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Abstract 
 

Hyperthermia therapy attracts attension as a low-inversive target treatment for deep-positioned cancer. One of the 
hyperthermia therapies is hgh-frequency induction heating type by using nano-mgnetic materials and magnetic implants. A 
tumor with injected magnetic materials is heated by hysteresis loss and eddy-current loss under high frequency magnetic fields 
with a few handred kHz and a few mT. To generate magnetic fields at the deep position of body, we proposed double pancake 
type exciting system that consists with two flat coils at both sides of body. This paper discusses a wireless exciting system to 
generate AC magnetic fields rather than transmit energy to load. The experimantal results proved that a wireless transmission 
enables us to excite two pancake coils and generate magnetic fields in deep position like series-connected coils. 
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1 INTRODUCTION 
 

Hyperthermia therapy is a low-inversive target treatment that 
carries out apoptosis or necrosis on cancer tumor[1]. The 
tumor with injected magnetic materials can be heated by 
hysteresis loss and eddy-current loss under high frequency 
magnetic fields with more than 200 kHz×mT[2-4]. There 
are two types of applicators (exciting coil), solenoidal coil 
and flat coil to generate magnetic fields for hyperthermia. In 
the previous coil type, a body is located inside of the 
exciting coil. The magnitude of magnetic fields is relatively 
uniform at both surface and deep position of body. But the 
size of coil and an apparent power capacity become large. 
On the other hand, the flat coil is located on the surface of 
body and the structure does not depend on the size of body. 
However the magnitude of magnetic fields decreases rapidly 
with increasing the distance from a coil  
 
We proposed the double pancake type exciting system with 
two flat coils sandwiching body. The exciting system does 
not restrict flexibility of a flat coil and improves the 
attenuation of magnetic fields far from an exciting coil. But 
two pancake coils installed separately should be series- 
connected in the situation where huge current flows. We 
applied wireless power transfer system to the excitation of 
double pancake coils, that is, one is the exciting coil and the 
other is induced coil. Two coils are connected by magnetic 
couple and without physical connection. We discussed the 

analysis and characteristics of the system based on the 
equivalent circuit and examined the magnetic fields inside of 
both pancake coils for hyperthermia application.  
 

2 DOUBLE PANCAKE TYPE APPLICATOR AND 
WIRELESS TRANSMISSION 

 
2.1 Applicator System 
 
An applicator is installed outside of body to heat magnetic 
implant and magnetic particles based on eddy currents and 
hysteresis losses. We introduce the double pancake exciting 
system with two flat spiral coils as shown in Figure 1. Two 
coils sandwiches a body and generates magnetic fields on 
both upper and lower sides. The distribution becomes flat 
and smooth near the center of two coils (deep position). 
Both coils are series-connected to flow current with the 
same frequency and phase, then the exciting power source 
needs 2-4 times apparent power as much as a single coil. 
The connection cable among two coils increases inductance 
and losses. Furthermore, the arrangement brings a problem 
to cooling mechanism and installation of patient.  
 
We apply a wireless transmission system to the excitation of 
double pancake coils[5]. One of pancake coils operates as 
exciting coil and current is induced on the other coil. Figure 
2 show the outline of applicator with double pancake coils 
by a wireless transmission system. The upper coil with series 



capacitor is connected to a high frequency power source 
directly and the lower pancake coil is connected to a 
resonance capacitor. Both coils are connected by magnetic 
coupling. The coupling condition depending upon the 
distance between two pancake coils remarkably affects the 
effect of wireless transmission. 
 
2.2 Equivalent Circuit and Parameters 
 
We derive the equivalent circuit in order to analysis the 
performance of the pancake coils with wireless transmission 
and estimate the circuit parameters [6]. When an exciting 
frequency is about some hundred kHz, we neglect the 
displacement currents and consider only the magnetic 
coupling between coils. Figure 3(a) shows the equivalent 
circuit connected with resonance capacitors. The primary 
side is the exciting part and the secondary side is the induced 
part. The applicator system has no load but there are losses 

on coils, capacitors, and connectors. The resistances r1 and 
r2 express all losses on the exciting and induced circuits. 
Figure 3(b) shows the equivalent circuit for deriving 
analytical equation. Two series-resonance circuits (L1-C1, 
L2-C2) have the same resonance frequency ω0 expressed as, 

 
.
               

