers is also necessary for this small core, increasing 
a cost. On the other hand, re-configurable coarse grained 
processors are proposed. Reconfigurable processors are 
programmable devices mainly at the application level [7]-
[10], therefore, allow the flexible execution of various 
kinds of applications. However, the coverage area of re-
configurable processors has remained limited. This 
programmable architecture is not applicable to our purpose 
which realizes various peripherals on one MCU chip. One 
other approach is a look–up table cascade architecture 
composed of a serial connection of large scale memories 
[11]. 

This paper proposes a Field Programmable Sequencer 
and Memory (FPSM), which is an MCU with 
programmable parts for MCU peripherals. Since peripheral 
functions can be easily configured by users in the field after 
shipping [12], the FPSM can be said to provide the “user 
structured” MCUs. Peripherals are programmed through an 
array of functional memory units, consisting of an SRAM 
and a small address control unit. After analyzing the 
customer’s requirements, the address control unit is 
optimized for the MCU peripherals, realizing middle range 
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Fig. 1  Block diagram of the Micro Controller Unit (MCU) with the 
FPSM. 

 grained programmability and precise control. Functional 
memory units can also be used as the standard built-in 
memory if the units are not configured for peripherals. The 
FPSM has the dual functions of programmable peripherals 
and standard memory. Thus, the FPSM can provide the 
highest gate density and the easiest configuration. Since the 
configuration is performed through standard memory write 
operations, dedicated mapping tools are unnecessary. 

The rest of the paper is organized as follows. In Sec. 2, 
the concept and architecture of the FPSM are described. In 
Sec. 3, the functional blocks of the FPSM are explained. In 
Sec. 4, the configuration and operations of the FPSM are 
described. The implementation of the FPSM on the MCU is 
explained in Sec. 5. The configuration flow and operations 
of the FPSM are also given in Sec. 5. The FPSM is 
implemented on the FPGA and major MCU peripherals 
such as the Counter, Timer, Pulse Width Modulation 
(PWM), and First In First Out (FIFO) memory are 
emulated on the FPSM in the FPGA. The implementation 
and emulation results are described in Sec. 6. The LSI 
implementation of the FPSM and the measurement results 
of the test chip are described in Sec. 7. A comparison of the 
FPSM and the FPGA is given as well. Finally, the 
conclusion is given in Sec. 8. 

2. Concept and Architecture of the FPSM 

The major components of the MCU are the Central 
Processing Unit (CPU), the memory including RAM, ROM 
and non-volatile RAM, and peripherals such as the Timer, 
Pulse Width Modulation (PWM), and Universal 
Asynchronous Receiver Transmitter (UART). The proposed 
Field Programmable Sequencer and Memory (FPSM) is a 
programmable device optimized exclusively for MCU 
peripherals. 

The FPSM is embedded on the MCU. A conceptual 
block diagram of an MCU with the FPSM is shown in Fig. 
1. The FPSM is connected to the Memory Bus or the 

Peripheral Bus through the MCU Interface. Data are 
written to the memory through the MCU Interface by the 
CPU. The CPU writes the configuration data for the desired 
peripheral to the memory in the FPSM only once when 
booting up the MCU, and after that, the FPSM operates 
autonomously with the clock signal CLK. The FPSM 
usually does not access the CPU, so the operations of the 
configured peripherals add no load to the CPU. 

The FPSM consists of a programmable array, called a 
Programmable Memory Unit (PMU), as shown in Fig. 1. 
The detailed structure is given in Fig. 2. The FPSM 
comprises MCU Interface, multiple PMUs and Switch 
Boxes (SB). The MCU Interface includes the PMU array 
decoder, which designates a coordinate of the PMU by a 
global address. This is a part of the address sent from the 
CPU. Multiple PMUs can be connected in parallel and/or 
cascade connections through SBs. The SB connects 
neighboring PMUs by local wires and multiple PMUs by 
global wires. PMU connections are controlled by 
information stored at the registers in the SBs.   

When a PMU operates as a peripheral, data are 
transmitted to or received from the CPU through the 
Peripheral Bus. On the other hand, unconfigured memory 
for the peripherals can be accessed through the Memory 
Bus. Even if some of the PMUs are operating as peripherals, 
the remaining PMUs can operate at the same time as the 
standard built-in memory. That is, the PMU functions as 
both the memory and the peripherals. 

