
A Design for the 178-MHz WXGA 30-fps Optical
Flow Processor Based on the HOE Algorithm

著者 Matsumura Tetsuya, Kurokawa Aoi, Imamura
Kousuke, Matsuda Yoshio

journal or
publication title

Proceedings - 2015 IEEE 18th International
Symposium on Design and Diagnostics of
Electronic Circuits and Systems

volume DDECS 2015
number 7195664
page range 31-36
year 2015-08-13
URL http://hdl.handle.net/2297/44879

doi: 10.1109/DDECS.2015.36

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Kanazawa University Repository for Academic Resources

https://core.ac.uk/display/196707928?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1

A Design for the 178-MHz WXGA 30-fps Optical
Flow Processor Based on the HOE Algorithm

Tetsuya Matsumura1, Aoi Kurokawa2, Kousuke Imamura2, and Yoshio Matsuda2

1 College of Engineering, Nihon University, Koriyama, Japan
2 College of Science and Engineering, Kanazawa University, Kanazawa, Japan

Abstract— We propose an optical flow processor, which allows
real-time processing of WXGA 30-fps at 178.3 MHz. By
introducing the SOR method and a pipeline operation for the
Gauss-Seidel method to the iterative flow calculation,
computational complexity can be reduced to 14.5% when
compared to the previous HOE processor. We decreased the
area of the embedded memory by using the image division
method, applying line memory, and optimizing the
computation word length. The core size of the designed
processor is 16.82 mm2 in 90 nm process technology, which is
approximately 5% of the previous HOE processor. The
processor can operate completely in parallel, which ensures
high-resolution scalability.

I. INTRODUCTION
In the field of image processing, highly accurate motion

estimation is very important in many applications, such as
MPEG2, motion segmentation, and frame rate up-
conversion. For example, optical flow, which has been
widely studied in the fields of transportation and robotics, is
a motion vector at each pixel and requires highly accurate
image recognition. For many applications, in addition to
accuracy, real-time processing is also needed.

Beginning with Horn-Schunck [1], Lucas-Kanade [2], a
number of algorithms have been proposed for computing the
optical flow. In optical flow calculations, iterations are
generally used in many algorithms, and all algorithms
involve a large number of computations. For example, even
the CIF 30-fps sequence involves calculations which exceed
ten GOPS. Software for the Horn-Schunck algorithm, which
was published in the OpenCV Library [3], can only process
3.5 CIF size frames per second, even with a 2GHz CPU. In
order to achieve real time processing using software with a
general-purpose processor, we must limit the image area
and/or thin out the pixels, degrading the accuracy of the
optical flow. Therefore, dedicated hardware is essential in
real time optical flow calculations to obtain highly accurate
optical flows over full size images.

For the dedicated hardware, a number of optical flow
processors have been proposed [4]-[8]. Their performances
are shown in Fig. 1, as well as the performance of the
processor proposed here. In Fig. 1 (a), the vertical axis is the
resolution and the horizontal axis is the Mean Angle Error
(MAE). In Fig. 1 (b), the vertical axis also shows the
resolution while the horizontal axis shows the operating

frequency. The Hierarchical Optical flow Estimation
processor (HOE) [6] based on the Horn-Shunck algorithm,
and the Pyramidal Lucas-Kanade processor (PLK) [7] based
on the Lucas-Kanade algorithm, are highly accurate.
However, as shown in Fig. 1 (b), the highest resolution for
the HOE processor is CIF 30fps at 189MHz. On the other
hand, the PLK can process a VGA with one chip, but it is
necessary to operate it at 332MHz. According to Wei et al.
[8], the processor can handle 20 M pixels at 100MHz, but
there are problems in accuracy. For applications which
require even more highly accurate optical flows in high-
resolution images, a higher speed is required.

In this paper, we propose a highly accurate optical flow
processor with an increased computation speed and a
reduced size, based on the HOE algorithm. Section II gives a
brief review of the HOE algorithm. Section III describes the
most important methods introduced in order to reduce the
computational complexity in optical flow calculation. It also
includes the pipelining of the Gauss-Seidel method, which

(a) Pixel rate vs. MAE

(b) Pixel rate vs. operating frequency

Fig. 1 Performance comparison of the optical flow processor.

