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FOUR COMPONENT THREE DIMENSIONAL FEM ANALYSIS OF FLUX
CONCENTRATION APPARATUS WITH FOUR PLATES

Takeshi Yoshimoto ,

ABSTRACT

This paper deals with the four component three
dimensional FEM analysis of a flux concentration model

with four thick conducting plates placed betwasn a pair
of a.c.-excited coils. We have already snalyzed a flux

concentration apparatus with two conducting plates by
using a newly developed iterative 3-D calculation
method,{1l] {2] An improved formulation is also treated
in this paper. This calculation method 1s applied to
the present four-plate type model, to prove its adapta-
bility and to search for more efficlent design of such
apparatus. Distributions of flux densities, eddy
currents and scalar potentials are calculated and
discussed.

The role of the scalar potential for the 3-D eddy
current diffusion problems is also interpreted, based
on our calculation results,

INTRODUCTION

For the eddy current diffusion problems, the real
three dimensional or axi-symmetrical analysis method
is desirable, because eddy currents essentially ecircu-
late in a finite length conductor three dimensionally,

A flux concentration apparatus which has been
investigated at Kanazawa Universitv since 1981 [3],
requires 8 full three dimensional amilysis to clarify
the effect of eddy currents,

Four component three dimensional FEM formulations,
shown in references [4) or (5], intrinsically lead to
large and sparse system matrices due to four components
per node in addition to the 3-D structure. Our calcu-
lation method is devised to avoid using large computer
memories by dividing the total simultanecus equations
into four groups and using an iterative methad,

GCauss elimination method is used in solving each sub-
system of equations,

As for the controversial theme of the role of the
scalar potential [6] [7}, one inductive conclusion is
led, on the basis of the real calculated distribution
of the scalar potential in our model. This distribu-
tion is also made possible to obtain by the ability of
our calculation method teo treat large models. We make
1t clear that the scalar potential plays a great role
in obtaining circulating eddy currents in a finite
shaped conductor, especially when it has some disconti-
nuity in the stream~lines similar to the flow of the
impressed currents.

ant

FIELD ANALYSIS EQUATIONS

For a three dimensional quasi-stationary eddy
current diffusion problem, we obtain first the expres-
glon of the eddy current density, from combining
Maxwell's electromagnetic field equations.

e——

Je =-jwoA -ograd ¢ (1)
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Next, we get the following fundamental
assuming constant Y in the x, y, and z
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V(VA) - VA = -a(JuwA +V¢) + T, (2)

fact that the
should equal

The other equation is derived from the
divergence of the eddy current density
zéro.

div {o(jwh +grad ¢)} =0 (3)
where,

three component vector potential

gource current density

electric scalar pdtential
permeability of medium

: conductivity of medium

A% B8 Bu  aa

Qr e 4>

The above two equaticns, (2) and (3) are the fundamen-
tal field analysis equations necessary to determine
the vector potential and the scalar potential distribu-
tions for eddy current problems.

Now we Introduce, from the standpoint of the
computer memory, one lterative method to avoid

treating the whole system of equations. From (1), the
vector potential A can be written as
TA=-Yi¢/ju (4)
Using (4), (2) can be decomposed Into three axis-
component equations as shown in (5)-(7). Adding (3),
the following four equations are obtained.
-L?Iﬂx+jmuﬁ. = Jox~ (0Vd)y + -1— "'a""(vztb)
™ X sX X7 Tou 3x (53
C R VA4 Jughy = Jgy - (0V8) 4~ 2 (724)
__l.v25.+ jwoA Jeo - (uﬁ¢) + 1 9 (72¢)
U Z Z SZ Z .]"-UU 3z (7)
Ve(oju(Ayu, + Ayuy + Azu,) +07¢) = 0
, (8)

FORMULATION BY GALERKIN METHOD

Formulation is made by using Galerkin method with
shape functions Ny as weighting functions. Supposing
(5) as a representative of (5)-(7), we show the trans-
formation of (53) only. Its integral form is

