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 Abstract 

Background: In photodynamic diagnosis using 5-aminolevulinic acid (5-ALA), discrimination between the 

tumor and normal tissue is very important for a precise resection. However, it is difficult to distinguish 

between infiltrating tumor and normal regions in the boundary area. In this study, fluorescent intensity and 

bright spot analyses using a confocal microscope is proposed for the precise discrimination between 

infiltrating tumor and normal regions.  

Methods: From the 5-ALA-resected brain tumor tissue, the red fluorescent and marginal regions were sliced 

for observation under a confocal microscope. Hematoxylin and eosin (H&E) staining was performed on 

serial slices of the same tissue. According to the pathological inspection of the H&E slides, the tumor and 

infiltrating and normal regions on confocal microscopy images were investigated. From the fluorescent 

intensity of the image pixels, a histogram of pixel number with the same fluorescent intensity was obtained. 

The fluorescent bright spot sizes and total number were compared between the marginal and normal regions.  

Results: The fluorescence intensity distribution and average intensity in the tumor were different from those 

in the normal region. The probability of a difference from the dark enhanced the difference between the 

tumor and the normal region. The bright spot size and number in the infiltrating tumor were different from 

those in the normal region.  
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Conclusions: Fluorescence intensity analysis is useful to distinguish a tumor region, and a bright spot 

analysis is useful to distinguish between infiltrating tumor and normal regions. These methods will be 

important for the precise resection or photodynamic therapy of brain tumors. 
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1. Introduction 

 

A precise resection of a glioblastoma (GBM) affects the postoperative survival time of patients. On the 

other hand, an excessive resection around the tumor may cause brain damage. It is crucial to differentiate 

between the tumor region to be removed and the normal region that should not be removed. 

Photodynamic diagnosis (PDD) using 5-aminolevulinic acid (5-ALA) is now widely used in the 

neurosurgical resection of brain tumors since Stummer et al. revealed its advantage of increasing the 

resection ratio of the tumor [1–3]. The effect is that 5-ALA-induced protoporphyrin IX (PpIX) is 

accumulated in glioma cells and fluoresces at a 635 nm peak wavelength when irradiated at a 405 nm peak 

wavelength [4]. Kaneko et al. [5, 6] investigated the mechanism of fluorescence induced by 5-ALA and 

availability of fluorescence guided resection of malignant glioma. Panciani et al. [7] analyzed the 

advantages and limitations of fluorescence and image-guided resection. Diez Valle et al. [8] also analyzed 

the efficacy and applicability of surgery guided by 5-ALA fluorescence in consecutive patients with GBM. 

Roberts et al. [9] showed a significant relationship between the contrast enhancement on preoperative 

magnetic resonance imaging and observable intraoperative PpIX fluorescence. Hefti et al. [10, 11] reported 

the feasibility of the method in daily clinical practice and its technical limitations. Eljamel [12] reviewed 

comprehensively on Photodynamic applications in brain tumors. Stummer et al. [13] assessed the reliability 

of visible 5-ALA-induced fluorescence by spectrometry, pathology, and imaging. 

There are many reports on the effectiveness of the fluorescence induced by 5-ALA for distinguishing the 

tumor part that requires resection and also when checking for any remaining tumor after the main part has 

been resected [14, 15, 16, 17]. However, it is difficult to precisely distinguish the margin of the tumor and 

infiltrating region when the fluorescence is vague. One of the efforts to solve this problem is silencing of 

ferrochelatase proposed by Teng et al. [18].   

Confocal microscope has an advantage to observe in microscale with high resolution. There have been 

several attempts to apply confocal microscope for the resection of tumors. Sanai et al. [19] used a handheld 

confocal microscope in order to distinguish tumors in low grade gliomas. Eschbacher et al. [20] indicated 

that intraoperative confocal imaging was correlated with corresponding traditional histological findings. 

Martirosyan et al. [21] assessed the feasibility of handheld confocal endomicroscope imaging with various 

rapid fluorophores to provide histological information on gliomas, tumor margins, and normal brains in 

animal models. Mooney et al. [22] provided a comprehensive summary of laser scanning confocal 

endomicroscopy in animal and human neurosurgical studies. Liu et al. [23] reviewed the trends in 

fluorescence image-guided surgery for gliomas and Hadjipanayis et al. [24] reviewed the surgical benefit 

of utilizing 5-ALA for fluorescence-guided surgery of malignant gliomas. Although a confocal microscope 

has an advantage on viewing tumors at the microscale, it is not clear how infiltrating tumors appear in the 

confocal microscope view and whether the confocal microscope is useful for distinguishing the tumor in 

the boundary area.  