3. Functional Blocks of the FPSM 

In this section, we describe the functional blocks of the 
PMUs; the MCU Interface, PMU, and SB. 

 
 

Fig. 2  The FPSM is the two dimensional array of the Programmable 
Memory Units (PMU) and Switch Boxes (SB). 
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3.1 MCU Interface 

The main role of the MCU Interface is to maintain signal 
and timing compatibility between PMUs and an equipped 
MCU. The MCU Interface translates an address from the 
MCU to a global address and a local address and distributes 
them to PMUs through the address bus as shown in Fig. 2. 
The global address selects one PMU and the local address 
is taken into the selected PMU as an external address.  

Cycle timing adjustment and synchronization between 
the signals of the MCU and PMUs are also done at this 
interface depending on the MCU. For example, the number 
of write cycles and read cycles for the MCU are controlled 
to meet memory (SRAM) cycles in the PMU. The number 
of the cycles is adjusted at a register in the MCU Interface. 
In addition, signals from the MCU are translated to signals 
for the PMU and vice versa. For example, one Data Out 
bus is selected from multiple Data Out buses for the PMU 
array and the data are sent to the MCU after cycle 
adjustment. 

3.2 Programmable Memory Unit (PMU) 

The PMU contains a memory unit (Memory) and a small 
logic unit (Add/Flag Control) that controls the memory 
address. Various sequencers and combinational logics can 

be configured by storing truth table data in the Memory. 
Fig. 3(a) shows a standard sequential circuit model, the 
Moore-Machine model [13]-[15], including the feedback 
loop from the memory to the Add/Flag Control unit. The 
basic concept of the PMU is the Moore-Machine. The PMU 
is a clock synchronized memory with an autonomous 
address control, which also operates as a state machine [14], 
[15]. 

Fig. 3(b) shows a block diagram of the PMU. One 
PMU has a 4 Kbit SRAM of 256 words by 16 bits. A word 
of 16 bits is segmented into two fields, the 8 bit Flag Field 
and the 8 bit Data Field. The Flag Field and the Data Field 
correspond to the operation code and the operand of a 
microcode, respectively. Thus, the Flag Field stores 
information for controlling the Selector through the State 
Transition Decoder. The bit assignment of the Flag Field is 
shown in Fig. 4. The first two bits CF[1:0] are assigned to 
the Carry Flag (CF). The second three bits SCC[2:0] are the 
Selector Control Code and are mainly used for controlling 
the Selector. The last three bits SEQ[2:0] are used to 
control the other PMUs in the case of multiple PMU 
connections. Addresses of the next state are stored in the 
Data Field when the PMU is used as a sequencer. When the 
PMU is used as a combinational logic circuit, the truth 
table data are stored in this field. The details will be 
explained later using examples. 

The condition signal (CND), external data (Ext. Data), 
and external addresses (Ext. Address) are inputted to the 
PMU. The Selector chooses one of the four addresses; the 
external address, the internal address read out from the 
Data Field, the current address, or the incremented address 
of the current address, depending on the CND and the SCC 
bits read out from the Flag Field. The selector control 
scheme of the State Transition Decoder and the address 
paths are shown in Fig. 5. The address paths are controlled 
by the SCC bits inputted to the State Transition Decoder. 
The State Transition Decoder chooses a switch at the 
selector and controls the on/off of the switch using two out 
of three SCC bits. The one remaining bit is reserved for 

 
(a) 

 

 
 

(b) 
  

Fig. 3   (a) The Moore Machine of sequential circuits and a (b) block 
diagram of the PMU in the FPSM. 
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Fig. 4  Flag Field format. 

 

CF[1:0] SCC[2:0] SEQ[2:0]

CF : Carry Flag
SCC : Selector Control Code
SEQ : SEQuential connection code

 
Fig. 5  Four kinds of address paths. 
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future extension. The four kinds of address transitions are a 
result of analyzing the MCU peripherals and cover almost 
every peripheral frequently required in the field. This 
limitation simplifies the Address/Flag Control unit and 
keeps its area as small as possible. 

