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Abstract 

A particle impact damper is a vibration absorber type that consists of a container attached to a 

primary vibrating structure. It also contains many particles that are constrained to move inside 

the container, whereby the damping effect can be obtained by collision between particles and 

the container. The discrete element method (DEM) has been developed for modeling granular 

systems, where the kinematics of each particle are calculated numerically using the equations 

of motion. However, the computational time is significant since the algorithm checks for 

particle contacts for all possible particle combinations. The use of a cellular automata (CA) 

modeling technique may provide increased computational efficiency due to the local updating 

of variables, and the discrete treatment of time and space. In this study, we propose a new 

approach combining DEM with CA for modeling a granular damper under a forced excitation. 

We use DEM to describe the particle motion according to the equations of motion, while CA 

is introduced for the particle contact checks in discrete space. We also investigate the effect of 

simplification in the contact force model, which allows the unit time step of numerical 

integration to become larger than that used in the strict model. It is shown that the suggested 

particle contact scanning method and the force approximation model contribute to the 

reduction of the computational time, and neither degenerates the calculation accuracy nor 

causes the numerical instability.  
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1. Introduction 
The impact damper is a type of vibration absorber that consists of a container attached to the 

primary vibrating structure. Additionally, it comprises a solid body constrained to move 

inside the container, where the damping effect can be obtained by collision and friction 

between the body and the container wall (Masri and Caughey 1966). The damper is usually 

used when an external damping treatment is substantially difficult, or when an extreme heat 

environment limits the use of viscous dampers. A particle damper is a type of an impact 

damper where the impact body is replaced by a granular assembly (Pannosian 1992). 

Establishing an effective numerical model is quite essential for the efficiency of the damper 

design for determining particle-related parameters, such as size, numbers, and material 

properties, which ultimately elicit the best damping performance.  

The basic theoretical analyses deal with the particle bed as a single solid structure, which 

collides with the container wall plastically, whereby the dynamic response of the system is 

described by the governing equations of respective bodies (Friend and Kinra 2000; Papalou and 

Masri 1996). These approaches provide approximate predictions of the system behavior. 

However, the application is limited to simple systems, and the detailed information that may 

affect the system responses, such as the effect of particle size, or the friction between particles, 

cannot be fully modeled. Since the damper is intrinsically a nonlinear system, the continuum 

approximation approach could not be extended to the problems formulated at different scales.  

On the other hand, the discrete element method (DEM) has been developed for modeling 

discontinuous materials, such as granular systems, in order to understand the microscopic 

behavior. In this case, the motion of each particle is numerically calculated by a set of motion 

equations considering the contact force between the elements. The early development of the 

model was introduced by Cundall and Struck in which the behavior of granular assemblies of 

discs and spheres was explained (Cundall and Strack 1979). Tsuji et al. extended Cundall’s 

model to simulate the plug flow of spherical particles conveyed in a horizontal tube (Tsuji et 

al. 1992). They expressed the contact force between particles by using the Hertzian contact 

model. DEM has also been used to study the damping effect of the particle dampers. Saeki 

studied the relationship between the behavior of granules in the cavities, and the performance 

of a multi-unit particle damper using the Hertzian model in the DEM calculation (Saeki 

2005). Other prior research studies refer to the modification of the contact model itself, or to 

the identification technique towards the precise estimation of the damping performance 

(Olson 2003; Wong et al. 2009; Malone and Xu 2008).  