10 M

100 M

5 10 15 20

R
e
so

lu
ti
o
n
 x

 F
ra

m
e
 r

at
e

MAE (degree)

HOE[6]

PLK[7]

Wei[8]

Correia[4]

This work●

★ Diaz[5]

(P
ix

e
l/

s) XVGA 30 fps

VGA 30 fps

CIF 30 fps

WXGA 30 fps

10 M

100 M

0 100 200 300 400

Operating Frequency (MHz)

HOE[6]

Wei[8]

PLK[7]

● This Work

●

This Work

★Diaz[5]

WXGA 30 fps

VGA 30 fps

CIF 30 fps

R
e
so

lu
ti
o
n
 x

 F
ra

m
e
 r

at
e

(P
ix

e
l/

s)
XVGA 30 fps

2

contributes greatly to the realization of a high-throughput [9].
Section IV describes the image division method, which is
the central method for reducing hardware volume. Section V
discusses an optical flow processor design which
incorporates the above-mentioned technology. Finally, the
conclusions are given in Section VI.

II. HOE ALGORITHM
The HOE [6] algorithm, which is based on the Horn-

Schunck algorithm, gives a highly accurate optical flow
using a motion compensation frame. The luminance value of
the pixels (𝑥𝑥,𝑦𝑦) in the time 𝑡𝑡 frame is 𝐼𝐼(𝑥𝑥, 𝑦𝑦, 𝑡𝑡), and each
pixel moves 𝑢𝑢 and 𝑣𝑣 respectively, in the direction 𝑥𝑥 and 𝑦𝑦 in
the next frame at the time 𝑡𝑡 + 1. This motion vector (𝑢𝑢, 𝑣𝑣) is
called the optical flow. Hereafter, it is simply referred to as
the flow. Following the luminance-conservation law, a
relation (1) is established between the luminance values of
frame 𝑡𝑡 and frame 𝑡𝑡 + 1.

𝐼𝐼(𝑥𝑥 + 𝑢𝑢,𝑦𝑦 + 𝑣𝑣, 𝑡𝑡 + 1) − 𝐼𝐼(𝑥𝑥,𝑦𝑦, 𝑡𝑡) = −𝜉𝜉. (1)
In this case, 𝜉𝜉 represents a luminance change unrelated to
pixel motion, such as sunlight changes. If the flow (𝑢𝑢, 𝑣𝑣) is
small in (1), (2) is obtained in the first order approximation
of the Taylor expansion.

𝐼𝐼𝑥𝑥𝑢𝑢 + 𝐼𝐼𝑦𝑦𝑣𝑣 + 𝐼𝐼𝑡𝑡 + 𝜉𝜉 = 0. (2)
𝐼𝐼𝑥𝑥 and 𝐼𝐼𝑦𝑦represent the spatial luminance gradient around 𝑥𝑥
and 𝑦𝑦 , respectively, and 𝐼𝐼𝑡𝑡 is the temporal luminance
gradient. Since (𝑢𝑢,𝑣𝑣) cannot be determined by only using
(2), the conditions of spatial smoothness change are imposed
on 𝑢𝑢,𝑣𝑣, and 𝜉𝜉. The flow (𝑢𝑢, 𝑣𝑣) and luminance change 𝜉𝜉 are
chosen to minimalize the following error function (3).

𝐸𝐸(𝑢𝑢, 𝑣𝑣) = �(𝑓𝑓2 + 𝛼𝛼2𝑓𝑓𝑎𝑎2 + 𝛽𝛽2𝑓𝑓𝑏𝑏2)2𝑑𝑑𝑥𝑥𝑑𝑑𝑦𝑦 ,

 𝑓𝑓2 = (𝐼𝐼𝑥𝑥𝑢𝑢 + 𝐼𝐼𝑥𝑥𝑣𝑣 + 𝐼𝐼𝑡𝑡 + 𝜉𝜉)2,
 𝑓𝑓𝑎𝑎2 = 𝑢𝑢𝑥𝑥2 + 𝑢𝑢𝑦𝑦2 + 𝑣𝑣𝑥𝑥2 + 𝑣𝑣𝑦𝑦2,

𝑓𝑓𝑏𝑏2 = 𝜉𝜉𝑥𝑥2 + 𝜉𝜉𝑦𝑦2. (3)
𝑢𝑢𝑥𝑥 ,𝑣𝑣𝑥𝑥 , and 𝜉𝜉𝑥𝑥 are the spatial gradients of 𝑢𝑢, 𝑣𝑣, and 𝜉𝜉 around x,
respectively, and 𝑢𝑢𝑦𝑦 ,𝑣𝑣𝑦𝑦 , and 𝜉𝜉𝑦𝑦 around 𝑦𝑦 . 𝑓𝑓𝑎𝑎2 and 𝑓𝑓𝑏𝑏2
represent the imposed conditions for spatial smoothness for
(𝑢𝑢, 𝑣𝑣)and 𝜉𝜉 respectively, and weights 𝛼𝛼and 𝛽𝛽 are adjustable
parameters. The integral is taken over the entire frame. The
minimum values of (𝑢𝑢,𝑣𝑣)and 𝜉𝜉satisfy the following equation.

