曲面パラメータを用いた高速・高精度工具経路生成 法

著者	高杉 敬吾,浅川 直紀,森本 善隆
雑誌名	精密工学会学術講演会講演論文集 = JSPE
	Conference
巻	2014A
号	M32
ページ	657-658
発行年	2014-01-01
URL	http://hdl.handle.net/2297/45542

曲面パラメータを用いた高速・高精度工具経路生成法

金沢工業大学 〇高杉敬吾, 金沢大学 浅川直紀, 金沢工業大学 森本喜隆

A Surface Parameter based-Method for Accurate and Efficient Tool Path Generation

Kanazawa Institute of Technology Keigo TAKASUGI, Yoshitaka MORIMOTO, Kanazawa University, Graduate School of Natural Science and Technology Naoki ASAKAWA

In a main processor of a CAM, a general contouring path or scanning path can be calculated by solving numerically differential equations composed of a machining surface and a plane. Therefore, several problems contained within the differential calculation, i.e. path generation errors and crush of the calculation at a singular point are included. In order to these problems, this study proposes a new tool path generation method which generates it on a parametric space of the machining surface expressed as a parametric surface. In this report, we explain the new method, and compare a conventional method. As a result, it could be concluded that this method could generate fast a tool path with stable.

1. 諸言

現在, CAM のメインプロセッサ部において生成される工具経路 には,等高線,走査線パスが主流である.近年ではそれらに加え, スキャロップ高さを一定にするための等ピックフィードパスなど も見られる.等高線パスや走査線パスは次のように求めることが出 来る.すなわち, B-Spline 曲面や NURBS 曲面などに代表されるパ ラメトリック表現された加工面をS(u,v), ある平面をPとし, Pの 法線ベクトルを n_p , 原点からPまでの距離をdとすれば, SとPの 交線は次式によって表される.

$$\boldsymbol{S}(\boldsymbol{u},\boldsymbol{v})\cdot\boldsymbol{n}_{n}=d\tag{1}$$

(1)式の全微分に対して,適当な初期値を与え,数値解法により交 点を追跡していくことで交線が求まり⁽¹⁾, **P**の採り方によって等高 線と走査線に分けることが出来る.この方法は曲面の種類に依存せ ず,統一的に解析可能であることから大変有意義な手法である.し かし,微分方程式の数値解法に依存した手法であることから,数値 演算誤差や特異点の扱い,微分方程式の初期点探索など,微分演算 手法の諸問題に対する注意が必要である.また,交線ループが複数 ある場合やトリム面が存在する場合も考慮して,初期点の探索漏れ の防止や,複雑な交点追跡の終了判定が要求され,総じて演算コス トは大きい.

本研究では、これらの問題を解決できる可能性を持った新たな工 具経路生成法として、加工面 *S*(*u*, *v*)のパラメータ*u*, *v*によって構成 される(*u*-*v*)平面上でパスを生成する手法を提案してきた⁽²⁾. 既報で は、(*u*-*v*)平面上でのパス生成を直線と円の2種類に限定し、加工点 の生成間隔をほぼ一定に保ちながら、均質なパスを生成する手法に ついて言及した.本報では、直線や円だけでなく一般的な曲線への 拡張について言及する.

2. (*u*, *v*) 平面上でのパス生成

図1に,実空間上の曲線と,(*u*,*v*)平面上の曲線との対応を示す. 例えば,(*u*,*v*)平面上で表現された曲線は,特殊なケースを除いて実 空間上で関数表現できない.よって,(*u*,*v*)平面上でパスを生成した 場合,次の2つの問題点が生じる.

- (1) (*u*,*v*)平面上の距離と実空間上の距離が対応しない:(*u*,*v*)平面上で距離の等しい点群を生成したとしても、実空間での曲面上の各点の弧長は異なるため、加工点間隔やピックフィードを一定にできない.
- (2) 曲面の特徴を考慮できない:3次元曲面の特徴は(u, v)パラメ ータに含まれていないことから、それだけでは走査線や等高 線加工の戦略的選択が不可能である.特に等高線加工パスを (u, v)平面上に生成するためには、曲面の凹凸や頂点を判別す る必要がある.