The selected address is sent to the memory, and the 
data stored in the Flag Field and Data Field are read out 
from the memory. The read out data (Fout) from the Flag 
Field are sent to the State Transition Decoder and used for 
selecting the next address. The read out data (Dout) from 
the Data Field are used as the internal address in the next 
cycle. Some or all of the Dout are also sent to the 
subsequent PMU and are used for the address of the PMU 
when there are multiple connections. 

3.3 Switch Box (SB) 

Fig. 6 shows a block diagram of the SB. Signals between 
PMUs are exchanged through four 4-bit width global wires. 
Signal connection to the PMUs is controlled by the Bus 
Switch for global wires and by the Input and Output 
selector for the local wires. The local wiring is 
unidirectional, while the global wiring is bi-directional. 
PMU input and output signals are also treated in units of 4 
bits. Three signals (IN1, IN2, and IN3) having 4 bit width 
from the left PMU and one signal having 4 bit width from 
the upper SB (north SB) are input to the SB. These signals 
are selected at the Input Selector and outputted to the 
global wires and to the Output Selector. One global wire is 
connected to the lower SB (south SB). The two signals 
(IN1 and IN2) are directly input to the Output Selector for 
the appropriate PMU in a cascade connection. The Output 
Selector sends five signals to the right PMU by choosing 
five signals among the two signals from the Input Selector 
and the four signals on the global wires.  

4. Configuration 

In this section, the configuration of the FPSM is explained 

by using examples. The first example is the 3 bit down 
counter. Fig. 7 shows the configuration data in the Flag 
Field and Data Field. Irrelevant bits are omitted. The first 
column is the address chosen out of the four address paths 
at the Selector. The second column is the address of the 
Memory in the PMU and the third column is the first bit 
CF[1] out of CF[1:0]. CF=1 for only the address “000”. 
Finally, the fourth column is the value of the Data Field, 
which is the decrement value of the memory address. 

When the signal EN is asserted by the CPU as the 
trigger, the count operation automatically starts with the 

 
Fig. 7  Configuration data of the 3 bit down counter and its address 
selections. 
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Fig. 8  (a) State transitions on the N-ary counter and (b) operation flow 
of the N-ary counter. 
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Fig. 6  Block diagram of Switch Box (SB) on FPSM. 
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clock signal CLK. For example, if “111” is inputted to the 
PMU from the external register, the value “111” is taken in 
the Memory of the PMU as the external address and the 
data stored in the Flag Field and Data Field are read out 
from the Memory. In the next cycle, the read out data “110” 
from the Data Field are used as the internal address of the 
Memory. The State Transition Decoder controls the 
Selector to adopt these data as the internal address, 
referring to CF[1] and the SCC bits. Since CF=0 except for 
the address “000”, the same operation is repeated until the 
address reaches “000”. At the address “000”, the count 
operation stops because CF=1. If necessary, the CPU can 
obtain the current counted value by reading the Dout. In 
our design, a counter of up to 32 bits can be constructed 
using four cascaded PMUs. 

If N (N≤8=23) is set at the external register, the N-ary 
counter is realized. The state transitions and operation flow 
are shown in Figs. 8(a) and (b), respectively. For example, 
if “101” is inputted from the external register, the PMU 
counts down automatically and stops in six cycles, giving 
CF=1 in the Flag Field and the address “000” in the Data 
Field. The MCU Interface generates the interrupt signal 
INT, referring to CF=1 and notices the completion of the 
count operation to the CPU with the interruption signal INT. 

The capture function, which gets the cycle when an 
event occurs, is realized using two connected PMUs, as 
shown in Fig. 9. The configurations are shown in Fig. 10. 
The 8 bit up counter is configured on PMU (1). On PMU 
(2), the address itself is stored at an address of PMU (2). 
The signal Ext. Event represents an event and becomes “1” 
when the event occurs. This signal is connected to the 

enable signal EN port of PMU (2). The Dout of PMU (1) is 
connected to the address port of PMU (2). This address is 
selected as the external address for PMU (2). When the Ext. 
Event becomes “1”, the address of PMU (1) at that time is 
taken in PMU (2) because the EN of PMU (2) becomes “1”. 
This address is recognized after a one cycle delay by 
receiving the Dout of PMU (2). 