�𝐼𝐼𝑥𝑥𝑢𝑢 + 𝐼𝐼𝑦𝑦𝑣𝑣 + 𝐼𝐼𝑡𝑡 + 𝜉𝜉�𝐼𝐼𝑥𝑥 = 𝛼𝛼2∆𝑢𝑢,

�𝐼𝐼𝑥𝑥𝑢𝑢 + 𝐼𝐼𝑦𝑦𝑣𝑣 + 𝐼𝐼𝑡𝑡 + 𝜉𝜉�𝐼𝐼𝑦𝑦 = 𝛼𝛼2∆𝑣𝑣,

�𝐼𝐼𝑥𝑥𝑢𝑢 + 𝐼𝐼𝑦𝑦𝑣𝑣 + 𝐼𝐼𝑡𝑡 + 𝜉𝜉� = 𝛽𝛽2∆ξ, (4)

where Laplacian Δ𝑢𝑢𝑖𝑖,𝑗𝑗 for the pixel (𝑖𝑖, 𝑗𝑗) is given by (5).

∆𝑢𝑢𝑖𝑖,𝑗𝑗 = (𝑢𝑢𝑖𝑖−1,𝑗𝑗−1 + 𝑢𝑢𝑖𝑖−1,𝑗𝑗+1 + 𝑢𝑢𝑖𝑖+1,𝑗𝑗−1 + 𝑢𝑢𝑖𝑖+1,𝑗𝑗+1)/12

+(𝑢𝑢𝑖𝑖 ,𝑗𝑗−1 + 𝑢𝑢𝑖𝑖,𝑗𝑗+1 + 𝑢𝑢𝑖𝑖−1,𝑗𝑗 + 𝑢𝑢𝑖𝑖+1,𝑗𝑗)/6−𝑢𝑢𝑖𝑖,𝑗𝑗

= 𝑢𝑢� − 𝑢𝑢𝑖𝑖,𝑗𝑗 . (5)

The Laplacian of 𝑣𝑣, 𝜉𝜉 are defined using the same equation

as (5). 𝑢𝑢 � denotes the local average of the 8 neighboring
pixels around the pixel (𝑖𝑖, 𝑗𝑗) . Finally, we obtain the
simultaneous liner equation (6) from (4) and (5).

𝑢𝑢 = 𝑢𝑢� − 𝐼𝐼𝑥𝑥
𝐼𝐼𝑥𝑥𝑢𝑢� + 𝐼𝐼𝑦𝑦�̅�𝑣 + 𝐼𝐼𝑡𝑡 + 𝜉𝜉̅

𝛼𝛼2 + 𝐼𝐼𝑥𝑥2 + 𝐼𝐼𝑦𝑦2 + 𝜆𝜆2
,

𝑣𝑣 = �̅�𝑣 − 𝐼𝐼𝑦𝑦
𝐼𝐼𝑥𝑥𝑢𝑢� + 𝐼𝐼𝑦𝑦�̅�𝑣 + 𝐼𝐼𝑡𝑡 + 𝜉𝜉̅

𝛼𝛼2 + 𝐼𝐼𝑥𝑥2 + 𝐼𝐼𝑦𝑦2 + 𝜆𝜆2
,

ξ = 𝜉𝜉̅ − 𝜆𝜆2
𝐼𝐼𝑥𝑥𝑢𝑢� + 𝐼𝐼𝑦𝑦�̅�𝑣 + 𝐼𝐼𝑡𝑡 + 𝜉𝜉̅

𝛼𝛼2 + 𝐼𝐼𝑥𝑥2 + 𝐼𝐼𝑦𝑦2 + 𝜆𝜆2
.

In (6), the subscripts i and j of the pixel coordinates are
omitted and 𝜆𝜆 = 𝛼𝛼/𝛽𝛽 . By solving (6) using the iterative
method, the flow and the luminance change are obtained.

Since we assume the flow (𝑢𝑢, 𝑣𝑣) to be small (a linear
approximation) in (2), the accuracy of the flows might
degrade if there is a large movement in the images. As a
countermeasure, a hierarchical motion estimation and a
motion compensation frame are employed in order to
improve accuracy. Also, if the spatial and temporal gradients
are approximated with a two point difference, highly
accurate flows cannot be obtained because that they are too
sensitive to noise and luminance variation in the image. The
HOE solves this problem using a multi-dimensional gradient
filter.

A flow calculation using the HOE algorithm is shown in
Fig. 2 for an images with two layers. First, three hierarchical
images are created from each of the three images in frames
𝑡𝑡 − 1, 𝑡𝑡, and 𝑡𝑡 + 1. During this process, in order to smooth
out the images, a 5 x 5 Gaussian filter is simultaneously
applied to the pixels when sub-sampled.

