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Abstract

We study the Rellich inequalities in the framework of equalities. We present equalities
which imply the Rellich inequalities by dropping remainders. This provides a simple and
direct understanding of the Rellich inequalities as well as the nonexistence of nontrivial
extremisers.
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1 Introduction and the main results

In this paper, we prove some equalities which yield the Rellich inequality by dropping remain-
der terms in L2(Rn) setting for n ≥ 5. Moreover, a characterization is given on H2-functions
which make vanishing remainders on the basis of simple partial differential equations. Our
presentation based on equalities presumably gives a clear picture of how the Rellich inequality
follows with sharp remainders and implies the nonexistence of nontrivial extremisers.

The Rellich inequality that we study in this paper is the following :∥∥∥∥ f

|x|2

∥∥∥∥
L2(Rn)

≤ 4

n(n− 4)
∥∆f∥L2(Rn) (1.1)

for all f ∈ H2(Rn) with n ≥ 5, where Hs = Hs(Rn) is the standard Sobolev space of order s ∈ R
defined as (1−∆)−s/2L2(Rn) and ∆ =

∑n
j=1 ∂

2
j is the Laplacian in Rn. The inequality (1.1) is

basic in the self-adjointness problem of the Schrödinger operators with singular potentials such
as V (x) = λ|x|−2 with λ > −n(n−4)

4 (See [2, 3, 7, 8, 10, 14, 15, 27, 29, 30] and references therein
for related subjects). Moreover, there is a large literature on (1.1) in connection with Hardy
type inequalities [1, 4, 5, 6, 9, 11, 12, 13, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 28, 31].
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In an earlier work [24], we studied the Hardy inequality in L2 setting by means of the
equalities (

n− 2

2

)2 ∥∥∥∥ f

|x|

∥∥∥∥2
L2(Rn)

= ∥∂rf∥2L2(Rn) − ∥|x|−
n
2
+1∂r(|x|

n
2
−1f)∥2L2(Rn)

= ∥∂rf∥2L2(Rn) −
∥∥∥∥∂rf +

n− 2

2|x|
f

∥∥∥∥2
L2(Rn)

(1.2)

for all f ∈ H1(Rn) with n ≥ 3, where ∂r =
x
|x| · ∇ =

∑n
j=1

xj

|x|∂j denotes the radial derivative in
Rn.

The purpose of this paper is to present the corresponding equalities on the Rellich inequality
(1.1) and characterize the equality case in terms of vanishing conditions of remainders. To be
more specific, we prove the following theorem.

Theorem 1.1. Let n ≥ 5. Then the following equalities(
n(n− 4)

4

)2 ∥∥∥∥ f

|x|2

∥∥∥∥2
L2(Rn)

=

∥∥∥∥∂2
rf +

n− 1

|x|
∂rf

∥∥∥∥2
L2(Rn)

−
∥∥∥∥∂2

rf +
n− 1

|x|
∂rf +

n(n− 4)

4|x|2
f

∥∥∥∥2
L2(Rn)

− n(n− 4)

2

∥∥∥∥ 1

|x|
∂rf +

n− 4

2|x|2
f

∥∥∥∥2
L2(Rn)

=
∥∥|x|−n+1∂r(|x|n−1∂rf)

∥∥2
L2(Rn)

−
∥∥∥|x|−n

2
+1∂r

(
|x|−1∂r(|x|

n
2 f)
)∥∥∥2

L2(Rn)

− n(n− 4)

2

∥∥∥|x|−n
2
+1∂r(|x|

n
2
−2f)

∥∥∥2
L2(Rn)

=
∥∥|x|−n+1∂r(|x|n−1∂rf)

∥∥2
L2(Rn)

−
∥∥∥|x|−n

2
−1∂r

(
|x|3∂r(|x|

n−4
2 f)

)∥∥∥2
L2(Rn)

− n(n− 4)

2

∥∥∥|x|−n
2
+1∂r(|x|

n
2
−2f)

∥∥∥2
L2(Rn)

(1.3)

hold for all f ∈ H2(Rn). Moreover, there does not exist f ∈ H2(Rn) satisfying(
n(n− 4)

4

)2 ∥∥∥∥ f

|x|2

∥∥∥∥2
L2(Rn)

=

∥∥∥∥∂2
rf +

n− 1

|x|
∂rf

∥∥∥∥2
L2(Rn)

=
∥∥|x|−n+1∂r(|x|n−1∂rf)

∥∥2
L2(Rn)

(1.4)

as well as (
n(n− 4)

4

)2 ∥∥∥∥ f

|x|2

∥∥∥∥2
L2(Rn)

= ∥∆f∥2L2(Rn) (1.5)

except f = 0.

