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Abstract

In this paper, we establish the embedding on the critical Sobolev-Lorentz-Zygmund space

H
n
p

p,q,λ1,··· ,λm
(Rn) into the generalized Morrey space MΦ,r(Rn) with an optimal Young func-

tion Φ. Furthermore, as an application of this embedding, we obtain the almost Lipschitz

continuity for functions in H
n
p +1

p,q,λ1,··· ,λm
(Rn). O’Neil’s inequality and its reverse play an

essential role for the proof of main theorems.

2000 Mathematics Subject Classification. Primary 46E35 ; Secondary 26D10.
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1 Introduction and main theorems

In this paper, we consider the optimal embedding on the critical Sobolev-Lorentz-Zygmund

space H
n
p

p,q,λ1,··· ,λm
(Rn) into the generalized Morrey space MΦ,r(Rn), where n ∈ N, 1 < p < ∞,

1 < q ≤ ∞, 1 ≤ r < ∞ and λ1, · · · , λm are non-negative numbers with m ∈ N, and Φ is a
Young function. One of main purposes is to investigate the optimal Young function Φ with

which the embedding H
n
p

p,q,λ1,··· ,λm
(Rn) ↪→ MΦ,r(Rn) holds. The Sobolev-Lorentz-Zygmund

space Hs
p,q,λ1,··· ,λm

(Rn), s ∈ R, is defined as a Bessel potential space Hs
p,q,λ1,··· ,λm

(Rn) :=

(1−∆)−
s
2Lp,q,λ1,··· ,λm(Rn) in terms of the Lorentz-Zygmund space Lp,q,λ1,··· ,λm(Rn). The space

Hs
p,q,λ1,··· ,λm

(Rn) extends the Sobolev-Lorentz space and the Sobolev space since Lp,q,0,··· ,0(Rn) =
Lp,q(Rn) and Lp,p(Rn) = Lp(Rn), where Lp(Rn) and Lp,q(Rn) denote the Lebesgue space and the
Lorentz space, respectively. We give definitions of those function spaces and related properties
in Section 2.

We concern the optimal vanishing and growth orders of the local integrals
∫
E |u(x)|rdx as

|E| → 0 or |E| → ∞ for functions in H
n
p

p,q,λ1,··· ,λm
(Rn). In Suzuki-Wadade [21], the authors gave

the optimal growth order of the local integrals for functions in H
n
p
p,q(Rn) stated as follows :
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Theorem A [21]. Let n ∈ N, 1 < p < ∞, 1 < q ≤ ∞ and 1 ≤ r < ∞. Then there exists a
positive constant C such that the inequality(∫

E
|u(x)|rdx

) 1
r

≤ C |E|
1
r
− 1

p ∥u∥
H

n
p
p,q

(1.1)

holds for all u ∈ H
n
p
p,q(Rn) and all measurable sets E if and only if p > r or p = r ≥ q, where C

is independent of E.

In Theorem A, the necessity for the condition p > r or p = r ≥ q comes from the part |E| → ∞
in (1.1). In fact, the vanishing order |E|

1
r
− 1

p as |E| → 0 turns out not to be optimal, and in [21],
the authors also proved the following :

Theorem B [21]. Let n ∈ N, 1 < p < ∞, 1 < q ≤ ∞ and 1 ≤ r < ∞. Then there exist positive
constants δ and C such that the inequality(∫

E
|u(x)|rdx

) 1
r

≤ C |E|
1
r log(

1

|E|
)

1
q′ ∥u∥

H
n
p
p,q

holds for all u ∈ H
n
p
p,q(Rn) and all measurable sets E satisfying |E| < δ, where C and δ are

independent of E, and q′ := q
q−1 .

Theorem B [21] was originally obtained by Brézis-Wainer [3] when p = q which corresponds to

the critical Sobolev space H
n
p
p (Rn). Ozawa [16] gave an alternative proof of Theorem B [21] when

p = q. We also refer to Sawano-Wadade [19], where the authors proved similar embeddings on
the critical Sobolev-Morrey space.

Our first goal in this paper is to extend both of Theorem A and Theorem B for functions

in H
n
p

p,q,λ1,··· ,λm
(Rn). Concerning an extension of Theorem A, we can show that the inequality

(1.1) with ∥u∥
H

n
p
p,q

replaced by ∥u∥
H

n
p
p,q,λ1,··· ,λm

holds if and only if p > r or p = r ≥ q without

any modification for the proof of Theorem A in [21]. Therefore, we omit its proof in this paper.
However, the vanishing order as |E| → 0 depends on the exponents λ1, · · · , λm when we consider

an extension of Theorem B to the statement in terms of H
n
p

p,q,λ1,··· ,λm
(Rn). In order to state main

theorems, we introduce multiple-logarithmic functions by ℓl(t) := ℓ1 ◦ · · · ◦ ℓ1︸ ︷︷ ︸
l

(t) for t ≥ cl with

ℓ1(t) := log t, and the constants cl > 0 are determined by ℓl(cl) = 1. Our first result now reads :

Theorem 1.1. Let n ∈ N, 1 < p < ∞, 1 < q ≤ ∞, 1 ≤ r < ∞ and let λ1, · · · , λm be
non-negative numbers with m ∈ N. Assume one of the conditions (A)-(C) :


(A) There exists 0 ≤ j ≤ m− 1 such that λ1 = · · · = λj =

1
q′ and λj+1 >

1
q′ ;

(B) There exists 0 ≤ j ≤ m− 1 such that λ1 = · · · = λj =
1
q′ and λj+1 <

1
q′ ;

(C) λ1 = · · · = λm = 1
q′ ,
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where the conditions (A) and (B) are understood as λ1 >
1
q′ and λ1 <

1
q′ when j = 0, respectively.