(1) 

The mutual inductance M is expressed as, 
 

,  
                     (2)

 
where k shows the magnetic coupling factor between two 
pancake coils. The factor k of the applicator is estimated as 

0.01< k < 0.1 .                      (3) 
The self-inductances L1, L2 and the mutual inductance M are 
derived as a spiral coil is modeled as a flat ring coil as 
shown in Figure 4. The ring coils are connected in series. 
The voltage on the pancake coil with a current i is, 

ｖ=  d/dt(L1 i+m21 i+m31 i+m41 i+m51 i) 
 + d/dt(L2 i+m12 i+m32 i+m42 i+m52 i) 

     + d/dt(L3 i+m13 i+m23 i+m43 i+m53 i) 
  + d/dt(L4 i+m14 i+m24 i+m34 i+m54 i) 

       + d/dt(L5 i+m15 i+m25 i+m35 i+m45 i) 
       = L di / dt ,                            (4) 

where Li is self-inductance of the i-th ring coil and mij is 
mutual inductance between the i- and j-th ring coils. Then, 
the self-inductance L of a pancake coil is, 

   L= L1+ L2+ L3+ L4+ L5+ 2(m21+m31 +m41 + m51 
+ m32+ m42+ m52+ m43+ m53+ m54),            (5)           

where mij = mji . By the same process, the voltage on the i-th 
ring coil of a pancake coil vi is induced by another pancake 
coil with current i2 is, 

vi  = d/dt(m’1i i2+m’2i i2+m’3i i2+m’4i i2+m’5i i2)   
= (m’1i+m’2i+m’3i+m’4i+m’5i) di2/dt=Mi di2/dt      (6) 
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Figure 1. Double pancake type applicator. 
 

(a) Equivalent circuit 
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Figure 3. Equivalent circuit of the applicator system. 
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where m’ji is a mutual inductance between the i- and j-th ring 
coil at each pancake coil, and Mi is a mutual inductance 
between the i-th ring coil and another pancale coil. Then, the 
mutual inductance betwen two pancake coils is derived as, 

       M =ΣMi = Σm’ii + Σ2m’ij (i>j)         (7) 

A self-inductance of a ring coil and a mutual inductance 
between two ring coils are given by, 

)(75.1)8ln(

4
2)8ln(

0
0

0

0
0

μμμ

μμ

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

⎭
⎬
⎫

⎩
⎨
⎧

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

s

s
i

r
aa

r
aaL

Q

             
 (8) 

m ab
k

k K k
k

E kij o= − −μ {( ) ( ) ( )}2 2           (9) 

where the parameters is shown in Figure 4.  
a, b ; radius of ring coil,  c ; distance of the pancake coil， 

 r0  ; radius of wire,  μs ; permeability of conductor, 
 K(k) ,Ｅ(k): the first and secondary elliptical functions， 
 k : k ab a b c2 2 24= + +/ {( ) } . 

Table 2 shows the comparison of self- and mutual 
inductances of the pancake coil in Table 2. The pancake coil  
 

Table 1. Parameters of pancake coils                                         
Unit: mm 

Ring coils No.1 No.2 No.3 No.4 No.5
ai, bi  70 90 120 145 170

r0 5 5 5 5 5
Distance of pancake coil, c 280 

 
Table 2. Inductances of pancake coils  

 Calc. Exp. 

Self-inductance L1, L2 (μH) 6.02 6.44 
5.89 

Mutual inductance M (μH) 0.383 0.407 
Coupling factor  k 0.064 0.066 

has only 5 turns coils, then the terminal condition and the 
variation of the shape affects inductance seriously. 
 
The purpose of a hyperthermia system is to generate 
magnetic fields, then there is no power consumption. 
Actually the equivalent resistances r1, r2 in Figure 3 exist on 
coils, capacitors, and connections. We estimated Q-values 
and equivalent resistances by measuring the half band of the 
resonance characteristics. When the frequency ω01 and ω02 is 
on the 1 2/ of the peak value, the Q-values and equivalent 
resistances are expressed as, 

Q =
−
ω

ω ω
0

02 01

                    (10) 

r L
Q

=
ω 0                          (11) 

 
Table 3. Q-values and equivalent resistances.  

 
Exciting side 

(primary) 
Induced side 
(secondary)

Capacitor C1,C2 (μF) 0.29 0.29 
Inductance L1, L2 (μH) 6.44 5.88 
Q-value  Q1 , Q2 366 471 
Resistance r1 , r2  (mΩ) 12.9  9.5 

 
2.3 Analysis of Equivalent Circuit 
 
When the phasor theory is applied to the equivalent circuit in 
Figure 3(b), the primary and secondary currents I

・

1, I
・

2 and 
the phases θ1, θ2are given by, 
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The amplitude ratio of |I2/I1| and the phase θ2 is derived by 
transforming Eq.(15) , 
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Figure 4. Calculation of self and mutual inductances. 
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2.4 Characteristics of Model Circuit 
 
According to Eqs. (12)-(17), the frequency characteristics of 
currents and phase on the exciting and induced circuit are 
shown in Figure 5. We have two resonance frequencies (ω1 
and ω2). The resonance frequency of the L-C circuit by Eq. 
(1) is between these frequencies. The performance depends 
on the mutual inductance M. Figure 5(b) indicates the phase 
difference between the exciting and induced currents is 
approximately π at the frequency ω1, and 2π at ω2. The 
currents I1 and I2 flow so that the magnetic fields act as 
addition at ω1. On the contrary, the magnetic fields induced 
by two pancake coils are canceled mutually at ω2. 