Combinational logic circuits are also available by 
configuring the truth table data on the PMU. Various 
functions can be configured by combining the 
configuration data and the multiple parallel and/or cascade 
connections of the PMU. Users can configure the 
calculation unit if they wish to. Examples of configurable 
basic functions are summarized in Table 1. Thus, the FPSM 

 
 

Fig. 9  Capture of a single event using the PMU. 

 
 
Fig. 10  Configuration data of the PMUs for the single event capture 
function shown in Fig. 9. 

Data[7:0]

1000 0111

Address

1000 0110
1000 0111 1000 1000

1000 10011000 1000
1000 1001 1000 1010
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1000 0110
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1000 0110
1000 0111 1000 0111

1000 10001000 1000
1000 1001 1000 1001

PMU (1) PMU (2)

Dout
Dout

 
 

Fig. 11  Bus architecture of the FPSM; The connection to the internal 
Memory Bus for the unconfigured FPSM and the connection to the 
Peripheral Bus for the configured FPSM. 

Table 1  The PMU resources for the MCU peripheral examples. 

 
Note; Check marks represent the required number of PMUs. 
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covers almost all MCU peripherals.  

5. Implementation of the FPSM on the MCU 

In this Section, the implementation and configuration flow 
of the FPSM on an MCU are described. As stated in Sec. 2, 
the FPSM is connected to the Memory Bus or the 
Peripheral Bus through the MCU Interface. The bus 
connections are shown in Fig. 11 (see also Fig. 1). The 
PMUs that are not configured for peripherals are used as 
the standard build-in memory. The PMUs are connected to 
the internal Memory Bus through the MCU Interface in the 
FPSM. If the PMUs are configured as peripherals, they are 
connected to the Peripheral Bus in the MCU through the 
MCU Interface. The Peripheral Bus is connected to the 
internal Memory Bus by the Bus State Controller, a kind of 
Bridge. The connection is managed by the Bus State 
Controller. The connections of the FPSM to the Memory 
and Peripheral Buses are activated by the signal CME and 
CPE, respectively. 

The FPSM is managed in the common address space 
of the MCU. The MCU Interface manages the addresses of 
the memory and peripherals on the FPSM in the I/O 
mapped method. This memory address mapping is shown 
in Fig. 12. The FPSM is mapped on a part of the MCU 
address space. The address space of the FPSM is controlled 
by the Memory Access Enable (MAE) signal. Furthermore, 
the address space of the FPSM is managed by the Memory 
Window Enable signal (CME) and the Peripheral Window 
Enable signal (CPE), whether the PMUs are configured or 
not. An unconfigured PMU is mapped as the 256 word 
standard memory because the PMU has 256 words. If the 
PMU is configured as a peripheral, the PMU is mapped on 
the address space as a one word memory, of which address 
is the first address of the 256 words, because the PMU 

functions as one peripheral. The mapped address of the 
PMU is equivalent to the register address that specifies the 
standard peripheral in the memory mapped I/O method. 

When the CPU accesses the memory, the controller 
(not shown in Fig. 12) generates the signal MAE if the 
virtual address from the CPU is in the address space of the 
FPSM. After receiving the MAE and the address, the Bus 
State Controller generates the CME or the CPE according 
to the address in the memory address space or in the 
peripheral address space, as shown in Fig. 13. The MCU 
Interface connects the PMU to the Memory Bus with the 
CME or to the Peripheral Bus with the CPE. Finally, the 
address is translated to the physical address of the PMU, 
thus keeping the compatibility between the various MCUs 
and the FPSM. This means that the MCU Interface circuit 
has to be slightly modified for every MCU, because the 
MCU Interface is depend on the MCU. 

The FPSM is configured on an MCU in the following 
sequence. The configuration flow is shown in Fig. 14. 
1) The PMU to be configured and its associated registers 

in the SBs are reset. The PMUs operate as the standard 
built-in memory in the default at the initial state. 

2) Next, the configuration data, the Flag Field data, and 
the Data Field data are written into the memory in the 
PMU memory using standard memory write operations.  

 
Fig. 14  Configuration flow of the FPSM on the MCU. 

RESET

Data/Flag Load

SB Register / Condition Set 

Enable = 1
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Fig. 12  Accesses to FPSMs in the standard built-in memory and 
peripherals. 

