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Manipulability Measures taking Necessary Joint Torques
for Grasping into consideration

Tetsuyou Watanabe

Abstract— This paper presents new manipulability measures
to evaluate how much easily the robot manipulates the grasped
object, simultaneously taking how much magnitude of joint
torque we need to keep grasping into consideration. For the
purpose, we use operation range. The operation range is
for actuator attached to every joint of robot and provides
generable joint torque and velocity and their relation (between
generating torque/velocity and addable velocity/torque). While
we introduced a manipulability measure using the operation
range in our previous paper, it was for a limited class due to
large computational effort and we could not evaluate whole
space of object velocity and could not consider whole space
of external wrench. This paper proposes new manipulability
measures which can evaluate whole space of object velocity,
taking the effect of external wrench in whole space into
consideration.

I. INTRODUCTION

Manipulability is a well known concept to evaluate the
performance of robotic manipulator [1]. For a single-arm
manipulator, it is defined as the set of generable endeffector
velocity in the task space when the set of generable joint
velocity is given. When the given set of joint velocity is a
unit ball, the set of endeffector velocity becomes an ellipsoid.
The ellipsoid is called manipulability ellipsoid. The volume
of the ellipsoid can be regarded as a quality measure to
evaluate the performance in velocity domain. It is called
manipulability measure. Based on the manipulability, many
quality measures such as condition number are proposed [1].

This concept can be extended to the general constrain-
ing system such as a robotic hand [2]–[6]. In a general
constraining system, object velocity is evaluated instead of
endeffector velocity. For a dual-arm system, Chiacchio et
al. [2] discussed manipulability. Bicchi et al. [3] analyzed
manipulability for general grasping system including whole
arm manipulation system. After that, Bicchi et al. [4], Wen
et al. [5], and Park et al. [6] analyzed manipulability for
general constraining systems with underactuated joints.

In a grasping system, grasping itself is a key issue.
Therefore, if evaluating manipulability, we need to take
whether being able to keep grasping or not into consideration
simultaneously. However, the above researches did not take
it into consideration by assuming force closure grasp (force
closure is defined that any force and moment in any direction
can be applied to the object). As a consequence, we could
not take the effects of friction, object gravity, contact state,
and so on into consideration. For example, the evaluation
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when grasping a light object is the same as the evaluation
when grasping a heavy object. It can be said that the above
analyses were not for a grasping system but for closed-chain
manipulators/robots.

To cope with the issue, we presented a method to analyze
a manipulability in the previous paper [7]. However, the
obtained results were limited. In this paper, we present new
manipulability measures for grasping system. Here are the
main contributions of this paper (especially comparing with
the previous paper [7]).
1) Required external wrench set taking external wrench
in any direction into consideration: In order to take the
effect of external wrench exerted on the object (for example,
gravitational force) into consideration, we derive required
joint torque to balance the external wrench and keep stable
grasping. For the purpose, we introduce required external
wrench set (REWS) [8], [9], which is defined as a set of
external wrench required to be balanced. We suppose that
the grasp is stable if any arbitrary external wrench contained
in REWS can be balanced. In the previous paper, we used
REWS expressed as a convex polyhedron. However, there
are some cases when REWS cannot be expressed by a
convex polyhedron. Suppose the case, for example, when
external wrench in any arbitrary direction can be exerted
on the object. REWS should be expressed by an ellipsoid
or hypersphere. We can approximate the set by a convex
polyhedron, but it is difficult in a high dimensional space,
since a large number of vertices or faces are needed. This
paper presents a way to deal with REWS expressed by not
only a convex polyhedron but also an ellipsoid, and to derive
minimum required joint torques for the stable grasping.
2) Not-convex operation range: Based on the minimum
required joint torques for stable grasping, we derive max-
imum usable joint velocities. For the purpose, we use an
operation range (shown in Fig.1) of actuator attached to every
joint of robot (operation range is originally used for motor
selection). The operation range provides not only information
about how magnitudes of torque and velocity the actuator can
stably generate, but also the relationship between generating
velocity/torque and addable torque/velocity. The rigid line
in Fig.1 shows the operation range derived by supposing
to control the motor with nominal voltage. There are some
cases when we can get only the information about power,
maximum generable velocity and torques. In such a case,
we will derive the operation range by using the relationship;
power = torque × velocity (see the area surrounded by the
dot line in Fig.1). The derived operation range is not always
convex. The previous paper could deal with only convex
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Fig. 1. Operation range of torque and velocity (maxon DC motor Amax32
(20W) with gear (ratio: 23:1));Area of rigid line: supposing to control with
nominal voltage, Area of dot line: supposing the case when power and
maximum torque and velocity are only given and 70 % of the power and
90 % of the maximum torque and velocity are used.
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Fig. 2. Target System