After the highest layer images have been created, the
spatial and temporal luminance gradients are calculated
using a multi-dimensional gradient filter, and the flow(𝑢𝑢,𝑣𝑣)
and luminance change 𝜉𝜉 are calculated by solving (6) with
the iterative method. When the updated value of the flow in

Fig. 2. Illustration of the optical flow with a hierarchical motion
compensation frame in HOE.

t-1 t t+1

t-1 t t+1Hierarchy

CB
＋

Corrected
flow

Final flow

Propagation
flow

Upper Layer

Lower Layer
（Source Image）

+flow -flow

CF

Multi-dimensional
Gradient Filter

Sub-sampling Filter
5x5 Gaussian Filter

Multi-dimensional
Gradient Filter

3

the iteration becomes smaller than the preset threshold, or
when the number of iterations reaches the preset number, the
calculation ends. In [6], the updated threshold is set to
0.0001 and the number of iterations to 150 times.

The flow obtained from this hierarchy is doubled and then
propagated to the lower layer. Hereafter, this is referred to as
the propagation flow. After the motion compensation frames
CF and CB are created from frames 𝑡𝑡 − 1 and t + 1 ,
respectively, using the propagation flow, the multi-
dimensional gradient filter is again applied to the CF, CB and
t frame of the lower layer in order to calculate the flow
correction in the lower layers. As shown in Fig. 2, the
motion compensation frame CF is created from frame 𝑡𝑡 − 1,
assuming that each pixel of the 𝑡𝑡 − 1 frame moves by the
rate of propagation flow. The CB is created from the
frame 𝑡𝑡 + 1 . Since the integer pixels of the motion
compensation frame generally correspond to the subpixels in
frames 𝑡𝑡 − 1 and 𝑡𝑡 + 1 , the subpixels are generated by
bilinear interpolation from the surrounding integer pixels.
The flow in the lower layers is obtained by adding the
corrected flow obtained in a lower layer to the propagation
flow from the upper layers. The final flow is obtained by
repeating this process until the lowest layer is reached.

III. REDUCING COMPUTATIONAL COMPLEXITY AND
IMPROVING THROUGHPUT

A. Initial flow generation using the previous frame flow
In the HOE algorithm, the number of the iterations is set

150 times, which accounts for 90% of the total
computational complexity. For real-time processing, it is
most effective to reduce the number of iterations.
Considering that the movement between two consecutive
frames is small, it can be expected that the convergence
speed would increase if the flow obtained from the previous
frame is used as the initial value of the iteration.

Although it seems reasonable to use the flow obtained
from the previous frame layer as the initial value, memory is
required to store the flow of each layer and that leads to an
increase in H/W. In contrast, the last and lowest layer’s flow
of the previous frame is stored in an external memory until
the last flow of the current frame is obtained, so the last flow
can be used as the initial value of the iteration. This flow is
read into the chip with sub-sampling and the initial value of
the upper layer is generated by reducing it to 1/2. 1/2 can be
easily performed in a one bit shift operation, which also
leads to a reduction in H/W.
B. SOR method and Pipelining of the Gauss-Seidel method
The Jacobi iteration method was used in previous HOE

processor. For this new processor design, the Gauss-Seidel
method is employed, which provides faster convergence on
the iterative calculation. Since this creates a problem with
pipeline operation, the diagonal average (the average over 4
diagonal pixels) is introduced to the Laplacian in (5).

The flow of each pixel is calculated by raster scanning
from left to right and from top to bottom. The flow of the 8
neighboring pixels is required for the local average u when
calculating 𝑢𝑢𝑖𝑖,𝑗𝑗

(𝑘𝑘+1) at the (k+1)st iteration. When calculating
the (k+1)st iteration (Fig. 3(a)) in the Jacobi method, the k-th
flow is used for the 8 neighboring pixels, whereas in the
Gauss-Seidel method, (k+1)st flow is used for the upper 3
pixels and the left-hand 1 pixel (Fig. 3(b)) when calculating
 𝑢𝑢𝑖𝑖,𝑗𝑗

(𝑘𝑘+1) at the (k+1)st iteration. Therefore, 𝑢𝑢𝑖𝑖,𝑗𝑗
(𝑘𝑘+1) cannot be

calculated until the flow of the left pixel is updated. This
means that the Gauss-Seidel method is not compatible with
the pipeline operation. Therefore, the average of 4 diagonal
pixel for 𝑢𝑢𝚤𝚤,𝚥𝚥���� is introduced (Fig. 3(c)). In other words, the
Laplacian is defined by (7).