We observed resected tumor areas following neurosurgery using a confocal microscope and investigated 

the data treatment method of confocal microscopic imaging [25]. To date, more than 20 samples have been 

inspected. In this report, fluorescence intensity analysis and a bright spot analysis are proposed for the 

precise distinction of brain tumors, and could be a useful surgical and photodynamic treatment modality.  

 

2. Methods 

 

2.1 Observation system using a confocal microscope 

The observation system is shown in Fig. 1. We used a CSU22Z confocal laser-scanning microscope 

(Yokogawa Electric Corporation). A confocal microscope detects only the focused image that passes 

through a pinhole and presents a very clear image at the microscale. The chosen confocal microscope 

showed a good performance for taking pictures rapidly using multiple pinholes and microlenses in a rotating 

disk.  

The imaging laser used was a 405 nm laser D405C-50 at 50 mW (Showa Optronics). A band pass filter 

from 610–680 nm wavelength was used in order to detect only the red fluorescence. The fluorescence was 

captured by the electron multiplying charge coupled device (EMCCD) camera ANDOR/LucaS658M. An 

objective lens 40×, PlanApo, NA 0.95, OLYMPUS/UPLSAPO40X2 was used. The observed area for one 

picture was 164.5 μm × 125 μm and the EMCCD camera produced pictures containing 658 × 496 pixels. 

Therefore, the observed area for one pixel was about 0.25 μm × 0.25 μm.  

Precise positioning of the XY stage was used to construct a scanning picture map. The software iQ was 

used to move the stage and capture the image. For example, in order to achieve a map of 6.4 mm × 3.7 mm, 

40 × 30 pictures must be obtained. Using this system, a fluorescence map composed of clear detailed images 

could be obtained in the normal surgery microscope scale. Such a wide view is necessary to compare with 

a hematoxylin and eosin (H&E) stained image and to find the same position for detailed comparisons at the 

microscale. 

 

2.2 Specimens  

Before surgery, a single administration of ALA at a dose of 20 mg/kg of body weight was given orally. 

ALA was dissolved in approximately 100 mL of juice and given to the patient approximately three hours 

before anesthesia. Resection was carried out following a standard microsurgical technique. Typically, the 

surgeon alternated between white and violet–blue light-emitting modes to visualize fluorescence during the 

resection. GBM specimens were collected at various times during the procedure in regions displaying both 

PpIX-positive and -negative visual fluorescence. For patients with deep-seated GBM underneath the 

cerebral cortex, GBM tissue was resected from areas with invasion area and normal brain. From the resected 

piece, a part of the red fluorescent region and surrounding non-fluorescent tissue and a boundary piece 

between the red fluorescent region and non-fluorescent region were both sent separately for pathological 



and confocal microscope examinations.  

Three serial sliced specimens of 10-μm thickness were cut from each piece. One slice of the specimen 

was observed as a H&E stain for a pathological inspection using a normal optical microscope. The second 

slice was observed by a confocal microscope and the third one was reserved.  

A pathological inspection was made of the H&E image, and a comparison between the H&E and confocal 

microscope images at the same position was conducted. According to the pathological inspection, each area 

in the sliced part was evaluated as tumor region, infiltrating region and normal region. Although the sliced 

specimens were of different 10-μm thickness cross-sections, it was confirmed that nearly the same confocal 

microscope images were obtained from the slice before the H&E stain and the serial slice next to the H&E 

stain slice. Therefore, the confocal microscope image on one slice was compared with a serial slice H&E 

image. 

 

2.3 Fluorescence intensity analysis 

The fluorescence intensity of each pixel was obtained from a confocal microscope image. A histogram 

of the number of pixels having the same fluorescence intensity is provided in Fig. 2 and shows the districted 

area where a pathological inspection was made of the yielded tumor, infiltrating tumor, or normal tissue. It 

should be emphasized that x-axis does not mean wavelength but is the fluorescence intensity, and the y-

axis represents the number of pixels that have the same fluorescence intensity. The average fluorescent 

intensity was also obtained from the districted area and all histograms were normally distributed.  