既報⁽²⁾では、上記問題に対してパスが(*u*, *v*)平面上で直線あるいは 円とするケースに限定し、さらにピックフィードに関しては言及せ ず、加工点間隔が一定となる等ピッチパス生成手法を述べた.本報

Fig.1 Relationship between real space and (u, v) plan in parametric surface

では、これを拡張し、(*u*, *v*)平面上において一般的な平面曲線に対応 した式を示す. さらに、ピックフィードに関しても、等間隔となる ための手法を提案する.

3. (u, v) 平面上での加工点間隔一定パスの生成法

図 2 に示すように, (*u-v*)平面上のパスを表現するための曲線を *C*(*t*),目的の加工点間隔を*r*とする.*r*が微小であれば,次式が成り 立つ.

$$\left\|\boldsymbol{S}_{\boldsymbol{u}}d\boldsymbol{u} + \boldsymbol{S}_{\boldsymbol{v}}d\boldsymbol{v}\right\| = dr \tag{2}$$

ここで、 S_u 、 S_v はそれぞれ曲面Sのu方向、v方向の1階微分を 表す.また、 $C_{t,u}$ 、 $C_{t,v}$ をそれぞれ、Cのtによる1階微分のu方向 成分およびv方向成分とすれば、

$$\frac{dv}{du} = \frac{dv}{dt} / \frac{du}{dt} = \frac{C_{tu}}{C_{ty}}$$
(3)

と表すことができる. (3)式を(2)式に代入することにより,次式を 得る.

$$\frac{du}{dr} = \frac{1}{\left\| \boldsymbol{S}_{u} + \frac{\boldsymbol{C}_{Lv}}{\boldsymbol{C}_{Lu}} \boldsymbol{S}_{v} \right\|}, \qquad \frac{dv}{dr} = \frac{1}{\left\| \boldsymbol{S}_{v} + \frac{\boldsymbol{C}_{Lu}}{\boldsymbol{C}_{Lv}} \boldsymbol{S}_{u} \right\|}$$
(4)

(4)式は1階の常微分方程式であるから、ルンゲ・クッタ法などの 数値計算手法を用いて (u, v)を更新していけば、高速に実空間上で 等間隔な加工点を生成できる.ただし、(4)式において C_{tu} および C_{tv} はパラメータ t に依存しているため、次式に示す du, dv, dt の関係式 を用いて、(u, v)と同様に t を更新していく必要がある.

$$dt = \frac{\sqrt{du^2 + dv^2}}{\|\boldsymbol{C}_i\|} \tag{5}$$

4. 等ピックフィード, 等ピッチ点の生成法

前節では、(u, v)平面上で既にパスが曲線 C として定義されている 場合の、等ピッチ点の生成法について述べた.本節では、隣接する パス C₁, C₂が等ピックフィードでかつ、等ピッチとなる加工点群の 生成法について言及する.つまり、C₁上に等ピッチな加工点群が既 に生成されているものとして、それに等ピックフィードとなる C₂ M32

Fig.2 Expression of finite elements of free curve C(t)

上の等ピッチな加工点群を生成する.まず,図 3(a)に示すように, 微小ピックフィードを s, $C_1 \pm 0$ 1点を $P_0(u_0,v_0)$ とし,この点から C_2 を生成するための初期点 $P_1(u_1,v_1)$ を生成する. P_0 , P_1 は曲面 S 上 の点であるから,次式が成り立つ.

$$\left|\boldsymbol{S}_{u_0} d\boldsymbol{u}_1 + \boldsymbol{S}_{v_0} d\boldsymbol{v}_1\right| = s \tag{6}$$

ここで, *du*₁, *dv*₁はそれぞれ, *P*₀から*P*₁への*u*方向, *v*方向の増分 値を表す. (5)式において, *u*方向, *v*方向どちらか一方を固定すれ ば, *du*₁=0 あるいは *dv*₁=0 となる. 例えば *u*方向を固定すれば, (5) 式は,

$$dv_1 = \frac{S}{\left\| \boldsymbol{S}_{v_0} \right\|} \tag{7}$$

と計算され、次式によって P1 が得られる.

$$\begin{cases} u_1 = u_0 \\ v_1 = v_0 + dv_1 \end{cases}$$
(8)