∆𝑢𝑢𝑖𝑖,𝑗𝑗 = 2 �
𝑢𝑢𝑖𝑖−1,𝑗𝑗−1−𝑢𝑢𝑖𝑖−1,𝑗𝑗+1+𝑢𝑢𝑖𝑖+1,𝑗𝑗−1−𝑢𝑢𝑖𝑖+1,𝑗𝑗+1

4
− 𝑢𝑢𝑖𝑖,𝑗𝑗�. (7)

This is the same for 𝑣𝑣 and 𝜉𝜉 . Since the coefficient 2 is
included in 𝛼𝛼, it does not appear explicitly. Finally, 𝑢𝑢� in (5)
can simply be replaced by the average over the 4 diagonal
pixels.

In order to further accelerate the convergence, the
Successive Over-Relaxation (SOR) method is introduced.
The SOR method accelerates the convergence by
multiplying the accelerating parameter ω with the difference
between the value at the (k+1)st iteration and the value at the
kth iteration in order to increase the corrected quantity.
Convergence is guaranteed for 0 < ω < 2, but in general,
there is no method to determine the value of ω. In this
processor design, ω = 1.75 is chosen by simulation. This
value makes the hardware implementation very easy because
multiplication can only be performed in the shift operation.
Finally, our calculations of the flow, when using the 4
diagonal pixels as the local average and applying the Gauss-
Seidel and SOR methods, are given in (8).

𝑢𝑢(𝑘𝑘+1) = 𝑢𝑢(𝑘𝑘) +𝜔𝜔�𝑢𝑢�(𝑘𝑘) − 𝐼𝐼𝑥𝑥
𝐼𝐼𝑥𝑥𝑢𝑢�(𝑘𝑘) + 𝐼𝐼𝑥𝑥�̅�𝑣(𝑘𝑘) + 𝐼𝐼𝑡𝑡 + 𝜉𝜉̅(𝑘𝑘)

𝛼𝛼2 + 𝐼𝐼𝑥𝑥2 + 𝐼𝐼𝑦𝑦2 + 𝜆𝜆2
− 𝑢𝑢(𝑘𝑘)�,

𝑣𝑣(𝑘𝑘+1) = 𝑣𝑣(𝑘𝑘) + 𝜔𝜔��̅�𝑣(𝑘𝑘) − 𝐼𝐼𝑦𝑦
𝐼𝐼𝑥𝑥𝑢𝑢�(𝑘𝑘) + 𝐼𝐼𝑥𝑥�̅�𝑣(𝑘𝑘) + 𝐼𝐼𝑡𝑡 + 𝜉𝜉̅(𝑘𝑘)

𝛼𝛼2 + 𝐼𝐼𝑥𝑥2 + 𝐼𝐼𝑦𝑦2 + 𝜆𝜆2
− 𝑣𝑣(𝑘𝑘)�,

𝜉𝜉(𝑘𝑘+1) = 𝜉𝜉(𝑘𝑘) +𝜔𝜔�𝜉𝜉̅(𝑘𝑘) − 𝜆𝜆2
𝐼𝐼𝑥𝑥𝑢𝑢�(𝑘𝑘) + 𝐼𝐼𝑥𝑥�̅�𝑣(𝑘𝑘) + 𝐼𝐼𝑡𝑡 + 𝜉𝜉̅(𝑘𝑘)

𝛼𝛼2 + 𝐼𝐼𝑥𝑥2 + 𝐼𝐼𝑦𝑦2 + 𝜆𝜆2
− 𝜉𝜉(𝑘𝑘)�,

Fig. 3. Laplacian by 4 diagonal pixels.
(a) Jacobi method (b) Gauss-Seidel method (c) 4 diagonal pixel method

4

𝑢𝑢�𝑖𝑖,𝑗𝑗
(𝑘𝑘+1) =

1
4
�𝑢𝑢𝑖𝑖−1,𝑗𝑗−1

(𝑘𝑘+1) + 𝑢𝑢𝑖𝑖+1,𝑗𝑗−1
(𝑘𝑘+1) + 𝑢𝑢𝑖𝑖−1,𝑗𝑗+1

(𝑘𝑘) + 𝑢𝑢𝑖𝑖+1,𝑗𝑗+1
(𝑘𝑘) �,

�̅�𝑣𝑖𝑖,𝑗𝑗
(𝑘𝑘+1) =

1
4
�𝑣𝑣𝑖𝑖−1,𝑗𝑗−1

(𝑘𝑘+1) + 𝑣𝑣𝑖𝑖+1,𝑗𝑗−1
(𝑘𝑘+1) + 𝑣𝑣𝑖𝑖−1,𝑗𝑗+1

(𝑘𝑘) + 𝑣𝑣𝑖𝑖+1,𝑗𝑗+1
(𝑘𝑘) �,

𝜉𝜉�𝑖𝑖,𝑗𝑗
(𝑘𝑘+1) = 1

4
�𝜉𝜉𝑖𝑖−1,𝑗𝑗−1

(𝑘𝑘+1) + 𝜉𝜉𝑖𝑖+1,𝑗𝑗−1
(𝑘𝑘+1) + 𝜉𝜉𝑖𝑖−1,𝑗𝑗+1

(𝑘𝑘) + 𝜉𝜉𝑖𝑖+1,𝑗𝑗+1
(𝑘𝑘) �. (8)