2



Equalities (1.3) imply (1.1) by the following theorem and its corollary. For j with 1 ≤ j ≤ n,
we denote by Lj a spherical derivative defined by

Lj = ∂j −
xj
|x|

∂r = ∂j −
n∑

k=1

xjxk
|x|2

∂k.

Theorem 1.2. Let n ≥ 5. Then the following equalities

∥∆f∥2L2(Rn) =

∥∥∥∥∂2
rf +

n− 1

|x|
∂rf

∥∥∥∥2
L2(Rn)

+

∥∥∥∥∥∥
n∑

j=1

L2
jf

∥∥∥∥∥∥
2

L2(Rn)

+
n(n− 4)

2

n∑
j=1

∥∥∥∥ 1

|x|
Ljf

∥∥∥∥2
L2(Rn)

+ 2
n∑

j=1

∥∥∥∥∂rLjf +
n− 2

2|x|
Ljf

∥∥∥∥2
L2(Rn)

= ∥|x|−n+1∂r(|x|n−1∂rf)∥2L2(Rn) +

∥∥∥∥∥∥
n∑

j=1

L2
jf

∥∥∥∥∥∥
2

L2(Rn)

+
n(n− 4)

2

n∑
j=1

∥∥∥∥ 1

|x|
Ljf

∥∥∥∥2
L2(Rn)

+ 2
n∑

j=1

∥|x|−
n
2
+1∂r(|x|

n
2
−1Ljf)∥2L2(Rn) (1.6)

hold for all f ∈ H2(Rn).

Corollary 1.3. Let n ≥ 5. Then the inequality

∥∆f∥2L2(Rn) ≥
∥∥∥∥∂2

rf +
n− 1

|x|
∂rf

∥∥∥∥2
L2(Rn)

(1.7)

holds for all f ∈ H2(Rn). In (1.7), equality holds if and only if f is radial.

We prove Theorems 1.1 and 1.2 in Sections 2 and 3, respectively. For simplicity, we prove
the theorems for f ∈ C∞

0 (Rn \ {0} ;C ) since the proofs are completed by a density argument.
The main idea of the proofs is given by the following lemma.

Lemma 1.4. Let H be a vector space with Hermitian scalar product (·|·). Also let a ∈ R, c > 0
and u, v ∈ H. Then the following equalities are equivalent.

∥u∥2 = −cRe(u|v) + a.

Re(u|u+ cv) = a.

∥cv∥2 = ∥u+ cv∥2 + ∥u∥2 − 2a.

1

c2
∥u∥2 = ∥v∥2 −

∥∥∥∥v + 1

c
u

∥∥∥∥2 + 2a

c2
.

Proof. The lemma follows from the equality

∥cv∥2 = ∥u+ cv∥2 + ∥u∥2 − 2Re(u|u+ cv).
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Remark. The lemma was first formulated in [24] for a = 0. In [24], the equalities (1.2) were
derived from ∫

Rn

|f(x)|2

|x|2
dx = − 2

n− 2
Re

∫
Rn

f(x)

|x|
∂rf(x)dx

by applying the lemma with H = L2(Rn), u = f
|x| , v = ∂rf , and c = 2

n−2 .