Then there exist positive constants C and δ such that the inequalities

(∫
E
|u(x)|rdx

) 1
r

≤



C |E|
1
r ∥u∥

H
n
p
p,q,λ1,··· ,λm

if (A) is fulfilled ;

C |E|
1
r ℓj+1(

1
|E|)

1
q′−λj+1

m∏
l=j+2

ℓl(
1

|E|
)−λl ∥u∥

H
n
p
p,q,λ1,··· ,λm

if (B) is fulfilled ;

C |E|
1
r ℓm+1(

1
|E|)

1
q′ ∥u∥

H
n
p
p,q,λ1,··· ,λm

if (C) is fulfilled,

(1.2)

hold for all u ∈ H
n
p

p,q,λ1,··· ,λm
(Rn) and for all measurable sets E satisfying |E| < δ, where the

constants C and δ are independent of E, and in the middle inequality in (1.2), the right-hand

side of (1.2) is understood as C |E|
1
r ℓm( 1

|E|)
1
q′−λm∥u∥

H
n
p
p,q,λ1,··· ,λm

when j = m− 1.

As a special case of m = 1 in Theorem 1.1, we obtain the following corollary :

Corollary 1.2. Let n ∈ N, 1 < p < ∞, 1 < q ≤ ∞, 1 ≤ r < ∞ and λ ≥ 0. Then there exist
positive constants C and δ such that the inequalities

(∫
E
|u(x)|rdx

) 1
r

≤



C |E|
1
r ∥u∥

H
n
p
p,q,λ

if λ > 1
q′ ;

C |E|
1
r log( 1

|E|)
1
q′−λ ∥u∥

H
n
p
p,q,λ

if λ < 1
q′ ;

C |E|
1
r log

(
log( 1

|E|)
) 1

q′ ∥u∥
H

n
p
p,q,λ

if λ = 1
q′ ,

(1.3)

hold for all u ∈ H
n
p

p,q,λ(R
n) and for all measurable sets E satisfying |E| < δ, where the constants

C and δ are independent of E.

Remark that Theorem B is corresponding to the middle inequality in (1.3) with λ = 0 in
Corollary 1.2. Furthermore, Corollary 1.2 tells us that the exponent λ = 1

q′ is a threshold so
that the logarithmic vanishing order as |E| → 0 appears for the local integrals of functions in

H
n
p

p,q,λ(R
n).

Theorem 1.1 is regarded as the embedding on H
n
p

p,q,λ1,··· ,λm
(Rn) into the generalized Morrey

space. The generalized Morrey spaces have been studied extensively, see for instance Kurata-
Nishigaki-Sugano [8], Nakai [11, 12] and Sawano-Sugano-Tanaka [17, 18]. Let Φ be a Young
function, that is, Φ : [0,∞) → [0,∞) is a continuous function satisfying Φ(0) = 0 and lim

t→∞
Φ(t) =

∞. Then for a locally integrable function u on Rn, the norm of the generalized Morrey space
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MΦ,r(Rn) is given by

∥u∥MΦ,r
:= sup

Q∈D(Rn)
Φ(|Q|)

(
1

|Q|

∫
Q
|u(x)|rdx

) 1
r

,

where D(Rn) denotes the set of dyadic cubes in Rn. The space MΦ,r(Rn) extends the Morrey
space and then the Lebesgue space. As an immediate consequnce of Theorem 1.1 and Theorem
A with ∥u∥

H
n
p
p,q

replaced by ∥u∥
H

n
p
p,q,λ1,··· ,λm

, we obtain the following embeddings :

Corollary 1.3. Let n ∈ N, 1 < p < ∞, 1 < q ≤ ∞, 1 ≤ r < ∞ and let λ1, · · · , λm be
non-negative numbers with m ∈ N. Define Young functions Φ by

Φ(t) :=


(1 + t)

1
p if (A) is fulfilled ;

(1 + t)
1
p ℓj+1(cj+1 +

1
t )

λj+1− 1
q′

m∏
l=j+2

ℓl(cl +
1

t
)λl if (B) is fulfilled ;

(1 + t)
1
p ℓm+1(cm+1 +

1
t )

− 1
q′ if (C) is fulfilled.

(1.4)

Then the continuous embedding H
n
p

p,q,λ1,··· ,λm
(Rn) ↪→ MΦ,r(Rn) holds if and only if p > r or

p = r ≥ q.

As another application of Theorem 1.1, we investigate the Lipschitz type continuity for

functions in H
n
p
+1

p,q,λ1,··· ,λm
(Rn). It is well-known that H

n
p
+α

p (Rn) ↪→ Cα(Rn) for 0 < α < 1 but

H
n
p
+1

p (Rn) ̸↪→ Lip (Rn), where Cα(Rn) and Lip (Rn) denote the Hölder space and the Lipschitz

space, respectively. Instead, the functions in H
n
p
+1

p (Rn) admit the almost Lipschitz continuity,
see Bŕezis-Wainger [3]. Based on this fact, we next aim to clarify how the exponents λ1, · · · , λm

influence the Lipschitz type continuity for functions in H
n
p

p,q,λ1,··· ,λm
(Rn). Our second theorem

reads as follows :

Theorem 1.4. Let n ∈ N, 1 < p < ∞, 1 < q ≤ ∞, and let λ1, · · · , λm be non-negative numbers
with m ∈ N. Assume one of the conditions (A)-(C) in Theorem 1.1. Then there exist positive
constants C and δ such that the inequalities

|u(x)− u(y)|

≤



C |x− y| ∥u∥
H

n
p +1

p,q,λ1,··· ,λm

if (A) is fulfilled ;

C |x− y| ℓj+1(
1

|x−y|)
1
q′−λj+1

m∏
l=j+2

ℓl(
1

|x− y|
)−λl ∥u∥

H
n
p +1

p,q,λ1,··· ,λm

if (B) is fulfilled ;