..{r{ﬂi—i?’ﬂx} dv + ijJ;NiAx* dv = vaiJEx-dv

1 L ula).
':J;“i{”v¢}x'd“ + jmﬁ-gfi = (77¢)- dv

Using the divergence theorem and the vector ldentity

v(N,R) =N (FR) + (WNR (10)

(9)

The first term on the left side of (9) is transformed
to (11)}.
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(a) Eddy Currents by Vector Potential

(b) Eddy Currents by Scalar Potential

e

{c) Synthesis of the Two

Fig.8 Composition of Eddy Currents

into consideration when we treat a model including
conductors with any discontinuity or any gaps in the
stream~]lines similar to the flow of the impressed
currents. Though there are. several papers stating that
the scalar potentilal results from or related to the
imprlnuad voltage [7], our conclusion obtained from
above calculation 1is that the scalar potential provides
a voltage source for eddy currents to be continuous in
a finite shaped conductor, which sigrnifies that it
compensates the incomplete expression of the eddy
current density by the vector potentfal A only.

CONCLUSION

A flux concentration apparatus with four thick
conducting plates is analyred by using ocur newly devel-
oped 3-D iterative caltulation method. Two slit-widths
of SL1 and SL2 are confirmed to affect the concentration
of the magnetic flux in the central part of the air--
gap. It is also confirmed that the {lux concentration
is due to the intensified eddy curreants in the edges
adjacent to the air-slit.

The role of the scalar putential in the 3-D
analysis is clarified on the basis of the real calcula—~
ted results. The scalar pntential t1a concluded to be
necessary when we treat such a model including conduc~
tors with any discontinulty or any gaps in the stream—-
lines similar to the flow of the impressed currents.
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{(b) on X-Z Plane

Fig.4 Flux Distribution (SL1=10 mm, SL2=10 mm)
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(b) on X-Z Plane

Fig.5 Flux Distribution {S§L1= 6 mm, SL2= 5 mm)
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Fig.6 Eddy Current Distribution
(SL1=10 mm, SL2=10 mm)
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Fig.6 shows the eddy current distributions on the
central plane and the top surface of a conductor plate
for SLI1=1C mm and SL2=10 mm. It is obmerved that eddy
currents concentrate near the central part and contri-
bute to strengthen z-ward flux density.

Distributions of the scalar potential on the top
surface of the right-hand and backward plate are shown
in Fig.7. The gradient of the scalar potential consti-

tutes a part of eddy currents together with the differ-

ential of the vector potential. It is recognized that
-the eddy currents calculated from Fig.7 contribute to
make eddy currents circulate in each conductor.

THE EFFECT OF THE SCALAR POTENTIAL ON EDDY CURRENTS

To study the role of the scalar pﬂtentiai, the
expression of eddy current density is restated as

Jeo =~juwoA -oggrad ¢ {1)

The first term indicates the component by the vactor
potential, while the second term is the component by
the gradient of the scalar potential. If we don't
take ¢ into account, the calculation results show that
eddy currents flow in opposite direction to the route
of the impressed currents. Because the direction”of
the vector potential A is decided mainly by the impress
ed currents. As a result, there exist eﬂdy currents
perpendicular to the boudaries, B~C and C-D, which is
physically impossible. In the next place, when we
consider the scalar potential, the results show that
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the second component of the eddy current cancels the
flow perpendicular to the boundaries of B-C and C-D,

50 that eddy currents turn to circulate in the conduc-
tor.

| The synthesis of the eddy currents, based upon the
ides mentioned above, is i1llustrated in Fig.8 (a), (b)
and (c¢). Figure (a) shows the eddy currents decided -
by the vector potential only, while figure (b) shows
the eddy currents by the gradient of the scalar poten-
tial. Figure (c} shows the synthesized ones.
The inference from the above calculated results
of our model, shows the scalar potential must be taken



1 [, aN: 3A_  3NjaAy INjdAyx
U uJ;( e e ay ny 9Z JzZ )dv (11)

The filrst term on the ripght side of (l1) wvanishes in
the case Neumann condition holds on the surface
enclosing the region. 1In addition, 1t should be said
the third term on the right side of (9) 1is significant
only in the case that the scalar potential 1is expressed
" in an equation of order less than 3. If it is express-
ed In an equation of order less than 2, the field
considered becomes equal to one where the Coulomb

fauge holds. When we adopt a brick element of order
less than 2, (9) reduces to (12), with the same trans-
formation availlable for (6) and (7).