2 Proof of Theorem 1.1

We introduce the standard polar coordinates (r, ω) =
(
|x|, x

|x|

)
∈ (0,∞) × Sn−1 and the

Lebesgue measure σ on the unit sphere Sn−1. We have by integration by parts∫
Rn

|f(x)|2

|x|4
dx

=

∫ ∞

0
rn−5

∫
Sn−1

|f(rω)|2dσ(ω)dr

= − 2

n− 4
Re

∫ ∞

0
rn−4

∫
Sn−1

f(rω)ω · ∇f(rω)dσ(ω)dr

=
2

(n− 3)(n− 4)
Re

∫ ∞

0
rn−3

∫
Sn−1

(
|ω · ∇f(rω)|2 + f(rω)(ω · ∇)2f(rω)

)
dσ(ω)dr

=
2

(n− 3)(n− 4)

(∥∥∥∥ 1

|x|
∂rf

∥∥∥∥2
L2(Rn)

+Re

∫
Rn

f(x)

|x|2
∂2
rf(x)dx

)
. (2.1)

The first norm on the right hand of the last equality in (2.1) is rewritten as∥∥∥∥ 1

|x|
∂rf

∥∥∥∥2
L2(Rn)

=

∥∥∥∥∂r ( f

|x|

)
+

f

|x|2

∥∥∥∥2
L2(Rn)

=

∥∥∥∥∂r ( f

|x|

)∥∥∥∥2
L2(Rn)

+ 2Re

(
∂r

(
f

|x|

) ∣∣∣∣∣ f

|x|2

)
+

∥∥∥∥ f

|x|2

∥∥∥∥2
L2(Rn)

. (2.2)

We apply (1.2) with f replaced by f
|x| to obtain∥∥∥∥∂r ( f

|x|

)∥∥∥∥2
L2(Rn)

=

(
n− 2

2

)2 ∥∥∥∥ f

|x|2

∥∥∥∥2
L2(Rn)

+
∥∥∥|x|−n

2
+1∂r(|x|

n
2
−2f)

∥∥∥2
L2(Rn)

. (2.3)

Integrating by parts, we have

2Re

(
∂r

(
f

|x|

) ∣∣∣∣∣ f

|x|2

)
=

∫
Rn

1

|x|
∂r

(
|f |2

|x|2

)
dx =

∫
Rn

x

|x|2
· ∇
(
|f |2

|x|2

)
dx

= −(n− 2)

∥∥∥∥ f

|x|2

∥∥∥∥2
L2(Rn)

. (2.4)

4



By (2.3) and (2.4), we rewrite (2.2) as∥∥∥∥ 1

|x|
∂rf

∥∥∥∥2
L2(Rn)

=

(
n− 4

2

)2 ∥∥∥∥ f

|x|2

∥∥∥∥2
L2(Rn)

+
∥∥∥|x|−n

2
+1∂r(|x|

n
2
−2f)

∥∥∥2
L2(Rn)

. (2.5)

The second integral on the right hand side of the last equality in (2.1) is rewritten as

Re

∫
Rn

f(x)

|x|2
∂2
rf(x)dx

= Re

∫
Rn

f(x)

|x|2

(
∂2
rf(x) +

n− 1

|x|
∂rf(x)

)
dx− (n− 1)Re

∫
Rn

f(x)

|x|3
∂rf(x)dx, (2.6)

where the last integral is given by

Re

∫
Rn

f

|x|3
∂rfdx =

1

2

∫
Rn

1

|x|3
∂r(|f |2)dx =

1

2

∫
Rn

x

|x|4
· ∇(|f |2)dx = −n− 4

2

∥∥∥∥ f

|x|2

∥∥∥∥2
L2(Rn)

.

(2.7)

It follows from (2.1), (2.5), (2.6) and (2.7) that

n(n− 4)

4

∥∥∥∥ f

|x|2

∥∥∥∥2
L2(Rn)

= −Re

∫
Rn

f(x)

|x|2

(
∂2
rf(x) +

n− 1

|x|
∂rf(x)

)
dx−

∥∥∥|x|−n
2
+1∂r(|x|

n
2
−2f)

∥∥∥2
L2(Rn)

. (2.8)

Then (1.3) follows from (2.8) by applying Lemma 1.4 with H = L2(Rn), u = f
|x|2 , v = ∂2

rf +
n−1
|x| ∂rf , c =

4
n(n−4) and a = −c∥|x|−

n
2
+1∂r(|x|

n
2
−2f)∥2L2(Rn).