Since DEM employs governing equations on each grain, the behavior of individual 

particles and the gross motion of a granular system can be traced. However, the method 

requires a significant calculation time. This tremendously complex calculation is attributed to 

the setting of the simulation time step to a very small value in order for the impact calculation 

to be stable, and to particle-particle or particle-wall contact checks for all possible 

combinations. Reduction of the calculation time seems more significant than elaborating the 
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model-related parameters for the efficient damper design, especially in the case of predicting 

long-term, forced vibration responses. Mao et al. and Hu et al. introduced the link cell (LC) 

method, also known as the “box” algorithm, to reduce the number of contact checks (Mao et 

al. 2004; Hu et al. 2008). In the LC method, the space inside a container is divided into 

homogeneous cubic cells. By determining nonempty cells intersecting more than one particle, 

the contact detection was localized at the neighbors of the granules, which correspondingly 

reduced the frequency of contact checks. To further increase the contact detection efficiency, 

Fang et al. combined an improved LC method and an adaptively updated Verlet table that 

recorded all granular pairs whose distances were less than a predefined threshold value (Fang 

et al. 2007). Despite the improvement of computational efficiency, the procedure seems rather 

complex, and the management of the Verlet table might consume significant memory for an 

increasing number of particles.  

Computer simulations using cellular automata (CA) may provide useful tools for 

understanding various types of phenomena in physical, social, and biological systems. CA 

models can produce complex patterns based on simple strategies describing behavior of 

elements, which are analogous to the appearance of complex systems (Chopard and Droz 1998; 

Ilachinski 2001). CA consist of finite-state variables arranged on uniformly segmented grids, 

each of which can vary within a finite set of values corresponding to the physical state of 

components in the system being analyzed. The time evolution of the system is updated 

synchronously according to the local interaction rule at every discrete time step. The state of a cell 

at a given time step only depends on its previous state and the state of nearby neighboring cells.  

The CA modeling techniques provide advantages over the DEM approach in regard to 

computational efficiency and numerical stability, due to the local updating of variables, and 

the discrete treatment of time and space. CA has been used to model the particle behavior in 

granular flows (Prado and Olami 1992; Baxter and Behringer 1991; Sakaguchi et al. 1996). 

These studies have revealed that the CA model can describe any piece of physical properties, 

even with the use of simple rule definitions. However, few studies have qualitatively 

exploited the dynamic interactions between granular materials and a structure in CA models. 

This may have been due to the difficulty in relating discrete model parameters to the actual 

continuous physical quantities, such as the force, velocity, and others. 

Towards an improved computational efficiency, we propose a new approach combining 

the DEM with the CA for modeling particles moving inside a granular damper container 

under the steady state forced excitation. We use the DEM to provide rigorous description of 

the physics related to the particle motion according to Newton’s first law of motion, while the 

CA is introduced to reduce computational cost by limiting the contact checks of the local 

neighbors of each particle in cellular space. We also investigate the effect of simplification in 

the contact force model, which allows the unit time step of numerical integration to become 

relatively larger than the strict model, without causing numerical instability in the system 

calculation. 
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2. Measurement of the Damping Characteristics of a Granular Damper 

We measured the damping characteristics of a granular damper experimentally in order to 

verify the numerical model using a fundamental DEM, as shown in the next section. A 

schematic of the experimental setup is shown in Fig. 1. An acrylic container is attached to the 

tip of two phosphor bronze plates, which constitute a base-excited, one degree-of-freedom 

(DOF) primary vibrating system constrained to move in the direction of gravity. The mass of 

the container is 88.6 g, and the natural frequency of the system is 6 Hz. The acrylic particles 

(6 mm in diameter, 0.2 g) are packed inside the container whose inner space dimensions are 

96 mm in height, 60 mm in width, and 6 mm in thickness, in such a way that particles are 

restrained to move in two-dimensional space. The maximum number of particles that can be 

arranged in the vertical direction is 16, and 10 in the horizontal direction. The container is 

sinusoidally excited by an exciter at the clamped end of the leaf springs, with the constant 

base excitation amplitude of 2.0 mm. In this experiment, the damping performance was 

evaluated by measuring the absolute displacement of the primary system, where the number 

of particles varied from 0 to 60 at every 20 particles.  