次に,図 3(a)に示したように, P_0 からピックフィード*s*, P_1 から ピッチ rの距離にある点 $P_2(u_2,v_2)$ を求める.このとき,次の連立方 程式を得る.

$$\begin{cases} \| \mathbf{S}_{u_0} du_2 + \mathbf{S}_{v_0} dv_2 \| = s \\ \| \mathbf{S}_{u_1} (du_2 - du_1) + \mathbf{S}_{v_1} (dv_2 - dv_1) \| = r \end{cases}$$
(9)

ここで、 du_2 、 dv_2 はそれぞれ、 P_0 から P_2 へのu方向、v方向の増 分値を表す. du_1 、 dv_1 は上述により既知であり、未知変数は du_2 お よび dv_2 の2 つだけであるから、理論上(8)式は、解析的に解くこ とができるはずだが、大変複雑になってしまうことから、ここでは ニュートン法を用いて解の収束計算を行う.すなわち、(8)式に対し て、評価関数 f_1, f_2 を、

$$f_{1} = \left\| \boldsymbol{S}_{u_{0}} du_{2} + \boldsymbol{S}_{v_{0}} dv_{2} \right\|^{2} - s^{2} = 0$$
(10)

$$f_{2} = \left\| \boldsymbol{S}_{u_{1}}(du_{2} - du_{1}) + \boldsymbol{S}_{v_{1}}(dv_{2} - dv_{1}) \right\|^{2} - r^{2} = 0$$
(11)

と定義し、ニュートン法を適用することによって、 du_2 、 dv_2 が求まり、次式によって、 P_2 が得られる.

$$\begin{cases} u_2 = u_0 + du_2 \\ v_2 = v_0 + dv_2 \end{cases}$$
(12)

 P_2 以降は、図 3(b)に示すように、 $(u_2, v_2) \varepsilon(u_1, v_1) \varepsilon$ 置き換え、(9)、 (10)式を適用することによって、順次加工点が求まる.ただし (u_0, v_0) は、更新された (u_1, v_1) から C_1 への最近傍点を探索するなどの手法を 用いて再設定しなければいけない.

5. 検証実験

以上のパス生成法の有効性を確認する検証実験を行った.

図4は、曲面S上に適当なB-Spline 曲線Cを定義し、3節で述べた手法を用いてC上に等ピッチ点群を生成した結果を示す. ピッチrは 0.2mm に設定した. 各点間距離を調べたところ、最大でも 0.012 μ m の誤差の範囲内でほぼ等ピッチな点群が生成されたことを確認した.

次に、4節で述べた、等ピックフィード、等ピッチ点群の生成を 行った.ただし今回は、 P_0 を1点に固定し、 P_0 に等ピックフィード な点群の生成を行った.ピックフィードsは確認のしやすさを考慮 して10mm、ピッチrは0.2mmとした.結果を図5に示す.生成さ

(a) Calculation of first and second points on C_2

(b) Calculation of after third point on C_2

Fig.3 Derivation principle of equal pick feed and equal pitch points on free surface *S*

Fig.4 Calculation result of generation of equal pitch points

Fig.5 Calculation result of generation of equal pitch and pick feed points

れた各点におけるピックフィード誤差およびピッチ誤差はそれぞ れ 0.77mm および 0.35µm となった. ピックフィードの誤差が大き くなった理由は, 設定値を 10mm と通常ではあり得ない値としたた めであり,実際に想定されうるピックフィード, 例えば 0.5mm と した場合は, 0.37 µm となり実用上問題ない値を得た.

以上より,提案した手法により,高速に等ピッチ,等ピックフィードパスを生成可能であることが確認できた.

6. 結言

本研究では、工具経路を生成するための新たな手法として、以下 に示す、曲面のパラメータ空間を応用した手法を提案し、その有効 性を確認した.

- (1) (*u*, *v*)平面上に生成したパラメトリック曲線に対し,実空間上 で等間隔な加工点群を生成する手法を提案した.
- (2) 曲面上の1点から等ピックフィードで等ピッチな点群を生成 する手法を提案した.

参考文献

- (1) 久志本,他,機論(C編), 57-9(1991), 1667
- (2) Takasugi, K. et al., Int. J. of Automation Technology, Vol.8, No.3 (2014), pp.428-436