operation range. In this paper, we present a way to deal with
a not-convex operation range.
3) Manipulability measure to evaluate the whole space
of object velocity: Using the derived maximum usable
joint velocity, we derive the generable object velocity. The
previous paper evaluated a limited class of object velocity
due to the high computational complexity. We needed to
deal with a lot of variables in a quite high dimensional
space. Therefore, its application fields were very limited.
For example, it is hard to apply the previous approach to
motion planning, especially on line. This paper presents
manipulability measures which can be more easily derived
and can evaluate the whole space of the object velocity. We
focus on the magnitude of the object velocity. We derive the
maximum object velocity available in any direction, and the
maximum generable object velocity and its direction. The
former one corresponds to the radius of the hypersphere
inscribed in the set of the generable object velocity while
the latter one corresponds to the radius of the hypersphere
circumscribed in the set of the generable object velocity.

II. PROBLEM DEFINITION

A. Target system

The target system is shown in Fig.2. In this paper, we
consider a general grasping system where an arbitrary shaped
rigid object is grasped by N fingers of a robotic hand. The
nomenclatures are listed at appendix. We define that the
contact state is any of the following two states: 1) F-point :
the contact point with friction, 2) N-point : the contact point
without friction. Translational force in any direction can be
applied to the object at F-point under the frictional condition
while only normal force can be applied to the object at N-
point.

We note that every contact position, every contact state,
and every frictional coefficient are all given. Note also
that the absolute magnitude of minimum generable joint
torque/velocity is equal to the absolute magnitude of maxi-
mum generable joint torque/velocity.

B. Problem Definition

Here, we give several definitions and define the problem
handled in this paper.
Joint Torque-velocity Pair Set (TVS): The set of generable
joint torque and velocity at each joint, given by the cor-
responding actuator and gear specifications, is named joint
torque-velocity pair set (TVS).

The specification for actuators (operation range) is usually
given with respect to the absolute values of torque and
velocity. We express generable maximum absolute values
of joint torque and velocity with |τijmax

| and |q̇ijmax
|.

Let |q̇ijUmax
|(≥ 0) be the usable maximum absolute value

of joint velocity, determined by currently generating joint
torque. Similarly, let |τijUmax

| (≥ 0) be the usable maxi-
mum absolute value of joint torque, determined by currently
generating joint velocity. We describe this relationship with
the following functions.

|q̇ijUmax
| = ξτ→q̇

ij (|τij |), (1)

|τijUmax
| = ξq̇→τ

ij (|q̇ij |) = (ξτ→q̇
ij )−1(|q̇ij |). (2)

This function ξτ→q̇
ij can be derived from the actuator and

gear specifications. For example, if using DC motor under the
constant nominal voltage, ξτ→q̇

ij can be derived by utilizing
maximum speed under the voltage, maximum torque, and
torque-speed constant. An example of TVS is the area
surrounded by the rigid lines in Fig.1, and ξτ→q̇

ij gives the
rigid line. In this case, the TVS is convex. If we can not get
the information about torque-speed constant, we use power.
Let ψij be the constant power for the evaluation. Then, ξτ→q̇

ij

can be expressed by

ξτ→q̇
ij =

{
ψij/|τij | ψij ≤ |τij ||q̇ijmax

|
|q̇ijmax

| otherwise
. (3)

An example of TVS derived by this way is the area sur-
rounded by the dot lines in Fig.1.

External wrench such as gravitational force is exerted on
the object. In order to preserve stable grasping, we need
to balance such kinds of external wrenches. To consider the
effect of such kinds of external wrenches, we define required
external wrench set:
Required External Wrench Set (REWS): The set of
object’s external wrench required to be balanced is named
required external wrench set (REWS). We suppose that the
grasp is stable if any arbitrary external wrench contained in
REWS can be balanced.