With these techniques, the computational complexity

associated with the iterations was reduced to 5% when
compared to the previous HOE processor [6] while retaining
the same accuracy. Other computations, such as generation of
hierarchical images and motion compensation frames,
account for 10% of the total. Thus, the computational
complexity was reduced to about 14.5% while maintaining
the same level of accuracy.

IV. REDUCTION OF THE EMBEDDED MEMORY USING THE
IMAGE DIVISION METHOD

In algorithms with iteration, storing the temporary data of
each iteration step to the external memory would occupy the
bus band width due to data transfer, so the temporary data
are stored to embedded memory on the same chip and the
data processing is completed within the chip. In the HOE, a
great amount of memory is embedded, such as the source
image memory, which stores the luminance values of the
source image, the hierarchical image memory, which stores
the luminance values of the hierarchy image, and the
luminance gradient and motion memories, which store the
luminance gradient and the flow of each iteration step,
respectively. Also, as motion compensation frames are used,
memory to store the image data of these compensation
frames is also required. In the HOE, the flow is calculated
frame by frame, so a large capacity of RAM are embedded,
leading to an increased chip size.

In our optical flow processor design, the frame is divided
into blocks, and the flow is calculated block-by-block.
Hereafter, this method is called the image division method.
The capacity of the embedded memory is reduced to 1/N
compared to the previous HOE processor [6], where N is the
number of blocks. If the frame is simply divided into blocks,
great flow disturbance occurs in the block boundary, which
degrades the accuracy of the flow. Therefore, as shown in
Fig. 4 (a), overlapping pixels are added to each block (white
dashed line) and the flow is calculated over the block with
overlapping pixels. o shows the overlapping pixels. The
final flow of the entire frame is generated by cutting the
flow of desired block (white solid line). Simulation over
multiple sequences confirm that 15 overlapping pixels are
sufficient, regardless of the block size.

Figs. 4(b) and 4(c) show the simulation results of the
Translation Tree flow for 150 pixels x 150 pixels, when
divided into 9 blocks. The block size is 50 pixels by 50
pixels. Fig. 4(b) shows the Mean Angle Error (MAE) of the
flow with non-overlapping pixels and Fig. 4(c) shows the

image division method for 9 divisions with 16 overlapping
pixels. Flow disturbance on the boundary is eliminated in
the image division method. Furthermore, exactly the same
flow is obtained numerically when compared to a non-
divided image.

If the block size becomes smaller by increasing the
number of divisions, the embedded memory can also be
smaller. The proposed processor contains a pipeline
operation for the divided blocks. In this case, the greater the
number of divisions, that is, the smaller the number of pixels
in the block, the better the throughput is. On the other hand,
a large number of divisions would lead to an increase in the
overlap pixel ratio and more computations. Therefore, there
are a certain number of divisions that would maximize the
throughput when the number of overlapping pixels is fixed.
In the case of 15 overlapping pixels, a 6-9 division
maximizes the throughput. Based on the above mentioned
considerations, the proposed processor manages VGA (640
x 480) size images in 9 divisions. Furthermore, when
processing XGA (1024 x 768), WXGA (1280 x 800), and
HD (1920 x 1080) size images, a block size of 244 pixels x
192 pixels, which includes 15 overlapping pixels in the x
direction and 16 pixels in the y direction, is used for the
pipeline operation processing unit. In addition, by replacing
some kinds of embedded memory with line memory and
optimizing the computation word length, the embedded
memory capacity can be reduced to about 8% compared to
the previous HOE processor when converting the flow
calculation of a WXGA size image.

 (a)

(b) (c)

Fig. 4. Optical flows using the image division method.

O

x-axis

y-
ax

is

x-axis y-axis x-axis y-axis
M

AE
 [d

eg
re

e]

M
AE

 [d
eg

re
e]

5

Fig. 5 shows a block diagram of the proposed processor.
It consists of an upper layer module and a lower layer
module. The upper layer is composed of four units, a
hierarchical image creation unit, a luminance gradient
calculation unit, a motion calculation unit, and a bilinear
interpolation unit. The lower layer is composed of three
units, a motion compensation image creation unit, a
luminance gradient calculation unit, and a motion
calculation unit. Each unit has computing/control units and
associated memory. The source image memory and
hierarchical image memory of the upper layer, and the
source image memory and motion compensation image
memory of the lower layer are placed in a chip as a line
buffer. The motion memory and luminance gradient memory
of the lower layer store the data of a 244 x 192 pixel sized
block. The motion memory, luminance gradient memory,
and bilinear interpolation memory of the upper layer store
61 x 48 pixel data, which is 1/4 of the lower layer. The input
image memory for storing the source image data of the
frame and the output motion memory for storing the final
flow are external memory.