A histogram of dark intensity that was captured without a sample is also displayed. The R value implies 

that the specimen intensity exceeded the dark intensity obtained from both fluorescent and dark histograms 

(Fig. 3). The reason why the dark intensity histogram was necessary is as follows. Each pixel on the 

EMCCD has dark noise and it is also detected at the same time. Because the dark noise of the pixel is not 

constant, even at the same temperature, it is impossible to substitute the dark intensity from the observed 

intensity to obtain the net fluorescent intensity on each pixel. Therefore, statistical techniques, such as the 

R value, were inspected. 

 

2.4 Bright spot analysis 

Image binarization was applied to the intensity of a pixel in the confocal microscope. A pixel with 

fluorescence larger than the 550 threshold value in this report was counted as a bright pixel. Pixels that 

connected with another bright pixel were counted as being in the same spot. The number of pixels included 

in one bright spot is referred to as the spot size. The number of bright spots in the image larger than the 

minimum spot size of 40 in this report is referred to as the bright spot number. A histogram of bright spot 

sizes is shown in Fig. 4. The x-axis refers to the bright spot size and the y-axis refers to the number of same 

spot sizes. The minimum spot size affects only the height of the first left side bar in the histogram and does 

not influence the skew of the histogram. The threshold value was located in the larger value area than the 



average value of fluorescence intensity. Therefore, a bright spot analysis can be used to compare the 

distribution of fluorescence intensity in the region of high intensity between similar histograms of 

fluorescent intensity.  

 

 

3. Results  

 

3.1 Comparison between a confocal microscope image and pathological 

inspection of H&E 

 

An example of the analysis obtained from one resected sample is presented. A tumor sample was taken 

from the red fluorescence area and a marginal sample was taken from the boundary area.  

A comparison of the H&E stain and confocal microscope images are shown in Figs. 5 (a) and (b). Both 

of them were taken from the red fluorescence region. The confocal microscope image shows a part of the 

area from 40 × 30 pictures. The H&E image was made from images taken by an optical microscope at 

almost the same area as the confocal microscope image. The two districted confocal microscope and H&E 

images were then compared in detail (Fig. 5(c) and Fig. 5(d)). In Fig. 5(c), a pathological inspection of the 

H&E area [(1) in Fig. 5 (b)] shows a high density tumor. The corresponding confocal microscope image 

contains 4 × 5 pictures. A white backlight and some bright spots appear in the confocal microscope image. 

In Fig. 5(d), a pathological inspection of the H&E area [(2) in Fig. 5 (b)] shows a low-density tumor. The 

white fluorescence in the corresponding confocal microscope image looks weaker than in the area of (1). 

The second specimen was taken from the boundary region [Fig. 6 (a) and (b)]. This specimen was divided 

into three areas of the tumor, infiltrating tumor, and normal tissue from a pathological view. The three 

districted areas, (3), (4), and (5) were compared as shown in (c), (d), and (e), respectively. A slightly larger 

bright spot appeared with no white background in the tumor region in the confocal microscope image [(c) 

(i)]. The confocal microscopy image of the infiltrating region has some similarities with the tumor region 

[(d) (i)]. The confocal microscopy image of the normal region contains many small bright spots [(e) (i)].  

 

3.2 Investigation of fluorescence intensity 

The distribution of pixel number with the same fluorescence is shown in Fig. 7. The peak distributions 

of the tumor (1) and (2) in Fig. 5 (a) are situated in higher intensities than other distributions. However, the 

distributions of the tumor in the boundary (3), infiltration region (4) and normal region (5) in Fig. 6(a) were 

very similar. A comparison of the average fluorescence intensity is shown in Fig. 7(b). The tumor regions 

(1) and (2) have larger average values than the other regions. However, the differences among regions (3), 

(4), and (5) were all small. The R values (Fig. 7(c)) show an enhanced difference between the tumor regions 

(1) and (2) and other regions. The differences among (3), (4), and (5) remain small. 



 

3.3 Bright spot analysis 

Histograms of the bright spot numbers with same spot size are made on regions (3), (4), and (5), shown 

as Figs. 8 (a), (b), and (c), respectively. Large differences appeared between the tumor region (3) or the 

infiltrating region (4) and the normal region (5), and there were some large-sized spots in (3) and (4). On 

the other hand, there were a large number of small spots in the normal region (5). The average bright spot 

size and total number of spots are compared in (d) (i) and (ii). The average spot size was large in regions 

(3) and (4) and small in the normal region (5). The total spot number was lower in (3) and (4) and higher 

in the normal region (5). Therefore, the difference between an infiltrating tumor region and the normal 

region appears clearly in comparisons of spot number and size. 