REWS is assumed to be given by convex polyhedron or
ellipsoid;

Spol
rew={wex|wex = Σnrew

i=1 λiwvi
,Σnrew

i=1 λi = 1, λi ≥ 0}, (4)

Selip
rew={wex|wT

exM
T
wMwwex ≤ 1}. (5)



Here, wex denotes external wrench, wvi
denotes ith vertex

of the convex polyhedron, nrew denotes the number of the
vertices, Mw denotes a weight matrix, for example, to take
the difference between the units of force and moment into
consideration, or to normalize the magnitude of the external
wrench. λi is a parameter to express the convex polyhedron.
Criterion: In this paper, we consider the following crite-
ria: αall

max: the maximum magnitude of the object velocity
available in any arbitrary direction; αmax: the maximum
magnitude of the generable object velocity.
αall
max expresses object velocity usable in any direction. It

is useful, for example, when designing controller or when
we do not know which direction of object velocity we will
need. We can regard it as the distance from a kind of singular
configuration where object velocity in a certain direction
is not available. On the other hand, αmax is to evaluate
which direction we can generate maximum object velocity
and its magnitude. αall

max/αmax can be used to evaluate how
uniformly we can generate the object velocity.

Then, we define the following problem:
Problem : Suppose that TVS and REWS are given. In
this case, find αall

max and αmax under the condition that any
external wrench contained in REWS can be balanced.

III. MANIPULABILITY MEASURES BASED ON TVS

First, we consider kinematics, statics, and frictional con-
straints. Then, we derive new manipulability measures.

A. Kinematics

With respect to contact point Cij , the relationship between
the velocities of pCFij

and qi, and the relationship between
the velocities of pCOij

and r are given by

ṗCFij
= J ij q̇i, ṗCOij

= GT
ij ṙ, (6)

where J ij∈ Rd×Mi denotes Jacobian matrix and GT
ij =[

I −[(pCOij
− po)×]

]
∈ Rd×D. Here, I represents an

identity matrix, [a×] represents a skew symmetric matrix
equivalent to the cross product operation ([ a × ]b = a×b).

The relationship between ṗCFij
and ṗCOij

is written by

Hij(ṗCFij
− ṗCOij

) = o, Hij =

{
I for F-point
nT

ij for N-point
,

where o denotes a zero vector.
Then, using the following matrices: J ix = col

[
J ij

] ∈
RLid×Mi , Hi = diag [Hij ] ∈ RLci×Lid, Gi =[
Gi1 Gi2 · · · GiLi

] ∈ RD×Lid, JHi = HiJ i ∈
RLci×Mi , GHi = GiH

T
i ∈ RD×Lci , we aggregate the re-

lationships with respect to every finger and get the following
contact velocity:

ṗCi = JHiq̇i = GT
Hiṙ. (7)

Using the following matrices: ṗC = col[ṗCi] ∈
RLc , JH = diag [JHi] ∈ RLc×M , GH =[
GH1 GH2 · · · GHN

] ∈ RD×Lc , we aggregate the
relationships for all fingers and obtain

ṗC = JH q̇ = GT
H ṙ. (8)

B. Statics and frictional constraints

From (8) and the principle of virtual work, considering
gravitational term of robot, the following relation is obtained

[
τ
−w

]
=

[
JT

H

−GH

]
f +

[
gq

o

]
. (9)

where gq denotes the gravitational term of robot and gq=

∂
∑

i,j Uij
T
/∂q where Uij is the potential energy of the jth

link of the ith finger due to the gravity force.
Next, we consider frictional constraints. At Cij which is

F-point, it can be written by

Ffij = {f ij | |T ijf ij |≤μijnfij , nfij ≥0}. (10)

At Cij which is N-point, it can be written by

Fnij = {nfij |nfij ≥ 0}. (11)

Aggregating for all contact points, we obtain

F = {f |f ij ∈ Ffij ,
∀Cijwhich is F-point,

nfij ∈ Fnij ,
∀Cijwhich is N-point}. (12)

C. New manipulability measures

Here, we present new manipulability measures based on
TVS. In order to reduce the computational effort, we take 3
steps to derive the measures. First, we derive minimum joint
torques required to balance any external wrench contained
in REWS. Next, from the derived minimum required joint
torques and TVS, we derive usable maximum joint velocities.
Lastly, we derive generable object velocity from the usable
maximum joint velocities.