Fig. 2 shows the frequency responses of the primary system obtained by the experiment, 

where the particle damper incorporated a different number of particles. A root-mean-square 

(RMS) absolute displacement of the primary system is plotted against each excitation 

frequency. In the figure, the displacement is also expressed as the RMS transmissibility in 

non-dimensional form, where the absolute displacement is normalized by using the base 

excitation amplitude. It is shown that the damping effect increases in accordance to the 

particle number. The peak frequency shift towards the lower frequencies is mainly caused by 

the added mass effect of particles, which contributes to the decrease of the natural frequency. 

 

 
Fig. 1 Experimental setup of a vertically oriented granular damper 

Power amplifier Exciter 

Fast Fourier transform (FFT) analyzer 

Laser displacement sensors 

Plate springs 

Granular damper 
Container (front view) 

60 mm 

96 mm 
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Fig. 2 Comparison of the damping effect as a function of the particle number (experimental results) 

 

3. Modeling Particle Behavior Using a Strict Discrete Element Method 
In this section, DEM is introduced to model the particle behavior inside the container when 

the system is excited harmonically. The DEM model consists of the governing equations 

defined for each particle considering the contact forces between the elements. The equations 

of motion for the particles and the primary system are described in this section.  

 

3.1 A model of a primary system 

If we consider x to be the displacement of the primary system in the vertical direction, the 

equation of motion for the primary system is written as follows:  

pd ffKxxCxM +=++   (1) 

In Eq. (1), M, C, and K, represent the mass, damping coefficient, and spring constant of the 

primary system, respectively. Correspondingly, fd denotes an external force acting on the 

primary mass, and fp the total collision force brought in contact with particles. We investigated 

the harmonically-excited cases, where the force was defined as: fd (t) = Fsin2πft. The force 

amplitude value F was 0.25 N, and the excitation frequency f was varied from 4 Hz to 8 Hz. 

 

3.2 Equations for particle motion 

When particles move within the two-dimensional space, three equations should be defined to 

describe their motion. Specifically, two translational equations for motion must be defined 

along the horizontal and vertical directions, and an equation for rotational motion with respect 

to the center of gravity. If particles are assumed to be spherical, and have uniform 

characteristics, the equations of motion for the ith particle are represented by Eqs. (2) and (3). 
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In Eqs. (2) and (3), m denotes the mass of the particle, I the moment of inertia, ip  the 

position vector, φi the angle of rotation, and iF  and Ti are the force and torque acting on a 

particle, respectively. In addition, g represents the acceleration of gravity. The contact force 

acting on a particle that is in contact with other particles, or with the container wall, can be 

decomposed into the normal and the tangential force components, nf  and tf , respectively. 

These forces are explicitly expressed in conjunction with the normal and the tangential 

contact displacements, nδ  and tδ , as follows (Tsuji et al. 1992): 

nnpnpn ckf δδδ 4
1

2
3
+=  (4) 

ttnt ff δδµ  /=  (5) 

In Eq. (4), cp represents a damping coefficient, which is determined from the measured 

restitution coefficient, kp is a spring constant derived using the Hertzian contact theory, and 

µ  in Eq. (5) denotes the friction coefficient. 

The spring constant kp is defined in a different way, depending on whether a particle is in 

contact with another particle, or with a wall. If the particle is in contact with the wall, the 

spring constant kp1 is given as follows:  

EE
EErk p )1()1(3

4
2
00

2
0

1 σσ −+−

⋅
=  (6) 

In the case of a collision between particles, the spring constant is defined by the following 

equation:  

)1(3
2

22 σ−
⋅=

Erk p  (7) 

In Eqs. (6) and (7), E and E0 represent the Young's moduli, and σ and σ0 the Poisson's ratios, 

of the particle and the wall, respectively, and r denotes the radius of the particle. The impact 

force fp acting on the container wall is obtained by the summation of the x components of the 

normal and the tangential contact forces, fn and ft. In the same way, the x and y components of 

the force Fi that are exerted during the translational motions of the particle are calculated by 

the decomposition of fn and ft, and the synthesis of their components in the respective 

directions. The torque acting on a particle is also calculated by the radius r times the 

tangential force ft.  