HiA]{ d‘U

_%j(vﬂi‘)(v‘ﬁ*x) dv + jJuo
v V

=IN1‘J5;¢ dv -J;N-i(cr?#-)x dv  (12)
v ,

As for (8), using shape functions Ny as weighting
functions and applyling the divergence theorem besides
the vector identity (10), the following equation 18
obtained:

J;uiu(juﬁwm.ﬁ ds -J;tvmi)u(jm'}h ¥6) dv = 0
(13)

fonsidering that the total ocutflow from the region
equals zero, (13) become

J N JeAT + AT+ AT,) dv + [(IN,)Ve dv =0
v d ‘J; (14)

Therefore, {12) and (l4) will be the two fundamental
equations to accomplish the finite element formulation
for 3 dimensional eddy current diffusion problems,

whatever finlte elements are used.

ITERATIVE CALCULATION METHOD

The global system matrix obtained by discretiza-
tion of (5)-(8), will be generally not only large
but also sparse due to the introduction of the scalar
potential. By moving ¢ onto the right-hand side as
shown in (5)-(7) and assuming its value constant in
each calculation of (5)-(7), variables, A;, A, and
A,, can be solved independently. This means we have
only to treat one sub-system of equations at a time.
These varlables decide ¢ by using (8). The new ¢ is
put back again into (5)-(7) to calculate new variables
of A,, A, and A,. 1In this iteration process, final
cnnvergeﬁ values of Ay, A,, A, and ¢ can be obtained.
Under-relaxation method is used for updating the
scalar potential, The method we propose 1s based upon
the idea that the four groups of equations could be
regarded as respective sub-systems of equations regard-
ing A_, A s A, and ¢ , as shown in Fig.l. Though
1terﬂ§iunyprncess 1s needed among the four groups, the
number of elements of each bandmatrix decreases to one
sixteenth of that of the global system matrix.
This memory saving of 1/16 1is very effective in the
circumstance that the general time sharing system of
the large-sized computer provids a certalin limited
region to an individual user. In addition, 1t also
enables to use the direct calculation method like

Gauss e¢llimination.

FOUR-PLATE TYPE MODEL

A basic model of our flux concentration apparatus
with four conducting plates is shown in Fig.2, while
its configuration is shown in Fig.3. A pair of two

- {terative method mentioned above 1s used.
symmetry, one eighth of the whole reglon 1s discretized
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Fig.l Matrix Structure {( N:Number of total nodes,
M:Bandwidth in the case ¢of one varlable)

exciting coils induce eddy currents in the four conduc-
ting plates. The flux density in the central part of
the air-gap is intensified when two slit-widths, SLI
and SL2, among the four plates become small.

To analyze this 3-D model, the four component
Using 3-D

and calculated. As the model is layer type, the region
1s divided by using first-order triangular prisms.
Neumann condition is imposed on the outer boundary
surface, with zero vector potentlal along 2z-axis.

Frequency of the impressed currents is 60 Hz, the
conductivity of the copper plate 8.62x10’ S/m, and the
ampere turns of the excitation coll are 2.0x107 L AT /.
Distributions of the flux density, the eddy current
density and the scalar potential are calculated.

Fig.4 shows the flux density*distribution for
SL1=10 mm and SL2=]0 mm, while Fig.5 shows another onc
for SL1=6 mm and SL2=5 mm. In both figures, {(a) and
(b) show the flux distributions for Y-Z plane and X-Z
plane, respectively.
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Fig.2 Flux Concentration Model with
Four Conducting FPlates
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