We approximate the frictional constraint (10) with a nfric-
side convex polyhedral cone circumscribed in the friction
cone [10]. Then, (12) becomes

Flin = {f |V f ≤ o} (13)

where V ∈ RLv×Lc .
Step 1: We derive minimum required joint torque, |τijmr

|,
to balance any external wrench contained in REWS. First,
we consider the case when REWS is given as a convex
polyhedron Spol

rew. From (4), (9), (13), we can get |τijmr
|

by solving the following linear programming problem.

argmin
|τijmr |,fvι

Σi,j |τijmr
|

subject to |τijmr
| ≤ |τijmax

|(j = 1, · · · ,Mi, i = 1, · · · , N)

− τmr ≤ JT
Hfvι

+ gq ≤ τmr

V fvι
≤ o, GHfvι

= −wvι
(ι = 1, · · · , nrew) (14)

where τmr = col[|τijmr
|].

Next, we consider the case when REWS is given as a
ellipsoid Selip

rew . From (9) and (13), The conditions to balance



a certain external wrench ŵex = Mwwex can be written by

Aw1ŵex +Aw2kw +Aw3τmr ≤ bw, (15)

Aw1 =

⎡
⎣ −JT

H(MwGH)+

JT
H(MwGH)+

−V (MwGH)+)

⎤
⎦ ,

Aw2 =
[
(JT

HΞ)T (−JT
HΞ)T (V Ξ)T ,

]T
Aw3 =

[ −IT −IT OT
]T
, bw =

[ −gT
q gT

q oT
]T
,

where (MwGH)+ denotes the psedo-inverse matrix of
MwGH , Ξ denotes an orthogonal matrix whose columns
form bases of the null space of MwGH , and kw denotes an
arbitrary vector.

Now, we will consider the set (15) with respect to
[ŵT

ex τT
mr]

T . We transform the set (15) which is expressed
by H-representation [11] (intersection of half spaces) to its
V-representation (convex hull of points and directions).

{xw = ΣnAw
i=1 λixwvi, Σ

nAw
i=1 λi = 1, λi ≥ 0}

where xw =
[
ŵT

ex kT
w τT

mr

]T
, xwvi denotes the vertex

and nAw denotes the number of the vertices. We project
the set onto the space of [ŵT

ex τT
mr]

T by multiplying the

following matrix from the left side:

[
I O O
O O I

]
. After

that, we transform it to its H-representation.

Âw1ŵex + Âw3τmr ≤ b̂w (16)

Âw1, Âw3 and bw are matrices and vector resulted from the
transformation. Note that the above two transformations can
be done by cdd library [11].

Let Âw1 = col[âT
w1i ]. Here, we regard the set (16) as

the set for the ŵex space. Generally, the distance between
the origin and a hyperplan aTx = b in the space of x
(where a and b are constants) is given by b/|a|. Therefore,
to balance any arbitrary ŵex contained in REFS, namely
ŵex satisfying |ŵex| ≤ 1 (see (5)), τmr should hold the
following condition.

col[|âw1i |] + Âw3τmr ≤ b̂w.

Hence, we can get minimum required joint torque |τijmr
| by

solving the following linear programming problem.

argmin
|τijmr |

∑
i,j

|τijmr
|

subject to |τijmr
| ≤ |τijmax

|(j = 1, · · · ,Mi, i = 1, · · · , N)

col[|âw1i |] + Âw3τmr ≤ b̂w (17)

If we cannot get the solution at (14) or (17), αall
max = αmax =

0. Otherwise, we continue the following steps.
Step 2: Using the derived |τijmr

| and (1), we derive
maximum usable joint velocity |q̇ijUmax

|.
Step 3: The usable joint velocity set for every joint is
expressed by

{q̇ij = −η1|q̇ijUmax
|+ η2|q̇ijUmax

|, Σ2
k=1ηk = 1, ηk ≥ 0}

where ηk is a parameter to express the convex polyhedron.
The usable joint velocity vector set for every finger is given

by the direct sum of the usable joint velocity sets for all
joints of the finger. It can be expressed by

{q̇i = Σ2Mi

j=1ηj q̇ivj
, Σ2Mi

j=1ηj = 1, ηj ≥ 0}
where q̇ivj

denotes the vertex of the set. From this set and
(7), the generable contact velocity set is given by

{ṗCi = Σ2Mi

j=1ηjJHiq̇ivj
, Σ2Mi

j=1ηj = 1, ηj ≥ 0}. (18)

We transform this into its V-representation.