The upper and lower layer modules operate in parallel and
carry out pipeline operations block-by-block in the unit of
divided images. In addition, each unit carries out pipeline
operations pixel-by-pixel. Fig. 6 shows the pipeline
operation for a case of 2 layers. As shown in Fig. 6(a), the
flow calculation of the upper layer and lower layers have a
2-stage pipeline structure in blocks. Fig. 6(b) shows the
pipeline operation in pixels within each of the blocks. 5 lines
of the source image are stored in the line buffer. When the
memory begins to store the 6th line, the data of the 5 pixels
are inputted to the hierarchical image creation unit at the
same time, and a hierarchy image is created while applying
the Gaussian filter. After the 25 pixels (5 x 5) are inputted,
the first pixel of the hierarchical image is outputted in the
next cycle. In the following cycles, one pixel of the
hierarchical image data is outputted per cycle. Then, 3 lines

of the hierarchical image are stored in the line buffer. When
the storage of the 4th line begins, the luminance gradient
calculation starts and the first pixel of the luminance
gradient is outputted in the 6th cycle. Next, the luminance
gradient is calculated by one pixel per cycle. The motion
calculation immediately starts after the luminance gradient is
outputted. The motion calculation results are outputted in 12
cycles after the luminance gradient is inputted, and then it is
outputted by 1 pixel per cycle. When the motion calculation
is finished, bilinear interpolation is performed and the flow
with doubled is propagated to the lower layer.

 8 lines of the source image are stored in the line buffer of
the lower layer and the creation of interpolated images starts
from the 9th line. Then, the same process as the upper layer
is performed. The final flow is outputted to the external

Fig. 5. Block diagram of the designed optical flow processor.

Hierarchical
Image Memory

Original Image
Memory

Luminance
Gradient
Memory

Motion
Memory

Bilinear
Interpolation

Memory

Hierarchical
Image

Creation Unit

Luminance
Gradient Cal.

Unit

Motion
Calculation

Unit

Bilinear
Interpolation

Unit

Initial
Value

Generation

Initial Value
Generation

Original
Image

Memory

Motion
Calculation

Unit

Luminance
Gradient
Cal. Unit

Motion
Memory

Luminance
Gradient
Memory

Motion
Compensation
Creation Unit

Motion
Compensation

Memory

Upper Layer

Lower Layer

(a) Pipeline operation in the case of 2 layers

(b) Pipeline operation per pixels

Fig. 6. Pipeline operation of the designed processor.

1st
stage

2nd
stage

3’000 Iteration cycles
for four times

(f)
(e)

(g)
(h)

(b)
(a)

(c)
(d)

(f)
(e)

(g)
(h)

(b)
(a)

(c)
(d)

(a) Original image input(upper layer)
(b) Hierarchical image creation
(c) Luminance gradient calculation
(d) Motion calculation

(e) Original image input(lower layer)
(f) Interpolation image creation.
(g) Luminance gradient calculation
(h) Motion calculation

Pixels of original
image input completion

The first pixels of each
module
Pixels of under
calculation
Pixels of not calculated

Pixels of hierarchical image
output completion
Pixels of Luminance Gradient
output completion
Pixels of Motion output
completion

Original Image Input

1

2

3

4

1

2

6

Hierarchical Image Creation

Luminance Gradient Calculation

Motion
Calculation

6

memory after adding the calculated motion and the
propagation flow.

The proposed processor allows the creation of any
number of layers in the same hardware. The concept is
shown in Fig. 7, where the number of iterations in the upper
layer and the iteration cycles of the lower layer are set to be
equal. The number of pixels in the upper layer is 1/4 the
number of pixels in the lower layer, so the operation cycle is
also 1/4. In order to equalize the number of operation cycles
in the lower layer, the remaining 3/4 is allocated to
additional iterations. In the case of 3 layers, 2/4 is allocated
to additional iterations for the 2nd layer, and the remaining
1/4 is allocated to additional iterations for the 3rd layer. In
this way, the proposed processor handles any multiple layers
without additional cycles.