Results on average fluorescence intensity, R value, number of bright spots and average bright spot size 

are summarized in Table 1. 

 

  

4. Discussion 

 

4.1 Distinction of the tumor from the normal region 

In the bright area of the red fluorescence, the fluorescence occurs over the entire area. This means that 

PpIX was diffused not only inside the cell, but also outside the cell. The average fluorescence was larger 

than that in the normal region and distinguishing a tumor was easy. The value of the average fluorescence 

of the tumor region differs by each sample case. However, the value that appeared in the visibly red area 

was almost apparently a larger value than that in the normal region. 

The R values demonstrated the differences between the tumor and normal regions. However, in the case 

of the marginal zone or infiltrating area, the difference of the pixel fluorescence distribution, average 

intensity, and R values became small compared with normal values. 

Hefti et al. [10] detected fluorescence intensity using a photomultiplier and made a virtual fluorescence 

intensity map on a heads-up display. This was of enormous help to surgeons. Our investigation using 

confocal microscopy offers a more detailed evaluation on a microscopic scale. In the present study, 

fluorescence intensity was obtained in the area of 0.64 mm × 0.6 mm; for this area, 4 images × 5 images  

= 20 images were taken by the confocal microscope. The intensity value can be obtained from each image 

measuring 0.164 mm × 0.128 mm and also from a wider area than that shown in the present study. The 

fluorescence intensity map is also obtained from each demarcated area on the scan-detected figures. 

However, with the use of only this method, the precise boundary between the infiltrating region and normal 

region cannot be obtained in cases wherein the infiltrating region has low fluorescence. Therefore, another 

investigative method is necessary to distinguish normal from infiltrating tissue. One possible solution is the 

analysis of the bright spot size and number proposed in the present study.   



 Ejamel et al. [26] found that the mean diameter of new GBM induced by 5-ALA fluorescence was wider 

than that demonstrated by enhanced MRI. This shows the usefulness of the 5-ALA fluorescence method 

for examining the precise resection area. Our technique using confocal microscopy is able to make a more 

detailed evaluation of the tumor boundary under fluorescence induced by 5-ALA.   

  

4.2 Distinction of infiltrating tumor from the normal region 

Although the average fluorescence was not different between the marginal and infiltrating zones and the 

normal region, the bright spot size and the total number of spots were different between them. Therefore, 

there is a possibility to discriminate between the infiltrating tumor zones from the normal region using the 

inspection of bright spot sizes and numbers. Of course, the comparison of bright spot size and number 

reported here is only one example in a clinical neurosurgery setting. The application of this inspection 

method must be investigated in many diverse cases of brain tumor resection surgery.  

Sanai et al. [19] made important challenges to intraoperative confocal microscopy using a handheld 

single-fiber scanning technique in the visualization of fluorescence induced by 5-ALA in low-grade gliomas. 

They found multiple fluorescent spots in the tumor and tumor margins and no bright spots in 

radiographically tumor-free areas. This indicates that visualization using confocal microscopy is useful in 

investigating even low fluorescence areas to delineate tumor margins. However, they did not investigate 

how fluorescence spots appear in marginal areas of high- and low-grade gliomas. Using the confocal 

microscope, we observed normal regions and evaluated them by histological inspection of H&E stained 

images which showed fluorescent spots in every resected section of the specimen; in the tumor area, the 

fluorescence appeared like a cloud covering the entire area. There must be some transient status from small 

bright spots distributed in the normal areas to the cloudy fluorescence of the tumor region in the infiltrating 

region. The analysis of the spot size and number remains a challenge in investigating the transient status of 

the infiltrating region and marginal region. 

 

4.3 Availability for in vivo diagnosis in neurosurgery 

Once the reliability of a diagnosis using fluorescence inspection and bright spot analysis at the microscale 

is established, an in vivo diagnosis of 5-ALA-induced PDD in neurosurgery can be applied to either a 

microscope or confocal microscope technique during neurosurgery. It is important to be able to confirm the 

position in the view of a microscope for a successful tumor removal. Because the area of observation by a 

confocal microscope is very small, a combination of the neurosurgery microscope and the confocal 

microscope is necessary for the accurate determination of infiltrated areas. 