ApiṗCi ≤ bpi. (19)

where Api and bpi are the matrix and the vector resulted
from this transformation. Aggregating the relationship with
respect to all fingers, utilizing (8), we get

Âr
˙̂r ≤ br, (20)

where ˙̂r = M rṙ, Âr = ArM
−1
r , Ar = col

[
ApiG

T
Hi

]
,

br = col [bpi] and M r is the weight matrix, for example, to
take the difference of units into consideration. This set is the
convex polyhedron expressing the generable object velocity
set. Let Âr = col[âT

ri] and br = col[bri]. As mentioned the
above, the distance between the origin and the ith face of the
convex polyhedron is given by bri/|âri|. Then, αall

max can be
obtained by solving the following problem.

αall
max = min

i
bri/|âri|. (21)

αmax can be obtained by solving the following convex
quadratic programming problem.

α2
max = max

˙̂r

˙̂rT ˙̂r subject to Âr
˙̂r ≤ br (22)

Note that the ˙̂r providing αmax expresses the direction which
provide the maximum generable object velocity.

The alternative way to get αmax is as follows. We trans-
form (20) to its V-representation.

{ ˙̂r = ΣnAr
i=1 ηi

˙̂rvi, Σ
nAr
i=1 ηi = 1, ηi ≥ 0} (23)

where ˙̂rvi denotes the vertex and nAr denotes the number
of the vertices. Then, we can get αmax by

αall
max = max

i
| ˙̂rvi|. (24)

If we know the (23), we can also get the volume of generable
object velocity set by, for example, qhull [12].

IV. NUMERICAL EXAMPLES

In order to verify our approach, we show some numerical
examples. Fig.3 shows the target system. ΣR was placed
at the contact point between the object and the base in the
configuration shown in Fig.3. ΣO was placed at geometric
center of the object. The object was a ball with radius of
0.1[m]. The robotic hand was composed of 4 fingers which
had all the same structures and have 4 joints. The length of
every link was set to 0.1[m]. For the simplicity, we ignored
the mass of the link. The actuators attached to all joints
were all the same. A gear with reduction ratio of 1/23 was
attached on every actuator. Supposing all actuators had the



same TVS, we used the TVSs expressed by the rigid and
dot lines in Fig.1. The base positions of fingers were set to
[−0.1 − 0.05 0]T , [0.05 0.1 0]T , [0.05 0 0]T and [0.05 −
0.1 0]. We set nfric = 8 and μij = 0.3 for all F-points.

we considered the case shown in Fig.4 where the object
was moved in positive z direction by the robot hand. The
contact points on Fingers 1, 2 and 4 were set to be F-point.
The contact point on Finger 3 was set to be N-point.

The contact positions at the fingers at the initial state were
set to [−0.097 0 0.074]T , [0 0.097 0.13]T , [0.097 0 0.074]T ,
[0 −0.097 0.13]T . We used the following 2 kinds of REWSs.

Spol
rew = {wex|wex = [0 0 − 1 0 0 0]T }, (25)

Selip
rew = {wex|wT

exM
T
wMwwex ≤ 1},Mw=[I3×3 O3×3].

Here, in the setting of Spol
rew, we supposed that gravitational

force with the magnitude of 1[N] was exerted on the object
in z negative direction, while in the setting of Selip

rew , we
supposed that gravitational force with the magnitude of 1[N]
could be exerted on the object in any direction resulted from
arm motion. We set M r to normalize ṙ as follows:

M r =

[
I3×3 O3×3

O3×3 0.1I3×3

]
.

We computed αall
max and αmax when the object moved

from the initial state to the final state shown in Fig.4. Fig.5
shows the result. The horizontal axis denotes the z coordinate
of ΣO, and the vertical axis denotes αall

max or αmax. The rigid
line expresses the result when using Selip

rew and TVS expressed
by the rigid line shown in Fig.1, the dashed line expresses
the result when using Spol

rew and TVS expressed by the rigid
line shown in Fig.1, and the dot dashed line expresses the
result when using Selip

rew and TVS expressed by the dot line
shown in Fig.1.