C |x− y| ℓm+1(
1

|x−y|)
1
q′ ∥u∥

H
n
p +1

p,q,λ1,··· ,λm

if (C) is fulfilled,

hold for all u ∈ H
n
p
+1

p,q,λ1,··· ,λm
(Rn) and for all points x and y satisfying |x − y| < δ, where the

constants C and δ are independent of x and y.
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The case m = 1 in Theorem 1.4 yields the following corollary :

Corollary 1.5. Let n ∈ N, 1 < p < ∞, 1 < q ≤ ∞ and λ ≥ 0. Then there exist positive
constants C and δ such that the inequalities

|u(x)− u(y)| ≤



C |x− y| ∥u∥
H

n
p +1

p,q,λ

if λ > 1
q′ ;

C |x− y| log
(

1
|x−y|

) 1
q′−λ

∥u∥
H

n
p +1

p,q,λ

if λ < 1
q′ ;

C |x− y| log
(
log( 1

|x−y|)
) 1

q′ ∥u∥
H

n
p +1

p,q,λ

if λ = 1
q′ ,

(1.5)

hold for all u ∈ H
n
p
+1

p,q,λ(R
n) and for all points x and y satisfying |x− y| < δ, where the constants

C and δ are independent of x and y.

In [3], the middle inequality in (1.5) with p = q and λ = 0 was proved. Moreover, Corollary

1.5 tells us that the exponent λ = 1
q′ is a threshold so that H

n
p

p,q,λ(R
n) can be embedded into

Lip (Rn).

Finally, we consider the optimality for the inequalities (1.2) in Theorem 1.1 with respect to
the vanishing orders as |E| → 0, which also implies the optimality for the Young functions (1.4)
in Corollary 1.3. As a result, we can observe that the vanishing orders as |E| → 0 are optimal
in terms of the multiple logarithmic functions. Our final theorem is stated as follows :

Theorem 1.6. Let n ∈ N, 1 < p < ∞, 1 < q ≤ ∞, 1 < r < ∞, and let λ1, · · · , λm be non-
negative numbers with m ∈ N. Take k ≥ m with k ∈ N and ε > 0. Assume one of the conditions
(A)-(C) in Theorem 1.1.

(i) If q < ∞, then there exist u ∈ H
n
p

p,q,λ1,··· ,λm
(Rn) and positive constants C and δ such that the

inequalities(∫
E
|u(x)|rdx

) 1
r

≥



C |E|
1
r if (A) is fulfilled ;

C |E|
1
r ℓj+1(

1
|E|)

m∏
l=j+1

ℓl(
1

|E|
)−λl

k−1∏
l=j+1

ℓl(
1

|E|
)
− 1

q ℓk(
1

|E|
)
− 1

q
−ε

if (B) is fulfilled ;

C |E|
1
r ℓm+1(

1
|E|)

k∏
l=m+1

ℓl(
1

|E|
)
− 1

q ℓk+1(
1

|E|
)
− 1

q
−ε

if (C) is fulfilled,

(1.6)

hold for all measurable sets E satisfying |E| < δ, where u, C and δ are independent of E.

(ii) If q = ∞, then there exist u ∈ H
n
p

p,∞,λ1,··· ,λm
(Rn) and positive constants C and δ such that

5



the inequalities

(∫
E
|u(x)|rdx

) 1
r

≥


C |E|

1
r if (A) is fulfilled ;

C |E|
1
r ℓj+1(

1
|E|)

m∏
l=j+1

ℓl(
1

|E|
)−λl if (B) is fulfilled ;

C |E|
1
r ℓm+1(

1
|E|) if (C) is fulfilled,

hold for all measurable sets E satisfying |E| < δ, where u, C and δ are independent of E.

Theorem 1.6 implies that the vanishing orders as |E| → 0 for the inequalities (1.2) in Theorem
1.1 are best-possible when q = ∞ and they are also sharp even when q < ∞ in terms of the
multiple logarithmic functions. It is worth noting that the last two inequalities in (1.6) become
sharper as k ∈ N is getting larger.

The inequalities characterizing critical function spaces in terms of Sobolev’s embedding such
as Sobolev-Lorentz spaces, Sobolev-Morrey spaces, Besov spaces, Triebel-Lizorkin spaces and
functions of bounded mean oscillation called BMO have been extensively studied, see for instance
Brézis-Wainger [3], Chen-Zhu [4], Edmunds-Triebel [5], Machihara-Ozawa-Wadade [9], Nagayasu-
Wadade [10], Ogawa [14], Ogawa-Ozawa [15], Ozawa [16], Sawano-Wadade [19], Wadade [22, 23,
24] and so on. In those papers, the authors established critical embeddings by proving Trudinger-
Moser type inequalities, Gagliardo-Nirenberg type inequalities, Brézis-Gallouët-Wainger type
inequalities and the logarithmic Hardy inequalities. Our main subject in this paper is concerned
with the optimal embedding from the critical Sobolev-Lorentz-Zygmund space into the gener-
alized Morrey space, which is regarded as one of the characterization for the critical Sobolev-
Lorentz-Zygmund space. However, as far as we know, this kind of embeddings discussed in this
paper is little known compared to the embeddings related to the corresponding Trudinger-Moser
type inequalities and so on. We will discuss the relations between those critical embeddings in
the forthcoming paper.

This paper is organized as follows. Section 2 is devoted to give the definition of the Sobolev-
Lorentz-Zygmund space and to collect the elementary properties concerning the rearrangement
of funtions. We shall prove main theorems in Section 3.