This processor calculates the flow of VGA size images in
9 divided blocks of 244 pixels x 192 pixels, including
overlapping pixels. The flow of VGA 30 fps can be
calculated in real time at 57.5 MHz. The processing of
WXGA size images is supported by a faster operating
frequency. At 178.3 MHz, real-time processing of 30 fps is
possible. In fact, the processor is designed to operate at this
frequency. In addition, the processor can operate completely
in parallel thanks to the image division method. Real-time
processing of HD 30 fps is possible using only two

processors in simple parallel operations at the same
frequency.

The characteristics of the proposed processor and HOE
[6] processor are shown in Table I. The previous HOE
processor is designed to process CIF 30 fps at 189 MHz, but
in order to be compared with our processor, the
characteristics are translated as "to calculate flow of WXGA
30 fps." Furthermore, the chip size of this new processor is
estimated in 90 nm process technology based on the gates-
to-area value of the previous HOE processor. By introducing
the image division method, line buffer, and optimization of
the computation word length, the capacity of the embedded
memory is reduced to 8% (5% in area) and the data transfer
volume by about half. Also, the previous HOE processors
embeds a specially designed 2-port DRAM for a 1 chip
solution, but our processor uses simple standard SRAM.

Finally, the evaluated flows are listed in Table II for three
test sequences with correct flow (Translation Tree,
Diverging Tree, and Yosemite). Accuracy is equal to or
better than the previous HOE processor.

V. CONCLUSION
We designed an optical flow processor of WXGA 30 fps

at 178.3 MHz, which allows real-time processing. This
processor can handle approximately 10 times the resolution
at same frequency as the previous HOE processor. The core
size is 16.82 mm2 in 90 nm process technology, which is
only about 5% of the previous HOE processor. The designed
processor can operate completely in parallel, which ensures
high-resolution scalability.

REFERENCES
[1] B.K.P. Horn and B.G Schunck, “Determining optical flow,” Artificial

Intelligence, vo. 17, pp. 185-203, 1981.
[2] B.D. Lucas and T. Kanade, “An iterative image registration technique

with an application to stereo vision,” in Proc. Imaging Understanding
Workshop, pp. 121-130, 1991.

[3] http://opencv.jp/sample/optical flow.html
[4] M.V. Correia and A.C. Campilho, ”Real-time implementation of an

optical flow algorithm,” in 16th Int’l. Conf. Pattern Recognition
(ICPR’02), vol. 4, pp. 247- 250, Aug. 2002.

[5] J. Diaz, E. Ros, S. Mota, F. Pelayo, and E.M. Ortigosa, ”Real-time
optical flow computation using FPGAs,” in Proc. Early Cognitive
Vision Workshop, 2004.

[6] N. Minegishi, et. al, ”VLSI architecture study of a real-time scalable
optical flow processor for video segmentation,” IEICE Trans.
Electron., vol. E89-C, no. 3, pp. 230-242, Mar. 2006.

[7] Y. Murachi, et. al, ”A VGA 30-fps realtime optical-flow processor
core for moving picture recognition,” IEICE Trans. Electron., vol.
E91-C no. 4, pp.4 57-464, Apr. 2008.

[8] Z. Wei, D.J. Lee, and B.E. Nelson, ”FPGA-based real-time optical
flow algorithm design and implementation,” Jour. Multimedia, vol. 2,
no. 5, pp. 38-45, Sept. 2007.

TABLE I
CHARACTERISTICS OF THE DESIGNED PROCESSOR

Item
Proposed
processor

HOE
processor [6]

Number of iterations (in
the case of two layers)

Upper: 24
Lower: 6

All: 150

Performance WXGA 30 fps WXGA 30 fps
Number of divisions 30 -
Resolution 244 × 192 1280 × 800
Operating frequency 178.3 MHz 1909 MHz
Data transfer rate 0.58 Gbyte/s 1.21 Gbyte/s
Number of logic gates 230 kgates 311 kgates

Memory
1 port 987 kbytes 6212 kbytes
2 port - 6162 kbytes

Memory area 16.08 mm2 308.9 mm2
Core area 16.82 mm2 310.4 mm2

TABLE II
ACCURACY COMPARISON OF THE OPTICAL FLOW

 MAE[degree]
Trans. Div. Yos. Average

Proposed processor 0.658 2.714 5.006 2.614
HOE processor [6] 0.626 2.701 6.889 3.405

Fig. 7. Allocation of the number of iterations for multiple layers.

Lowest Layer

The 2nd Layer

The 3rd Layer

The 4th
Layer

Calculation cycle of Lowest Layer

Additional iteration cycle

Additional iteration cycle
(for upper layer)

1/4 pixels

	I. Introduction
	II. HOE Algorithm
	III. Reducing Computational Complexity and Improving Throughput
	A. Initial flow generation using the previous frame flow
	B. SOR method and Pipelining of the Gauss-Seidel method

	IV. Reduction of the Embedded Memory Using the Image Division Method
	V. Conclusion
	References