 Moreover, its combination with Photo Dynamic Therapy (PDT) will be useful if the distinguished area 

by PDD is directly lighted by the laser of PDT.  

 

 



5. Conclusions 

The methods of fluorescence intensity analysis and bright spot analysis have been proposed using a 

confocal microscope for the precise discrimination of a brain tumor by 5-ALA PDD. The discrimination of 

a tumor region from a normal region by a fluorescence intensity analysis is very useful. An analysis of the 

bright spot size and the total spot number will be useful to discriminate between the infiltrating tumor and 

normal regions. The authors hope that the reliability of these diagnoses methods will be established in 

various neurosurgery cases and the methods will facilitate the precise resection or precise PDT of brain 

tumor tissue. 
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Fig. 1 Confocal microscope system  
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Fig.2 Fluorescence intensity analysis from the captured image  
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Fig.3 Probability that the intensity of the specimen exceeds that of the dark image 

  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.4 Bright spot size and spot number analysis 
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(i) Confocal microscope image (ii) Image binarization 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.5 Comparison between confocal image and H&E image on the specimen from tumor 

area 

(d) Comparison between confocal microscopy image and H&E image at (2) tumor with 

low density 

(c)  Comparison between confocal microscopy image and H&E image at  (1)
tumor with high density
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(i) Confocal microscopy image (ii) H&E image

(a) Confocal microscopy fluorescence image (b) H&E image and pathological inspection 

(c) Comparison between confocal microscopy image and H&E image at (1) 

tumor with high density 
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(i) Confocal microscopy image (ii) H&E image



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6 Comparison between confocal microscopy image and H&E image on the specimen 

from boundary area 

(a)Confocal microscopy fluorescence image (b) H&E image and pathological inspection 
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(c) Comparison between a 
confocal image and an 
H&E image at (3) tumor 
in the boundary 
 

(d) Comparison between a 
confocal image and an 
H&E image at  (4) 
infiltrating tumor area 
 

(e) Comparison between a 
confocal image and an 
H&E image at (5) 
normal area 

(i) Confocal microscopy image (ii) H&E image 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7 Fluorescence intensity analysis 

 

 

 

 

 

 

 

 

 

 

 

0

2000

4000

6000

8000

10000

12000

14000

16000

480 500 520 540 560 580

N
u

m
b

e
r 

o
f 

p
ix

e
ls

Fluorescence intensity of the pixel

Fig.12 Histogram of pixels on fluorescence intensity
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(b) Comparison of the average fluorescence intensity (c) Comparison of the R value, which implies 
that the probability of not being in the dark 
distribution  
 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.8 Spot size analysis on the specimen from boundary area 

  

(d) Comparison of 
average spot sizes 
and number of spots 
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(a) Histogram of the bright 
spot number in a spot size 
in the (3) tumor at the 
boundary 
 

(b) Histogram of the bright spot  
number in a spot size in the 
(4) infiltrating tumor 

(c) Histogram of the bright spot  
number in a spot size in the  
(5) normal area 
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Legends of figures 

 

Fig.1 Confocal microscope system 

 

Fig.2 Fluorescence intensity analysis from the captured image 

 

Fig.3 Probability that the intensity of the specimen exceeds that of the dark image 

 

Fig.4 Bright spot size and spot number analysis 

 

Fig.5 Comparison between confocal microscopy image and H&E image on the specimen 

from tumor area 

 

Fig.6 Comparison between confocal microscopy image and H&E image on the specimen 

from boundary area 

 

Fig.7 Fluorescence intensity analysis 

 

Fig.8 Spot size analysis on the specimen from boundary area 

 

 

 



 

Table 1 Results on fluorescence intensity and bright spot analysis 

 

 
Region 

No. 

Pathological 

inspection 

Average 

fluorescence 

intensity 

R value 

Number of 

bright 

spots 

Average 

bright 

spot size 

Sample from 

red 

fluorescent 

area 

(1) 
Tumor with high 

density 
527.92 0.84  

 

(2) 
Tumor with low 

density 
522.28 0.76  

 

Sample from 

boundary 

area 

(3) Tumor region 517.37 0.65 311 512 

(4) Infiltrating region 516.85 0.63 346 431 

(5) Normal region 513.58 0.60 972 177 

No specimen  Dark 509.64 0.5   
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