2 Preliminaries

In this section, we first recall the definition of the Lorentz-Zygmund space. To this end,
we define the rearrangement of measurable functions. For a measurable function f on Rn with
n ∈ N, let f∗ : [0,∞) → [0,∞] be the distribution function of f defined by

f∗(λ) := |{x ∈ Rn ; |f(x)| > λ}| for λ ≥ 0,

where |E| denotes the Lebesgue measure of a measurable set E ⊂ Rn, and then the rearrange-
ment f∗ : [0,∞) → [0,∞] of f is defined by

f∗(t) := inf{λ > 0 ; f∗(λ) ≤ t} for t ≥ 0.
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Moreover, f∗∗ : (0,∞) → [0,∞] denotes the average function of f∗ defined by

f∗∗(t) :=
1

t

∫ t

0
f∗(τ)dτ for t > 0.

In what follows, we assume f∗(t) < +∞ for all t > 0. Then f∗ is right-continuous and non-
increasing on (0,∞), and hence, f∗∗ is continuous and non-increasing on (0,∞) with f∗(t) ≤
f∗∗(t) for all t > 0. We now introduce the Lorentz-Zygmund space by using the rearrangement.
Let 1 ≤ p, q ≤ ∞, and let λ1, · · · , λm be non-negative numbers with m ∈ N. Then the Lorentz-
Zygmund space Lp,q,λ1,··· ,λm(Rn) is a function space equipped with the norm given by

∥f∥Lp,q,λ1,··· ,λm
:=

(∫ ∞

0

(
t
1
p

m∏
l=1

ℓl(cl +
1

t
)λlf∗(t)

)q
dt

t

) 1
q

,

where ℓl(t) := ℓ1 ◦ · · · ◦ ℓ1︸ ︷︷ ︸
l

(t) for t ≥ cl with ℓ1(t) := log t, and the constants cl > 0 are de-

termined by ℓl(cl) = 1. When q = ∞, the norm ∥f∥Lp,∞,λ1,··· ,λm
can be defined by the usual

modification. Remark that the Lorentz-Zygmund space generalizes the Lorentz space Lp,q(Rn)
since ∥f∥Lp,q,0,··· ,0 = ∥f∥Lp,q .

We can take f∗ replaced by f∗∗ in ∥f∥Lp,q as another equivalent norm on Lp,q(Rn) if p ̸= 1.
Indeed, the following Hardy inequality guarantees its equivalence,(∫ ∞

0

(
t
1
p

t

∫ t

0
f(s)ds

)q
dt

t

) 1
q

≤ p′
(∫ ∞

0

(
t
1
p f(t)

)q dt
t

) 1
q

(2.1)

for non-negative measurable functions f , where p′ := p
p−1 . For the proof of (2.1), see O’Neil [13,

Lemma 2.3] and references therein. Furthermore, since f∗ and f∗∗ are non-increasing functions
in (0,∞), we get the following decay estimates. For any t > 0, we have

f∗(t) ≤
(
q

p

) 1
q

t
− 1

p ∥f∥Lp,q , (2.2)

and then if p > 1, together with (2.1), we obtain for any t > 0,

f∗∗(t) ≤ p′
(
q

p

) 1
q

t
− 1

p ∥f∥Lp,q .

Next, we recall the pointwise rearrangement inequality for the convolution of functions proved
by O’Neil [13, Theorem 1.7]. In fact, for measurable functions f and g on Rn, we have

(f ∗ g)∗∗(t) ≤ t f∗∗(t)g∗∗(t) +

∫ ∞

t
f∗(s)g∗(s)ds for t > 0. (2.3)

Moreover, we make use of the reverse O’Neil inequality established in Kozono-Sato-Wadade [7,
Lemma 2.2]. In fact, there exists a positive constant C such that the inequality

(f ∗ g)∗∗(t) ≥ C

(
t f∗∗(t)g∗∗(t) +

∫ ∞

t
f∗(s)g∗(s)ds

)
(2.4)

7



holds for all t > 0 and for all measurable functions f and g on Rn which are both non-negative,
radially symmetric and non-increasing in the radial direction |x|.

In this paper, we frequently use the Bessel potential Gs ∗ f := (1 − ∆)−
s
2 f and the Riesz

potential Is ∗ f := (−∆)−
s
2 f for 0 < s < n. More precisely, the kernel functions Is and Gs are

defined respectively by
Is(x) :=

Γ
(
n−s
2

)
2sπ

n
2 Γ
(
s
2

) |x|−(n−s) ;

Gs(x) :=
1

(4π)
s
2Γ
(
s
2

) ∫ ∞

0
e−π

|x|2
t

− t
4π t−

n−s
2

dt

t

for x ∈ Rn \ {0}, where Γ denotes the Gamma function. Based on the Lorentz-Zygmund
space, we define the Sobolev-Lorentz-Zygmund space Hs

p,q,λ1,··· ,λm
(Rn) by Hs

p,q,λ1,··· ,λm
(Rn) :=

(I −∆)−
s
2Lp,q,λ1,··· ,λm(Rn) = Gs ∗ Lp,q,λ1,··· ,λm(Rn) equipped with the norm ∥u∥Hs

p,q,λ1,··· ,λm
:=

∥(I−∆)
s
2u∥Lp,q,λ1,··· ,λm

. The spaceHs
p,q,λ1,··· ,λm

(Rn) extends the Sobolev-Lorentz space Hs
p,q(Rn)

and then the Sobolev space Hs
p(Rn) since we have Lp,q,0,··· ,0(Rn) = Lp,q(Rn) and Lp,p(Rn) =

Lp(Rn). We now collect the elementary properties of Is and Gs in the following lemma.

Lemma 2.1. Let n ∈ N and 0 < s < n.