   In the fundamental DEM model, the contact between the particles is assessed for all the 

pairs irrespective of their separation distances. This process is thought to be a predominant 

cause of the computational load. The contact between the ith and jth particles is checked using 

their respective position vectors ip  and jp , and their radii r, as follows:  

 rji <− pp  (8) 
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If Eq. (8) is satisfied for a given pair, the contact forces are then calculated using Eqs. (4) and (5).  

3.3 Numerical prediction of the granular damper performance using a strict DEM model 

In this subsection, the damping performance of the granular damper is evaluated 

numerically according to the strict DEM model described in the previous subsection. As 

shown in Fig. 3, the model of the damper consists of many particles packed inside a container. 

The container also works as a mass of the primary vibration system moving along the 

direction of gravity. Parameters used in the DEM analysis are shown in Table 1. To comply 

with experimental conditions, the inner dimension of the container was chosen to be 96 mm in 

height, 60 mm in width, and 6 mm in depth. The particle diameter was 6 mm, and hence, the 

particle motions inside the container were assumed to be two-dimensional. Material properties 

of an acrylic resin were considered for both the container and the particle. The forced 

response of the harmonically excited primary system was calculated, in which the number of 

particles varied from 0 to 60 at every 20 particles. In this case, the natural frequency of the 

primary system alone was approximately 6 Hz, and the time step for each calculation was dt = 

2.0×10-5 s. The calculation step must be small enough in order to avoid numerical instability. 

The main cause of such instability is the collision between objects within a short time. Hence, 

the time step should be smaller than the contact duration Tc. In the present case, the time step 

dt was almost identical to Tc/5. Therefore, the total calculation time needed to obtain a 

response curve for a series of excitation frequencies becomes very large.  

 
Fig. 3 Analytical model of the particle damper 

 

Table 1 Parameters used in DEM calculation 

Primary system 
Mass M 0.086 kg 
Spring constant K 123.4 N/m 
Damping coefficient C 0.08 Ns/m 

Particle 
Mass m 0.2×10-3 kg 
Radius r 3×10-3 m 
Elastic constant E 0.4 GPa 
Poisson’s ratio σ 0.3 
Friction coefficients μp，μw 0.2 

Container 
Dimension  0.096 × 0.06 × 0.006 m3 
Elastic constant E0 0.4 GPa 

Container 

60 mm  

96 mm 

Particles 
(diameter = 6 mm) 

k c 
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Poisson’s Ratio σ0 0.3 

 

Fig. 4 Frequency response of the particle damper calculated by the DEM model 

 
The numerical prediction result of the primary system response is shown in Fig. 4. The 

amplitude of the response curve is expressed by the RMS value where the time history of the 

absolute displacement at each excitation frequency is averaged over 40 periods. In the figure, 

the response is also expressed in non-dimensional form, where the RMS amplitude is 

normalized by using the static deflection value, δ = F / K. In this case, the force amplitude F 

was 0.25 N, and the spring constant K of the primary system was 123.4 N/m. Hence the static 

deflection was calculated as δ = 2.0 mm. The results obtained are similar to the experimental 

observations, where the peak amplitude of the primary system is damped effectively as the 

number of particles increases. The peak frequency is also found to move towards a lower-

frequency region depending on the number of particles. 

 

4. Contact Detection Model using Cellular Automata 
In the elementary DEM approach, an interparticle contact is usually checked for all 

combinations of particles, even if they are separated apart. Such a process seriously increases 

the total computational time for a large number of particles. In order to make the calculation 

more efficient, we investigate an approach combining the DEM with the CA for modeling 

particles moving inside a granular damper container. While we use DEM for modeling 

particle motions, which are governed by the physical law, CA is introduced for reducing 

computational cost by limiting the contact checks within the local neighboring region of each 

particle in cellular space. Specifically, particle displacements are treated as continuous values, 

and are numerically integrated in a rigorous manner using the Runge–Kutta method, obeying 

the equations of motion. At each moment, the calculated particle displacements along the x 

and y directions are further mapped onto the two-dimensional space. The indices used in the 

two directions correspond to discrete positions of particles in cellular space. We also 

investigate the effect of simplification in the contact force calculation, which allows the unit 

0

5

10

15

0

10

20

30

4 5 6 7 8

X
 / 
δ 

RM
S 

ab
so

lut
e 

dis
pla

ce
m

en
t X

  [m
m

] 

Excitation frequency [Hz] 

  0 particles

20 particles

40 particles

60 particles



9 

time step of numerical integration to become relatively larger in comparison to the strict 

model, without destabilizing the system calculation.  