 
 

Fig. 13  Memory Bus and Peripheral Bus access control scheme of the 
FPSM at the MCU Interface. 
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3) The routing data and the mode selection (memory or 
peripheral) data are loaded onto the associated registers. 

After the configuration, the configured PMUs 
operate autonomously with the clock CLK and the 
external event signal (Ext. Event). The configuration data 
and register data are stored in a built-in non-volatile 
memory such as the flash memory, and loaded to the PMU 
and the registers, respectively when the MCU is booted up. 

6. Emulation of the FPSM on the FPGA 

The FPSM is modeled and simulated using SystemC 
language. The simulation results of the 16-ary counter are 
shown in Fig. 15. During the first 256 memory write cycles, 
the PMU is configured. In order to verify that the 
configuration data is written correctly, the 256 memory 
read cycles are used (this step is not necessary for normal 
operations). After the reset cycles, the Carry Flag is 
outputted in 16 cycles. The onetime 16 count operation is 
performed correctly. The reset cycles are also not necessary 
for normal operations. The FPSM can operates immediately 
after the configuration. 

As a more complex example, we show the simulation 
results of the 8 bit accuracy PWM function. The 8 bits 
accuracy PWM is configured on three cascaded PMUs, as 

shown in Fig. 16. The configurations of these three PMUs 
are essentially the 8 bit down counter. The first PMU is the 
Divider, which determines the resolution. The second 
controls the period and the third controls the pulse width.  

The frequency fCLK of the system clock (CLK) given 
to the first PMU is divided to C times of the CLK period 
corresponding to the pre-set value of C at the C register. 
The resolution a is 

a = (1/fCLK)*C. 
This value determines the pulse of CFLAG1. Since the 
value “5” is set at the C register, CFLAG1 appears after 
every 5 cycles of the CLK. The second PMU determines 
the period of a total pulse in the unit of resolution a. The 
pulse period t is given as 

t= a*T. 
 

The value T at the T register determines the period of the 
total pulse width. In Fig. 16, CFLAG 2, the period of the 
total pulse, appears after every 10 cycles of CFLAG1, 
because the value of T is “10”. Finally, the pulse width w is 
determined by the third PMU.  
The pulse width w is 

w=a*X, 
where X at the X register is related to the pulse width ratio. 
X determines CFLAG3 which then defines the “low period” 

 
 

Fig. 15  Simulation results of the onetime 16 count operation on the 8 bit up counter. 

Reset
Memory Write Memory Read Counts

Reset 16 Counts Carry Flag
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of the pulse. The ratio of the low period is given by X/T. 
CFLAG3 appears after every 5 cycles of CFLAG1 because 
of the value of “5” at the X register. Finally, a PWM pulse 
with the duty ratio of 50 % is generated, as shown in Fig. 
16. 

The FPSM is also implemented on the FPGA and 
emulated. The FPSM is coded in the Verilog HDL and 
mapped on the FPGA. A photograph of the FPGA board 
with an ALTERA Stratix II is shown in Fig. 17. The 8 bit 
accuracy PWM is emulated on the three cascaded PMUs 
mapped on the FPGA. The mapped circuit is not a hard 

wired 8 bit accuracy PWM but three connected PMUs 
directly connected to each other without SBs. The mapping 
results are shown in Table 2. The 345 LEs (Logic Element) 
and three 4 Kbit SRAM are used. 

In addition to verifying the architecture design, the 
purpose of mapping the FPSM on the FPGA is also to 
estimate electrical performance to be implemented on an 
LSI. The global wires limit the operation speed of the 
FPSM. Although the lengths of the global wires can be 
controlled using a P&R tool in an LSI implementation, it 
is difficult to control the global wires on the FPGA. If 
the global wires are also mapped onto the FPGA through 
the SBs, we cannot obtain useful information about 
operation speed. Therefore, we directly connected PMUs 
in the FPGA implementation.  

Fig. 18 shows the observed PWM waveforms. The 

 
Fig. 17  Photograph of the FPGA board used for emulating the FPSM. 

Table 2  Mapping results of the FPSM on FPGA. 

 
4 K bits x 3Memory

345Number of LEs
3 µs @ T=10256 Step/Cycle

300 ns @ C=158 bit Accuracy

PWM
Func.