(i) Is and Gs are non-negative, radially symmetric and non-increasing in the radial direction,

so that I∗s (t) = Is(x) and G∗
s(t) = Gs(x) if |x| =

(
t
ωn

) 1
n
> 0, where ωn := 2π

π
2

nΓ(n
2 )

denotes the

volume of the unit ball in Rn.

(ii) Gs(x) ≤ Is(x) for all x ∈ Rn \ {0}, which implies G∗
s(t) ≤ I∗s (t), G∗∗

s (t) ≤ I∗∗s (t) for all

t > 0, and lim
|x|↓0

Gs(x)

Is(x)
= lim

t↓0

G∗
s(t)

I∗s (t)
= 1.

(iii) ∥Gs∥L1(Rn) = 1 and there exists a positive constant C such that the following inequalities
hold,

Gs(x) ≤

{
C |x|−(n−s) for x ∈ Rn \ {0} ;
C e−|x| for x ∈ Rn with |x| ≥ 1.

Since the facts in Lemma 2.1 are well-known, we omit the detailed proof here, see Stein [20]
for instance. Furthermore, we refer to Almgren-Lieb [1], Bennett-Sharpley [2] and Kokilashvili-
Krbec [6] for further information about the rearrangement theory.

3 Proof of main theorems

In this section, we shall prove main theorems.

Proof of Theorem 1.1. First, letting (1−∆)
n
2pu = f , we have u = Gn

p
∗f , where Gn

p
denotes

the Bessel kernel. Thus the inequality (1.2) can be written equivalently as(∫
E
|Gn

p
∗ f(x)|rdx

) 1
r
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≤


C |E|

1
r ∥f∥Lp,q,λ1,··· ,λm

if (A) is fulfilled ;

C |E|
1
r ℓj+1(

1
|E|)

1
q′−λj+1

m∏
l=j+2

ℓl(
1

|E|
)−λl ∥f∥Lp,q,λ1,··· ,λm

if (B) is fulfilled ;

C |E|
1
r ℓm+1(

1
|E|)

1
q′ ∥f∥Lp,q,λ1,··· ,λm

if (C) is fulfilled,

for all f ∈ Lp,q,λ1,··· ,λm(Rn) and all measurable sets E having small measure.

By O’Neil’s inequality (2.3), we obtain

(∫
E
|Gn

p
∗ f(x)|rdx

) 1
r

=

(∫ |E|

0
(Gn

p
∗ f)∗(t)rdt

) 1
r

≤

(∫ |E|

0

(
tG∗∗

n
p
(t)f∗∗(t)

)r
dt

) 1
r

+

(∫ |E|

0

(∫ ∞

t
G∗

n
p
(s)f∗(s)ds

)r

dt

) 1
r

≤

(∫ |E|

0

(
tG∗∗

n
p
(t)f∗∗(t)

)r
dt

) 1
r

+

(∫ |E|

0

(∫ |E|

t
G∗

n
p
(s)f∗(s)ds

)r

dt

) 1
r

+

(∫ |E|

0

(∫ ∞

|E|
G∗

n
p
(s)f∗(s)ds

)r

dt

) 1
r

=: I1 + I2 + I3.

We first estimate I1. For small t > 0, by the decay estimate (2.2) and Lemma 2.1, we see

tG∗∗
n
p
(t)f∗∗(t) =

1

t

∫ t

0
G∗

n
p
(s)ds

∫ t

0
f∗(s)ds ≤ C

t

∫ t

0
s
− 1

p′ ds

∫ t

0
s
− 1

pds ∥f∥Lp,q

= C ∥f∥Lp,q ≤ C ∥f∥Lp,q,λ1,··· ,λm
,

and then I1 ≤ C |E|
1
r ∥f∥Lp,q,λ1,··· ,λm

.

Next, we proceed to the estimate of I2. By using (2.2) and Lemma 2.1, we have

I2 ≤ C

(∫ |E|

0

(∫ |E|

t
s
− 1

p′−
1
pds

)r

dt

) 1
r

∥f∥Lp,q ≤ C

(∫ |E|

0

(
log

|E|
t

)r

dt

) 1
r

∥f∥Lp,q,λ1,··· ,λm

= C

(∫ 1

0

(
log

1

s

)r

ds

) 1
r

|E|
1
r ∥f∥Lp,q,λ1,··· ,λm

= C |E|
1
r ∥f∥Lp,q,λ1,··· ,λm

.

Finally, we estimate I3. For small δ > 0, we have

I3 = |E|
1
r

∫ ∞

|E|
G∗

n
p
(s)f∗(s)ds = |E|

1
r

∫ δ

|E|
G∗

n
p
(s)f∗(s)ds+ |E|

1
r

∫ ∞

δ
G∗

n
p
(s)f∗(s)ds =: I31 + I32.

We can estimate I32 as follows. By using (2.2) and Lemma 2.1 again, we see for any α > 1
p′ ,

I32 ≤ C |E|
1
r

∫ ∞

δ
s
−α− 1

pds ∥f∥Lp,q ≤ C |E|
1
r ∥f∥Lp,q,λ1,··· ,λm

.
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Furthermore, by Lemma 2.1 and Hölder’s inequality, I31 is estimated as

I31 ≤ C |E|
1
r

∫ δ

|E|
s
− 1

p′−
1
p

m∏
l=1

ℓl(
1

s
)−λls

1
p

m∏
l=1

ℓl(
1

s
)λlf∗(s)ds

≤ C |E|
1
r

(∫ δ

|E|

m∏
l=1

ℓl(
1

s
)−λlq

′ ds

s

) 1
q′

∥f∥Lp,q,λ1,··· ,λm
. (3.1)

By applying L’Hopital’s rule, we can investigate the growth orders as |E| → 0 of the integral in
the right-hand side of (3.1) under the conditions (A)-(C). As results, we obtain