 

4.1 Definition of discrete space for contact determination of particles 

In this study, each compartment within a discrete space is called a cell. An example of the 

discrete space representation inside the container is shown in Fig. 5, in which the two-

dimensional space is discretized into 32 rectangular cells vertically and 20 cells horizontally. 

Compared to the model shown in Fig. 1, the unit cell size corresponds to 3 mm. Thus, a 

particle having diameter of 6 mm occupies 2×2 cells. With reference to the origin (0, 0) 

assigned to a cell at the bottom left corner, the location of each cell is expressed by a 

combination of indices in both directions. Discrete representation of particle position along 

the two directions, ix and iy, is converted from the original real numbers x and y in accordance 

to, 

( )

( )







+×<∈=

+×<∈=

}5.0/|max{
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WxNnΖni
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 (9) 

In Eq. (9), W and H denote the width and height of the container, Nx and Ny the indices of cells 

in horizontal and vertical directions, respectively. We assume that the particle center is located at 

a cell with the indices calculated a priori, although it does not always coincide with the true 

center due to the round-off errors in this conversion process. Herein, the size of a cell should be 

smaller than the radius of the particle in order to avoid overlapping of multiple particles at a 

single cell site. While the particle positions ix and iy are only used for the determination of inter-

particle contact within the discrete space at each calculation step, the original position values x 

and y are consistently updated according to the DEM calculation. In the present investigation, 

three types of discrete cellular spaces are arranged, namely, 32×20, 64×40, and 128×80, and the 

effect of the spatial resolution on the calculation accuracy is evaluated.  

 

Container wall 

22 cells 

34 cells 

Particle 
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Fig. 5 Space discretization into cellular grids for the detection of contact between particles 

(example case of a 22×34 discretization) 

4.2 Detection of contact between objects 

Every particle center belongs to a particular cell center in space. In detecting the collisions 

between particles and other objects, the space is first searched sequentially for a cell having a 

particle center. If the cell is found, the surrounding neighboring area, whose thickness is as 

large as the diameter of the particle, is placed as shown in Fig. 6(a). The presence of other 

particles is subsequently scanned within the neighboring site in order to determine whether 

the interparticle collision will occur or not. Specifically, the four cells located near the central 

cell are excluded from the search since they cannot include a particle center. As shown in Fig. 

6(b), a particle present within the region along the inner wall is considered to collide with the 

wall. Particle behavior is then updated by considering the collision force between the particle 

and the second object. The force is calculated according to the distance between the particle 

and the object.  

Confinement of the contact search within the neighborhood of the particles reduces the 

computational time, especially for a large number of particles. Whereas the number of contact 

checks in one simulation cycle in an elementary DEM model is of the order of N2
 for N 

particles, in our model the contact number is of the order of 20 × N. The factor 20 

corresponds to the number of neighbors that are scanned.  