2.5 Analysis of Magnetic Fields 
 
We discuss the magnetic fields generated by two pancake 
coils. The distribution of the magnetic flux density B(z,ωt) 
on z-axis is shown in Figure 6(a) as the frequency is at the 
lower frequency ω1. As the phase difference of the currents 
is approximately π at ω1, the magnetic fields by two pancake 
coils generate on an in-phase condition. The fields are 
simultaneously added at the area of two pancake coils. On 
the contrary, two peak values of the magnetic fields are 
shifted by the phase π at the upper frequency ω2. The 
maximum of magnetic fields along z-axis is shown in Figure 
6(b). For comparison, the distribution generated by the 
single pancake coil is also drawn. We revealed that the 
magnetic fields are two times as large as a single pancake 
coil and the distribution is smooth on the center.  

 
3 EXPERIMENRAL RESULTS ON APPLICATOR 

 
We built up the model of pancake coils as shown in Figure 7. 
The scale of the testing applicator is almost the same as that 
for the medical equipment for human body as shown in 
Table 1. The pancake coil with 5 turns is made from Litz 
wire with about 6,000 wires of 60 μm diameter. In the 
experiment, the maximum current is set up to about 100 Ap 
because there is no compulsory cooling. The upper coil is 

114        116         118         120        122         124        126        128
Frequency  f [kHz]

1ω 2ω

I1 I2

(a) Exciting and induced currents, I1, I2  

114        116         118         120        122         124        126        128

(b) Phase characteristics, θ1 and θ2  
Figure 5. Frequency characteristics of double pancake coil.

 

 
        (a) Magnetic field density, B(z, ωt)  

  
(b) Maximum of magnetic fields on z-axis 

Figure 6. Distribution of magnetic fields on z-axis. 



exciting side (primary) and the lower coil is induced side 
(secondary).  Each coil has capacitor specified for high 
frequency operation of some hundred kHz. Small capacitors 
are connected in parallel to adjust the difference of two 
resonance frequencies due to the disturbance of inductances 
and capacitor. An exciting electric source is sinusoidal and 
the maximum capacity is 75 Vp and 4 Ap. The matching 
transformer with the turn ratio 20:1 is connected between the 
source and exciting coil.  
 
Figure 8 shows the frequency characteristics of exciting and 
induced currents I1 and I2 on the experiment setup as shown 
in Figure 7. We can observe two resonance peaks on both 
side of the L-C circuit resonance frequency ω0 (about 113 
kHz). It is remarkable point that the exciting and the induced 
currents have the same value near two resonance points. 
Even if the current on the secondary coil is induced by the 
wireless transmission, we could obtain the magnetic fields 
generated by the excitation of both pancake coils 
 
We measured the distribution of magnetic flux density on the 
area inside of two pancake coils. The search coil with the a 
cross section 10 mm2 is used for measuring the magnetic 
field Bz on z- and r-axis of the pancake coil. The exciting 
currents are 25, 50, and 100 Ap and the distance of the 
pancake coils is 280 mm. Figure 9 shows the distribution of 
the measured magnetic fields Bz at the frequency of ω1 in 

Figure 5. The symmetry r-axis distribution clarifies the same 
value of currents on the exciting and induced pancakes. The 
magnetic fields on the center of the applicator is about 1.4 
mT at the current 100 A. At the rating current, 400 A of the 
coil with cooling system, we estimate the magnetic fields, 
5.6 mT. The product of frequency and magnetic field is 
about 630 kHz×mT. The important points are that the 
distribution on the center far from the coil is smooth and the 
magnitude is only about 0.56 comparing with the position of 
100 mm. The smooth distribution of magnetic fields on the 
center means that it is easy to install heating implants in 

(a) Distribution on z-axis 

(b) Distribution on r-axis 
Figure 9. Distribution of magnetic flux density inside of 

the applicator at the frequency ω1. 

Figure 10. Comparisons of magnetic flux distribution 
inside of the applicator at the frequencies, ω1 and ω2. 
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Figure 7. Setup of experiment equipment 

 
Figure 8. Frequency characteristics of currents I1 and I2 

Frequency ω1



order to control and keep a quantity of heat. 
 