(∫ δ

|E|

m∏
l=1

ℓl(
1

s
)−λlq

′ ds

s

) 1
q′

≤


C if (A) is fulfilled ;

C ℓj+1(
1
|E|)

1
q′−λj+1

m∏
l=j+2

ℓl(
1

|E|
)−λl if (B) is fulfilled ;

C ℓm+1(
1
|E|)

1
q′ if (C) is fulfilled,

and hence,

I31 ≤


C |E|

1
r ∥f∥Lp,q,λ1,··· ,λm

if (A) is fulfilled ;

C |E|
1
r ℓj+1(

1
|E|)

1
q′−λj+1

m∏
l=j+2

ℓl(
1

|E|
)−λl ∥f∥Lp,q,λ1,··· ,λm

if (B) is fulfilled ;

C |E|
1
r ℓm+1(

1
|E|)

1
q′ ∥f∥Lp,q,λ1,··· ,λm

if (C) is fulfilled.

Thus summing up all estimates above, we obtain desired conclusions.

Next, we give a proof of Corollary 1.3. It is an immediate consequence of Theorem 1.1 and
Theorem A with ∥u∥

H
n
p
p,q

replaced by ∥u∥
H

n
p
p,q,λ1,··· ,λm

.

Proof of Corollary 1.3. First, assume p > r or p = r ≥ q. Then by applying Theorem 1.1
and Theorem A with ∥u∥

H
n
p
p,q

replaced by ∥u∥
H

n
p
p,q,λ1,··· ,λm

, we see for any measurable set E,

(∫
E
|u(x)|rdx

) 1
r

≤



C |E|
1
r (1 + |E|)−

1
p ∥u∥

H
n
p
p,q,λ1,··· ,λm

if (A) is fulfilled ;

C |E|
1
r (1 + |E|)−

1
p ℓj+1(cj+1 +

1
|E|)

1
q′−λj+1

m∏
l=j+2

ℓl(cl +
1

|E|
)−λl ∥u∥

H
n
p
p,q,λ1,··· ,λm

if (B) is fulfilled ;

C |E|
1
r (1 + |E|)−

1
p ℓm+1(cm+1 +

1
|E|)

1
q′ ∥u∥

H
n
p
p,q,λ1,··· ,λm

if (C) is fulfilled,

(3.2)
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which imply the continuous embeddings H
n
p

p,q,λ1,··· ,λm
(Rn) ↪→ MΦ,r(Rn) with Young functions

(1.4). Conversely, since the conditions p > r or p = r ≥ q are necessary for Theorem A with
∥u∥

H
n
p
p,q

replaced by ∥u∥
H

n
p
p,q,λ1,··· ,λm

, they are necessary also for the inequalities (3.2). Thus we

finish the proof of Corollary 1.3.

We proceed to the proof of Theorem 1.4, which will be proved by utilizing Theorem 1.1.

Proof of Theorem 1.4. We consider only the case of the condition (C) since other cases can
be treated in a quite same way. Let x and y be distinct points in Rn, and let Q be a closed cube
in Rn with its side ρ = |x− y| containing x and y. For any z ∈ Q, we have

u(z)− u(x) =

∫ 1

0
∇u (tz + (1− t)x) · (z − x) dt,

and then

|u(z)− u(x)| ≤
√
nρ

∫ 1

0
|∇u (tz + (1− t)x)| dt. (3.3)

Defining uQ := 1
|Q|
∫
Q u(z)dz and integrating (3.3) with respect to z over Q, we obtain

|uQ − u(x)| ≤ 1

|Q|

∫
Q
|u(z)− u(x)|dz ≤

√
nρ1−n

∫ 1

0

∫
Q
|∇u (tz + (1− t)x)| dzdt

=
√
nρ1−n

∫ 1

0
t−n

∫
tQ+(1−t)x

|∇u(ζ)| dζdt. (3.4)

Here, applying Theorem 1.1 with r = 1, we have for any small |Q|,∫
tQ+(1−t)x

|∇u(ζ)| dζ ≤ C |tQ| ℓm+1(
1

|tQ|
)

1
q′ ∥∇u∥

H
n
p
p,q,λ1,··· ,λm

≤ C tnρnℓm+1(
1

tnρn
)

1
q′ ∥u∥

H
n
p +1

p,q,λ1,··· ,λm

. (3.5)

Thus combining (3.4) with (3.5) yields for any small |Q|,

|uQ − u(x)| ≤ C ρ

∫ 1

0
ℓm+1(

1

tnρn
)

1
q′ dt ∥u∥

H
n
p +1

p,q,λ1,··· ,λm

≤ C ρ ℓm+1(
1

ρ
)

1
q′ ∥u∥

H
n
p +1

p,q,λ1,··· ,λm

. (3.6)

Interchanging roles of x and y, we obtain (3.6) with x replaced by y, and then we have a desired
conclusion.

In the end, we shall show Theorem 1.6. The reverse O’Neil inequality (2.4) is an essential
tool to estimate the local integrals from below.
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Proof of Theorem 1.6. First, we consider the case q < ∞. Assume the condition (A). In this
case, we define f0(x) := |x|αnχ{x∈Rn ; |x|<δ}(x), where α is any number satisfying −1

p < α < 0,
and δ > 0 will be chosen small enough later, and then we have

f∗
0 (t) = f̃0

((
t

ωn

) 1
n

)
≃ g0(t) := tαχ(0,δ)(t)

for all t > 0 with some small δ > 0, where f̃0(|x|) = f0(x), and ωn := 2π
n
2

nΓ(n
2
) is the volume of the

unit ball in Rn. That is, there exist positive constants C and C̃ such that

C̃ g0(t) ≤ f∗
0 (t) ≤ C g0(t) (3.7)

hold for all t > 0 with some small δ > 0. Then by the definition of the Lorentz-Zygmund norm
and the latter estimate in (3.7) and, 1

p + α > 0, we obtain

∥f0∥Lp,q,λ1,··· ,λm
≤ C

(∫ ∞

0

(
t
1
p

m∏
l=1

ℓl(cl +
1

t
)λlg0(t)