 

4.3 Modeling the collision force acting on particles 

Since the particle collision is determined in the discretized cellular space, rigorous 

expression of the contact forces in Eqs. (4) and (5) may cause numerical instability under an 

approximate time-step setting. In addition, the precise expression, which requires a short time 

step, affects the total calculation time. Therefore, the impact dynamics are roughly 

approximated by the restitution coefficient instead of the expression of the sum of stiffness 

and damping forces. Friction between particles is further neglected for simplification. Thus, 

we only need to consider the momentum change in the normal direction, and the rotation of 

particles is not considered. These approximations allow the unit time step to become 

relatively large in comparison to the strict model, without causing numerical instability in the 

system calculation. 
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Fig. 6 Determination of collisions: (a) between particles, and (b) between particle and wall 

 
Fig. 7 Change of particle velocity upon collision: (a) against particle, and (b) against a wall 

 

 

Fig. 8 The time history of a particle rebound against a flat plate is compared between two impact force 

representations. In the approximate model, the restitution coefficient e is taken to be equal to 0.75. The 

damping coefficient cp in the strict DEM model is adjusted to fit the time trace of the approximate model  

 
The particle velocity is first estimated according to the conservation of momentum before 

and after the collision. In the case of interparticle collision, as shown in Fig. 7(a), the particle 

velocity along the axis joining two particle centers is calculated by the following equation:  
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In Eq. (10), vn1 and v’n1 respectively represent the particle velocities before and after the 

collision, vn2 the velocity of the other particle before the collision, and e the coefficient of 

restitution. In the case of the collision between a particle and a wall [Fig. 7(b)], the particle 

velocity is updated in accordance to  
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In Eq. (11), mp and mw, respectively represent the masses of the particle and the wall, vn1 

corresponds to the velocity of the particle whose direction is normal to the wall, and vw the 

velocity of the wall in the same direction. In addition, vw is provided by numerically solving 

the equations of the primary system. Additionally, vw always becomes zero at the side walls of 

the container, since head-on collisions between the particle and the side wall do not occur. 

The restitution coefficient that appeared in both Eqs. (10) and (11) is based on the rebound 

characteristic measurement for an acrylic particle against a flat acrylic plate. 

In Fig. 8, the time history of a particle rebound motion against a flat surface is compared 

between the two impact force representations. In the approximate model, the restitution 

coefficient e is assumed to be equal to 0.75, whereas the damping coefficient cp in the strict 

DEM model is adjusted to fit the time trace of the approximate model. Since the velocity 

update model described by Eqs. (10) and (11) only considers two-body collision, momentum 

exchange among many objects cannot be represented properly. Therefore, the impact force is 

further calculated from the momentum change towards the direction of collision for each 

combination of particles, in accordance to 

dtvvmf nnpn /)( 111 −′×=  (12) 

In Eq. (12), dt represents the unit time step. The total force acting on a particle is calculated 

by adding every contribution of the impact force from the surrounding contacting particles. 

By further resolving the force vector into its x and y components in the global coordinate 

system, and substituting these into the force term in Eq. (2), the particle motion can be 

calculated. Similarly, the summation of the particle impact forces in contact with the 

container is also considered in the equation of the primary system [Eq. (1)].  

 

5.  Results and Discussion 

5.1 Calculated response of the system using CA-based contact detection model 

The primary system response of the granular damper is calculated using the CA-based 

contact detection model. The same condition as the strict DEM model is applied, but the 

contact force approximation model described in Section 4.3 is introduced. The two-

dimensional space is divided into 32×20 cells, where the unit cell size corresponds to 3 mm. 

The calculation accuracy is investigated using two different time steps for the numerical 

integration, namely, dt = 2.0×10-5 s and 1.0×10-4 s. The calculated system responses whose 

values are presented in non-dimensional form are compared in Fig. 9. Despite the coarse 

setting of the unit time step in the latter case, little difference is found in these results for each 

particle number.  
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Fig. 9 Frequency responses of the particle damper calculated using the CA model. The two-

dimensional space consists of 32×20 cells. The unit time step is set to: (a) dt = 2.0×10-5 s, and (b) 

dt = 1.0×10-4 s 

    
Fig. 10 Effects of the two-dimensional space grid division on the precision of the frequency 

response calculation. The number of particle is: (a) 20, (b) 40, and, (c) 60 

 

 

  
Fig. 11 Comparison of the calculation results between the strict DEM and approximate models. The 

time step is set to dt = 2.0×10-5 s in the strict model, and dt = 1.0×10-4 s in the approximate model. 