Figure 10 shows the difference of magnetic fields at the 
resonance frequencies, ω1 and ω2. The currents at both 
pancake coils have the same amplitudes as shown in Figure 
8. At the low resonance frequency ω1, the currents at both 
pancake coils generate the addition of magnetic fields 
because of the same phase. On the contrary, the currents at 
both pancake coils generate the subtraction of magnetic 
fields at the upper resonance frequency ω2.  
 

4 CONCLUSIONS 
 
The applicator system composed of double pancake coils is 
discussed to realize hyperthermia treatment at a deep 
position of body. The wireless transmission system enables 
us to remove the connection of two exciting coils and to give 
flexibility of the arrangement of coils. Even if only one 
pancake coil is excited by the external electric source, the 
same distribution of magnetic fields by both coils was 
realized according to the analytical calculation and the 
experimental result. 
 

5 ACKNOLEDGEMENTS 
 

A part of the research is supported by the 2011year aid of 
Ministry of International Trade and Industry in Japan(Ehime 
industrial development foundation，7205000260). 
 

REFERENCES 
 

[1] Y.Yamazaki I.Nagano, S.Yagitani, T.Maeda, K.Igarashi, 
K.Terai, H.Nagae, and K. Tazawa, “Heating 
characteristics of dextran magnetite under a strong AC 
magnetic field created by a portable magnetic generator”, 
JSAEM Studies in Applied Electromagnetics and 
Mechanics, 14, pp.241-248, 2003. 

[2] I. Tohnai, Y. Goto, Y. Hayashi, M. Ueda, T. Kobayashi, 
and M. Matsui, “Preoperative thermochemotherapy of 
oral cancer using magnetic induction hyperthermia 
(Implant Heating System: HIS)”, Int. J. Hyperthermia, 
Vol.12, pp.37-47, 1996. 

[3] R. Zuchini, et. al., “Electromagnetic thermotherapy using 
needles for hepatoma treatment”, The Journal of Cancer 
Surgery, vol. 37, pp. 604-610, 2011. 

[4] T.Maruyama, T.Takura, F.Sato, H.Matsuki, S.Aiba, and 
T.Sato, “Examination of soft-heating hyperthermia 
exciting composition with a pane type spiral coil”, J. of 
Magnetic Society in Japan, Vol.31, pp.380-392, 2007. 

[5] A.Kurs, A.Karalis, R.Moffatt, J. D.Joannopoulos, P. 
Fisher, and M.Soljačić，”Wireless Power Transfer via 
Strongly Coupled Magnetic Resonances”, Science, 
Vol. 317, No. 5834, pp.83-86, 2007. 

[6] Sasada,”Analysis of a mid-range energy transfer circuit 
based on an equivalent circuit model”, Digests of the 35 
annual conference on magnetics in Japan, 29aC-1, p242, 
2011. 

Biographies 
 
Sotoshi YAMADA  was received the B.E. degree and the 
M.E. degree from the Department of Electrical Engineering, 
Kanazawa University, Kanazawa, Japan, in 1972 and 1974 
respectively. He received the Dr.Eng. from Kyushu 
University, Fukuoka, Japan, in 1985. He is professor at 
Laboratory of Magnetic Field Control and Applications from 
1992 to 2001, and at Institute of Nature and Environmental 
Engineering, Kanazawa University from 2002 to now. He 
has been engaged in research on nondestructive testing by 
giant-magnetoresistance sensor, power magnetic devices, 
numerical electromagnetic field calculation, biomagnetics, 
and etc. 
 
Yoshio IKEHATA  is engineering staff at Institute of Nature 
and Environmental Engineering, Kanazawa University from 
2008 to now. He has been engaged in development on 
electric devices, control device, induction heating type 
hyperthermia system and etc. 
 
Toshiyuki UENO  was received the BE, ME, and the Dr. 
Eng. degree in mechanical engineering from Tohoku 
University, Japan, in 1995, 1997, and 2001, respectively. He 
was research associate in Keio University in 2002 and a 
researcher of Japan Society for the Promotion of Science 
from 2003 to 2005. Since 2009, he has been associate 
professor in Graduate School of Nature Science and 
Technology, Kanazawa University. His research interest 
includes magnetic actuators and energy harvesting devices 
using magnetostrictive materials and their applications for 
industrial and medical fields. 
 
Hideo NAGAE was received the BE degree from the 
Department of Veterinary Medicine, Gifu University in 1969, 
and acquired the veterinary certificate. He worked at Meito 
Sangyo Co. Ltd, Nagoya Laboratory from 1969 to 2005, and 
has researched with Aichi Cancer Center, Kyoto University, 
National Cancer Center, and others. He has research and 
developed Resovist®, as MRI contrast agent. From 2005 to 
2012, he has been coordinator in Organization of Frontier 
Science and Innovation, Kanazawa University, and has 
researched induction heating type hyperthermia system. 
 
 
 