)q
dt

t

) 1
q

≤ C

(∫ δ

0

(
t
1
p
+α

m∏
l=1

ℓl(
1

t
)λl

)q
dt

t

) 1
q

≤ C

(∫ δ

0
t
q
2
( 1
p
+α)−1

dt

) 1
q

< +∞,

which implies f0 ∈ Lp,q,λ1,··· ,λm(Rn), or equivalently, u0 := Gn
p
∗ f0 ∈ H

n
p

p,q,λ1,··· ,λm
(Rn). On the

other hand, for any measurable set E satisfying |E| < δ
2 , by the former estimate in (3.7), the

Hardy inequality (2.1), the reverse O’Neil inequality (2.4) and Lemma 2.1, we see∫
E
|Gn

p
∗ f0(x)|rdx =

∫ |E|

0
(Gn

p
∗ f0)∗(t)rdt ≥ C

∫ |E|

0
(Gn

p
∗ f0)∗∗(t)rdt

≥ C

∫ |E|

0

(
tG∗∗

n
p
(t)f∗∗

0 (t) +

∫ ∞

t
G∗

n
p
(s)f∗

0 (s)ds

)r

dt

≥ C

∫ |E|

0

(∫ δ

t
G∗

n
p
(s)f∗

0 (s)ds

)r

dt ≥ C

∫ |E|

0

(∫ δ

t
G∗

n
p
(s)g0(s)ds

)r

dt

≥ C

∫ |E|

0

(∫ δ

t
s
− 1

p′ g0(s)ds

)r

dt ≥ C

∫ |E|

0

(∫ δ

δ
2

s
α− 1

p′ ds

)r

dt = C |E|, (3.8)

which is a desired inequality.

Next, assume the condition (B). In this case, we define functions fε,k(x) by

fε,k(x) :=

j∏
l=1

ℓl(
1

|x|
)−1

m∏
l=j+1

ℓl(
1

|x|
)−λl

k−1∏
l=j+1

ℓl(
1

|x|
)
− 1

q ℓk(
1

|x|
)
− 1

q
−ε|x|−

n
p χ{x∈Rn ; |x|<δ}(x),

12



where δ > 0 will be taken small enough later. It is easy to see that fε,k are non-negative, radially
symmetric and non-increasing with respect to the radial direction |x|. Thus we have

f∗
ε,k(t) = f̃ε,k

((
t

ωn

) 1
n

)

≃ gε,k(t) :=

j∏
l=1

ℓl(
1

t
)−1

m∏
l=j+1

ℓl(
1

t
)−λl

k−1∏
l=j+1

ℓl(
1

t
)
− 1

q ℓk(
1

t
)
− 1

q
−ε

t
− 1

pχ(0,δ)(t) (3.9)

for all t > 0 with some small δ > 0. Then by (3.9), we have

∥fε,k∥Lp,q,λ1,··· ,λm
≤ C

(∫ ∞

0

(
t
1
p

m∏
l=1

ℓl(cl +
1

t
)λlgε,k(t)

)q
dt

t

) 1
q

≤ C

(∫ δ

0

k−1∏
l=1

ℓl(
1

t
)−1 ℓk(

1

t
)−1−qεdt

t

) 1
q

< +∞,

which implies fε,k ∈ Lp,q,λ1,··· ,λm(Rn), or equivalently, uε,k := Gn
p
∗ fε,k ∈ H

n
p

p,q,λ1,··· ,λm
(Rn). By

using L’Hopital’s rule, we see that there exists a small positive constant δ̃ < δ such that the
inequalities ∫ δ

t
s
− 1

p′ gε,k(s)ds ≃ ℓj+1(
1

t
)

m∏
l=j+1

ℓl(
1

t
)−λl

k−1∏
l=j+1

ℓl(
1

t
)
− 1

q ℓk(
1

t
)
− 1

q
−ε

(3.10)

hold for all 0 < t < δ̃. Thus by carrying out the same estimates in (3.8) and using (3.9) and
(3.10), for any measurable set E with |E| < δ̃, we have∫

E
|Gn

p
∗ fε,k(x)|rdx ≥ C

∫ |E|

0

(∫ δ

t
s
− 1

p′ gε,k(s)ds

)r

dt

≥ C

∫ |E|

0

ℓj+1(
1

t
)

m∏
l=j+1

ℓl(
1

t
)−λl

k−1∏
l=j+1

ℓl(
1

t
)
− 1

q ℓk(
1

t
)
− 1

q
−ε

r

dt

≥ C |E|

ℓj+1(
1

|E|
)

m∏
l=j+1

ℓl(
1

|E|
)−λl

k−1∏
l=j+1

ℓl(
1

|E|
)
− 1

q ℓk(
1

|E|
)
− 1

q
−ε

r

,

where the last inequality can be derived by noticing that the function

ℓj+1(
1

t
)

m∏
l=j+1

ℓl(
1

t
)−λl

k−1∏
l=j+1

ℓl(
1

t
)
− 1

q ℓk(
1

t
)
− 1

q
−ε

is decreasing for small t > 0.
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Next, assume the condition (C). In this case, we define functions fε,k(x) by

fε,k(x) :=

m∏
l=1

ℓl(
1

|x|
)−1

k∏
l=m+1

ℓl(
1

|x|
)
− 1

q ℓk+1(
1

|x|
)
− 1

q
−ε|x|−

n
p χ{x∈Rn ; |x|<δ}(x),

and we have

f∗
ε,k(t) = f̃ε,k

((
t

ωn

) 1
n

)
≃ gε,k(t) :=

m∏
l=1

ℓl(
1

t
)−1

k∏
l=m+1

ℓl(
1

t
)
− 1

q ℓk+1(
1

t
)
− 1

q
−ε

t
− 1

pχ(0,δ)(t)