50 MHzSystem Clock
ALTERA Quartus II 6.1Logic Synthesis

ALTERA  EP1S40F780C5FPGA

 
Fig. 16  Simulation results of the 8 bit PWM using three cascaded PMUs. 

Duty=50%

CFLAG1 = C/CLK CFLAG2 = CFLAG1*T CFLAG3 = CFLAG1*X
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register values are C=15, T=10, and X=3. When the trigger 
signal is inputted, the PWM starts and the pulse width 
control operates, as shown in Fig. 16. The pulse of 
CFLAG1 appears after every 15 cycles of the CLK and 
CFLAG2 after every 10 cycles of CFLAG1. Finally, a 
pulse PWM with a duty ratio of 30 % (=X/T) is generated 
according to the register values “C”, “T”, and “X”. The 
expected waveforms are observed. 

7. Test Chip 

To verify our proposed architecture, an experimental FPSM 
core, meaning one PMU, was designed and fabricated in 
0.18 µm process technology with 5 metal layers. A 
photomicrograph of the core is shown in Fig. 19. The 
characteristics are listed in Table 3. The SRAM unit is 380 
µm x 215 µm and the Add/Flag Control unit is 380 µm x 45 
µm. In total, the core size is 380 µm x 260 µm. The SRAM 
organization is 256 words x 16 bits. The fabricated core 
does not include the SB or the MCU Interface. The added 

Add/Flag Control unit for the PMU is 1.4 kgates in two 
input NAND gate, occupying 17.3 % of the core area.  

In our design, the SB is 0.98 kgates, which is 
estimated to be 0.012 mm2 assuming that the area is 
proportional to the gate count. Roughly speaking, one SB is 
provided for one PMU; thus, the area overhead of the 
added circuits to the memory in the FPSM is 26.3%. This 
value is slightly high, and overhead reduction is a future 
issue. The gate counts and area of the MCU Interface are 
estimated to 4.8 kgates and 0.061 mm2 respectively. Since 
the MCU Interface is provided for the FPSM, its overhead 
is negligible compared to that of an MCU chip. 

Fig. 20 shows the measurement waveforms of the 16-
ary counter configured on the PMU core for the FPSM. The 

 
(a) 

 
(b) 

Fig. 18  Observed waveforms of the 8 bit accuracy PWM emulated on 
the FPGA board; (a) the CFLAG1 and CFLAG2 and (b) the generated 

PWM pulse. 

15

CFLAG1

CFLAG2

CLK

CFLAG1

CFLAG2

PWM

3

10

 
Fig. 19  Photomicrograph of the fabricated FPSM core. 

 
 

Fig. 20  Count operation waveforms of the 16-ary counter on the 
fabricated FPSM core. 

  

16 counts

CLK

Count 
Pulse

Table 3  Characteristics of the FPSM core. 
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core operates at a maximum frequency of 62 MHz with a 
1.8 V power supply voltage. The power consumption is 1.0 
mW at our target frequency of 50 MHz. 

The area and power of the FPSM are compared with 
those of the FPGA using typical peripheral functions, a 16 
bit counter (free run timer) and a 256 word x 8 bit FIFO. 
Table 4 shows a comparison of area and power 
consumption between FPSM and FPGA. In Table 4, two 
circuits are selected as the peripheral functions. All 
functions configured on the FPSM listed up in Table 1, 
with the exception of calculation units, can be configured 
using serially connected FFs. Upon increasing the bit width 
of each function, the number of FFs increases 
proportionally. This means that fundamentally, the number 
of PMUs increases in proportion with the bit width. 
Therefore, if a basic function with a certain bit width can 
be mapped to the PMUs, the other functions can be 
deduced. Although the benchmark circuits are not 
adequately thorough, their results include essential points. 

The hard wired logics of the 16 bit counter and 256 
words by 16 bits FIFO memory are experimentally mapped 
on the FPGA, the ALTERA-Stratix II. In Table 4, the 
number of the ALM, Adaptive Logic module, is our 
experimental data and is converted to the number of Xilinx 
CLBs assuming CLB = 2 slices = 2 ALMs, because a 
Vertex slice is approximately equal to a Stratix II ALM [16], 
[17]. Under this assumption, the area and the power of 
ALM are converted from the Xilinx’s Vertex data [11] (see 
the right part of Table II in Ref. [11]). 