We now assume that f ∈ H2(Rn) satisfies (1.4). Then by (1.3), it follows ∂r(|x|
n
2
−2f) = 0,

which is equivalent to the existence of φ : Sn−1 → C such that |x|
n
2
−2f(x) = φ( x

|x|) almost

everywhere. In that case f
|x|2 ∈ L2(Rn) if and only if 1

|x|n |φ(
x
|x|)|

2 ∈ L1(Rn), where the last

condition if and only if φ ≡ 0, which in turn implies f ≡ 0. In the case where f ∈ H2(Rn)
satisfies (1.5), where the problem is reduced to the case (1.4) just we have argued if we can
prove (1.7). Therefore, the proof of the last part of the theorem will be completed after the
completion of the proof of Corollary 1.3.

3 Proof of Theorem 1.2

We start with the equality

∆f = ∂2
rf +

n− 1

|x|
∂rf +

n∑
j=1

L2
jf,
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which is verified by a direct calculation. Then we expand the scalar product as

∥∆f∥2L2(Rn) =

∥∥∥∥∂2
rf +

n− 1

|x|
∂rf

∥∥∥∥2
L2(Rn)

+

∥∥∥∥∥∥
n∑

j=1

L2
jf

∥∥∥∥∥∥
2

L2(Rn)

+ 2Re

∂2
rf +

n− 1

|x|
∂rf

∣∣∣∣∣
n∑

j=1

L2
jf

 .

(3.1)

From now on we consider the last scalar product. For simplicity, let

g = ∂2
rf +

n− 1

|x|
∂rf = |x|−n+1∂r(|x|n−1∂rf) and hj = Ljf.

By integration by parts,

(g|Ljhj) = −(Ljg|hj) + (n− 1)

(
g
∣∣∣ xj|x|2

hj

)
.

This gives g

∣∣∣∣∣
n∑

j=1

L2
jf

 = −
n∑

j=1

(Ljg|hj) (3.2)

since
∑n

j=1 xjLj = 0. We also notice that Lj∂r =
(
∂r +

1
|x|

)
Lj and that Lj(|x|λu) = |x|λLju

for any λ ∈ R to obtain

Ljg = Lj(|x|−n+1∂r(|x|n−1∂rf)) = |x|−n+1Lj∂r(|x|n−1∂rf)

= |x|−n+1

(
∂r +

1

|x|

)
Lj(|x|n−1∂rf) = |x|−n+1

(
∂r +

1

|x|

)
|x|n−1Lj∂rf

= |x|−n+1

(
∂r +

1

|x|

)
|x|n−1

(
∂r +

1

|x|

)
hj = ∂2

rhj +
n+ 1

|x|
∂rhj +

n− 1

|x|2
hj . (3.3)

By (3.3) and (1.2), the real part of the left hand side of (3.2) is calculated as

−Re

n∑
j=1

(Ljg|hj) = −
n∑

j=1

Re

(
(∂2

rhj |hj) + (n+ 1)Re

(
1

|x|
∂rhj

∣∣∣∣∣hj
)

+ (n− 1)

∥∥∥∥ 1

|x|
hj

∥∥∥∥2
L2(Rn)

)

= −
n∑

j=1

(
(n− 1)(n− 2)

2

∥∥∥∥ 1

|x|
hj

∥∥∥∥2
L2(Rn)

− ∥∂rhj∥2L2(Rn)

−(n+ 1)(n− 2)

2

∥∥∥∥ 1

|x|
hj

∥∥∥∥2
L2(Rn)

+ (n− 1)

∥∥∥∥ 1

|x|
hj

∥∥∥∥2
L2(Rn)

)

=
n∑

j=1

(
∥∂rhj∥2L2(Rn) −

∥∥∥∥ 1

|x|
hj

∥∥∥∥2
L2(Rn)

)

=

n∑
j=1

(
n(n− 4)

4

∥∥∥∥ 1

|x|
hj

∥∥∥∥2
L2(Rn)

+ ∥|x|−
n
2
+1∂r(|x|

n
2
−1hj)∥2L2(Rn)

)
. (3.4)

By (3.1), (3.2) and (3.4), we obtain (1.6).
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Proof of Corollary 1.3. The inequality (1.7) follows immediately from (1.6). In (1.7), equality
holds only if

∑n
j=1 L

2
jf = 0, which is equivalent to the fact that f is radial since

1

|x|2
∑

1≤j<k≤n

(xj∂k − xk∂j)
2f =

n∑
j=1

L2
jf.

Conversely, if f is radial, then Ljf = 0 for all j and (1.7) is realized as an equality.
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