(3.11)

for all t > 0 with some small δ > 0. Then by (3.11), we obtain

∥fε,k∥Lp,q,λ1,··· ,λm
≤ C

(∫ ∞

0

(
t
1
p

m∏
l=1

ℓl(cl +
1

t
)λlgε,k(t)

)q
dt

t

) 1
q

≤ C

(∫ δ

0

k∏
l=1

ℓl(
1

t
)−1ℓk+1(

1

t
)−1−qε dt

t

) 1
q

< +∞,

which implies fε,k ∈ Lp,q,λ1,··· ,λm(Rn), or equivalently, uε,k := Gn
p
∗ fε,k ∈ H

n
p

p,q,λ1,··· ,λm
(Rn).

Here, we see that there exists a small positive constant δ̃ < δ such that the inequalities∫ δ

t
s
− 1

p′ gε,k(s)ds ≃ ℓm+1(
1

t
)

k∏
l=m+1

ℓl(
1

t
)
− 1

q ℓk+1(
1

t
)
− 1

q
−ε

(3.12)

hold for all 0 < t < δ̃. Thus by carrying out the same estimates in (3.8) and using (3.11) and
(3.12), for any measurable set E with |E| < δ̃, we have∫

E
|Gn

p
∗ fε,k(x)|rdx ≥ C

∫ |E|

0

(∫ δ

t
s
− 1

p′ gε,k(s)ds

)r

dt

≥ C

∫ |E|

0

(
ℓm+1(

1

t
)

k∏
l=m+1

ℓl(
1

t
)
− 1

q ℓk+1(
1

t
)
− 1

q
−ε

)r

dt

≥ C |E|

(
ℓm+1(

1

|E|
)

k∏
l=m+1

ℓl(
1

|E|
)
− 1

q ℓk+1(
1

|E|
)
− 1

q
−ε

)r

,

where the last inequality can be derived by noticing that the function

ℓm+1(
1

t
)

k∏
l=m+1

ℓl(
1

t
)
− 1

q ℓk+1(
1

t
)
− 1

q
−ε

is decreasing for small t > 0.
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We proceed to the case q = ∞. First, assume the condition (A). However, this case can be
treated in a same way as the case q < ∞ with the condition (A). Therefore, we omit it.

Next, assume the condition (B). In this case, we define a function f0(x) by

f0(x) :=

j∏
l=1

ℓl(
1

|x|
)−1

m∏
l=j+1

ℓl(
1

|x|
)−λl |x|−

n
p χ{x∈Rn ; |x|<δ}(x),

where δ > 0 will be taken small enough later, and we have

f∗
0 (t) = f̃0

((
t

ωn

) 1
n

)
≃ g0(t) :=

j∏
l=1

ℓl(
1

t
)−1

m∏
l=j+1

ℓl(
1

t
)−λl t

− 1
pχ(0,δ)(t) (3.13)

for all t > 0 with some small δ > 0. Then by (3.13), we obtain f0 ∈ Lp,∞,λ1,··· ,λm(Rn), or

equivalently, u0 := Gn
p
∗ f0 ∈ H

n
p

p,∞,λ1,··· ,λm
(Rn). Here, we see that there exists a small positive

constant δ̃ < δ such that the inequalities∫ δ

t
s
− 1

p′ g0(s)ds ≃ ℓj+1(
1

t
)

m∏
l=j+1

ℓl(
1

t
)−λl

hold for all 0 < t < δ̃. Thus by carrying out the same estimates in (3.8), for any measurable set
E with |E| < δ̃, we have∫

E
|Gn

p
∗ f0(x)|rdx ≥ C

∫ |E|

0

(∫ δ

t
s
− 1

p′ g0(s)ds

)r

dt

≥ C

∫ |E|

0

ℓj+1(
1

t
)

m∏
l=j+1

ℓl(
1

t
)−λl

r

dt ≥ C |E|

ℓj+1(
1

|E|
)

m∏
l=j+1

ℓl(
1

|E|
)−λl

r

.

Finally, assume the condition (C). In this case, we define a function f0(x) by

f0(x) :=

m∏
l=1

ℓl(
1

|x|
)−1|x|−

n
p χ{x∈Rn ; |x|<δ}(x),

where δ > 0 will be taken small enough later, and we have

f∗
0 (t) = f̃0

((
t

ωn

) 1
n

)
≃ g0(t) :=

m∏
l=1

ℓl(
1

t
)−1t

− 1
pχ(0,δ)(t) (3.14)

for all t > 0 with some small δ > 0. Then by (3.14), we obtain f0 ∈ Lp,∞,λ1,··· ,λm(Rn), or

equivalently, u0 := Gn
p
∗ f0 ∈ H

n
p

p,∞,λ1,··· ,λm
(Rn). Here, we see that there exists a small positive

constant δ̃ < δ such that the inequalities

∫ δ

t
s
− 1

p′ g0(s)ds ≃ ℓm+1(
1

t
) hold for all 0 < t < δ̃.
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Therefore, by carrying out the same estimates in (3.8), for any measurable set E with |E| < δ̃,
we have∫

E
|Gn

p
∗ f0(x)|rdx ≥ C

∫ |E|

0

(∫ δ

t
s
− 1

p′ g0(s)ds

)r

dt ≥ C

∫ |E|

0
ℓm+1(

1

t
)rdt ≥ C|E| ℓm+1(

1

|E|
)r.

Thus we complete the proof of Theorem 1.6.
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