The number of the used ALMs are 9 and 19, 
respectively, for the 16 bit counter and the 256 word x 8 bit 
FIFO. Since the area of the ALM are not known explicitly, 
we convert the 0. 22 µm data on Ref. [11] to 0.18 µm ones 
based on the relation mentioned above and the scaling law. 
According to Ref. [11], the average area and average power 
consumption per CLB (Xilinx’s Configurable Logic Block) 
are 0.0780 mm2 and 0.587 mW (Standard deviation is 
0.022 mW) at 20 MHz with a power supply voltage of 2.5 
V, respectively, in 0.22 µm process technology. Here, we 
assumed that the density of the ALM is half to the one of 
the CLB mentioned above. The area of the ALM in 0.18 

µm process technology is estimated by multiplying (0.18 
µm/0.22 µm)2 to the average area of the CLB on Ref. [11]. 
Thus, the hard wired 16 bit counter with 9 ALMs has an 
area of 0.31 mm2. 

Considering fCV2 of the power consumption, the 0.22 
µm data can be converted to the 0.18 µm data by 
multiplying (0.18 µm/0.22 µm), and (1.8 V/2.5 V)2 to 0.22 
µm data. The converted data are summarized in Table 4 
together with the fabricated FPSM data. In our design, the 
SB is 0.98 kgates, which is estimated to 0.012 mm2, 
assuming that the area is proportional to the gate counts. 
The fabricated core does not include the SB, while the area 
of the FPSM in Table 4 includes the area of the one SB per 
PMU. The FPSM has half the area of the FPGA, and it 
consumes one-fifth to one digit order less power than the 
FPGA.  

The power consumption does not depend on the 
number of PMUs, because only one SRAM operates during 
most of the cycles in the 16 bit counter and FIFO memory, 
resulting in less power consumption. In the case of the 16 
bit counter, when the lower 8 bit counter counts 256 cycles, 
the upper counter counts one. This means that one PMU 
operates 256 times, and the other one PMU operates one 
time during 256 cycles. Thus, power consumption of the 
upper counter is 1/256 times that of the lower counter, and 
it is negligible. In the FIFO on the FPSM, one PMU each is 
assigned to the write address pointer, read address pointer, 
and data memory. When the FIFO receives the write (read) 
control signal, the PMU for the write (read) address pointer 
operates and the write (read) address is outputted in the 
first cycle. In the next cycle, the PMU for the data memory 
stores (read out) the data; after which the write (read) 
operation is completed. This FIFO does not execute write 
and read operations simultaneously, so one PMU operates 
during one cycle. 

8. Conclusion 

We proposed the Field Programmable Sequencer and 
Memory (FPSM), which is a programmable unit optimized 
exclusively for MCU peripherals. The FPSM consists of 

Table 4  Comparison of the FPSM and FPGA. 

 
1) Power is independent of the number of PMUs, because only one PMU operates over most cycles. 
2) Experimental results on the ALTERA Stratix II. 
3) Converted data from the 0.22 µm data on Ref. [11]. 
4) Data memory is not included. 
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the Programmable Memory Unit (PMU) array of memory 
units (Memory) with a small logic unit (Add/Flag Control) 
controlling the memory address transition cycle by cycle. 
Four kinds of address transitions are allowed in the 
Add/Flag Control unit. These address transitions cover 
almost every peripheral normally required in the field. This 
limitation simplifies the Address/Flag Control unit and 
suppresses its area increase. The PMUs not configured for 
peripherals are used as the standard built-in memory, that is, 
the FPSM functions both as the memory and as the 
peripherals. The FPSM is implemented on the FPGA and 
the programmability is emulated on the FPGA. 
Furthermore, the FPSM core, one PMU with a 4K bit 
SRAM, is fabricated in 0.18 µm CMOS process technology 
with 5 metal layers. The added Add/Flag Control unit is 
17.3% of the total area. The FPSM has half the area of the 
FPGA and it consumes one-fifth to one digit order less 
power than FPGA. The proposed FPSM could be very 
useful for future MCU platforms. 
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