The number of particle is: (a) 20, (b) 40, and, (c) 60 

 

 
The influence of the two-dimensional space division on the calculation accuracy is shown 

in Fig. 10, where three types of spatial resolutions are compared in regard to the response 

characteristics of the primary system incorporating respective particle numbers. The unit time 

step in these cases is set to dt = 1.0×10-4 s. In every case, the response curves corresponded 

well to each other, regardless of the spatial resolution. The impact phenomenon ends 

instantaneously without causing numerical instability in the model, and the resolution of the 

spatial division rarely affects the determination of the interparticle contact as long as the time 

step is small enough compared to the minimum time needed for the particle to travel a unit 
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cell length.  

As shown in Fig. 11, the responses of the primary system incorporating a different 

number of particles are further compared with the responses obtained by the strict DEM 

model. The discrete two-dimensional space is divided into 32×20 cells in the approximate 

model. Additionally, the time step used for the calculation is different in these models. Almost 

identical responses can be obtained using the approximate model. The slight difference in the 

response amplitude of the approximate model near the resonance is due to the overestimation 

of the contact forces. Discretizing the space at the higher resolution might not improve the 

accuracy under the coarse time step setting. 

 
Fig. 12 Variation of calculation time against particle number 

 

Table 2 Computing efficiency of the approximate model in comparison to the strict DEM model. 

The computing times were compared under the same time step condition: dt = 2.0 ×10-5 

Number of particles Computing time [s]  Efficiency ratio [%] Strict model Approximate model 
20 4.4  3.3  134.0  
40 16.6  5.7  288.8  
60 37.3  8.4  445.6  
80 62.5  11.0  568.8  
100 97.2  13.7  710.5  

 

5.2 Calculation time 

The time required for system calculation in both the strict and the approximate models is 

compared in Fig. 12. The time step used for the numerical integration is equal to dt = 2.0×10-5 

s, which is found to be the required marginal time step in order to obtain stable results for the 

strict model. In the approximate model, another time step, namely, dt = 1.0×10-4 s was 

considered. Increasing the particle numbers by 10, led to a measured increase in the actual 

time required for the computer to complete the five seconds of system response calculation. 

The tested hardware was equipped with a Core 2 Duo 3.0 GHz central processing unit (CPU), 

and a 2 GB main memory. A 32-bit Linux operating system was installed.  

The calculation time required for strict DEM analysis becomes significantly large as the 

number of particles increases, while the time taken by the approximate model is much shorter. 

The difference becomes progressively large for an increasing number of particles. The 
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resultant calculation time in the strict model is quite dependent on the contact determination 

between objects, where the distance between every combination is calculated and examined 

within the two-dimensional space, even though some pairs are distant. On the other hand, 

since the contact search is only limited in the particle neighborhood sites in the approximate 

model, the time for computation is reduced significantly. The computing efficiency values of 

the approximate model are shown in percentage, in Table 2. The efficiency was defined as the 

ratio of the time required for the strict DEM model to the time for the approximate model, and 

the values were calculated for the time step condition: dt = 2×10-5 s. In terms of 

computational efficiency, the suggested approximation model is far more effective than the 

conventional DEM model, however, by an insignificant amount of degenerating calculation 

accuracy.  

 

6. Conclusions 
In the present study, we investigated a new approach combining the DEM with the CA for 

modeling the dynamic behavior of particles inside a vibrating damper container. While we 

used DEM to model the particle behavior using the equations of motion, the discrete cellular 

space was defined to limit the contact search within the local neighborhood of each particle. 

Additionally, a simplification was introduced on the representation of the contact force 

between the particles. It is shown that the computation becomes more efficient than the 

elementary DEM model, especially for a large number of particles, by introducing the particle 

contact scanning within a discrete cellular space. It is also shown that the suggested contact 

force approximation model allows a coarse setting of the unit time step, which contributes to 

the reduction of the computational time, and neither degenerates the calculation accuracy nor 

causes the numerical instability.  
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