From Fig.5, it can be seen that as the object moved
in positive z direction, αall

max gradually decreased. Around
the initial state, every finger (especially Fingers 1 and 3)
was in the state where large contact velocity and force in
any direction can be generated. We believe it is the reason
why αall

max was large around the initial state. Around the
final state, the elbow (third joint) of every finger (especially
Fingers 2 and 4) was extended. In this configuration, finger
can generate large contact force in the specified direction and
cannot in the other directions. It is the same as for contact
velocity. This is considered to be the reason why αall

max

was small around the final state. On the other side, αmax

gradually increased. Extending the fingers, the generable
object velocity in the specified direction became very large.

If comparing the case when using Spol
rew with the case when

using Selip
rew , The criteria for Selip

rew were smaller. If dealing
with external wrenches in all directions, we need larger joint
torques for stable grasping. This is one of the reasons.

If comparing the case when using TVS expressed by the
rigid line shown in Fig.1 with the case when using TVS
expressed by the dot line shown in Fig.1, The criteria for
the rigid line were larger. This is considered to be the result
that we mainly used the area of TVS where generable joint
velocity for the rigid line is larger.

Finger2

Finger1 Finger4

Finger3

Fig. 3. Target system in numerical examples
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In order to see the effect of friction, we computed when
changing the frictional coefficient; μij = 0.01, 0.1, 0.3.
We used Selip

rew . Fig.6 shows the result. With the increase
of the frictional coefficient, we can get larger αall

max and
αmax. When the frictional coefficient increases, the range
of applicable contact forces becomes large. Therefore, we
can balance external wrench with smaller joint torques, and
then generable object velocity became large.

Lastly, we discuss about computational effort. We used
linear and quadratic programming problems, which can be
solved by polynomial time algorithms, but transformation
from V/H-representation to H/V-representation cannot be
solved by polynomial time algorithms. Therefore, we discuss
using the computational time here. In this paper, we used
matlab (mathworks) for computation. The CPU of the used
PC was Intel Core2 Duo P8800 (@2.66GHz). The CPU time
to compute both αall

max and αmax was from 0.19 to 1.2[s]
(average:0.62[s]) when using Selip

rew and TVS expressed by the
rigid line in Fig.1, from 0.094 to 0.36[s] (average:0.18[s])
when using Spol

rew and TVS expressed by the rigid line in
Fig.1, and from 0.16 to 1.0[s] (average:0.62[s]) when using
Selip
rew and TVS expressed by the dot line in Fig.1.
Note that in our previous method [7], we needed 129[s]

of CPU time to compute the simplifier case where the object
is grasped by 2 fingers. Therefore, we can say that we could
largely reduce the computational efforts.

V. CONCLUSION

This paper presented new manipulability measures which
can take joint torques required for grasping into consider-
ation. First, we presented a way to derive the minimum
required joint torque for stable grasp, using required external
wrench set (REWS) given as not only a convex polyhedron
but also an ellipsoid. Then, we can take external wrench
which can be exerted in any direction into consideration.
Next, from the derived minimum required joint torque and
the joint torque-velocity pair set which provides the relation-
ship between generable joint torque and velocity, we derived
usable maximum joint velocity. We presented a way to deal
with a non-convex joint torque-velocity pair set. Lastly, we
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Fig. 5. New manipulability measures (αall
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the result when using Selip
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Fig. 6. New manipulability measures (αall
max, αmax) when changing the

frictional coefficient

derived generable object velocity from the usable maximum
joint velocity. The presented way can take the whole space of
the generable object velocity into consideration. The validity
of our approach was shown by numerical examples, which
also showed the proposed measures can include the effect of
friction.

APPENDIX

col A column vector or matrix formed by the following elements.
diag A block diagonal matrix.
N Number of fingers.
Mi Number of joints of the ith finger (i = 1, 2, · · · , N ).
Li Number of contact points on the ith finger.
M Number of total joints (= ΣN

i=1Mi).
L Number of total contact points (= ΣN

i=1Li) .
D 3/6 in 2/3 dimensional space.
d 2/3 in 2/3 dimensional space.
ΣR Reference coordinate frame.
ΣO Object coordinate frame fixed at the object.
τij The jth joint torque of the ith finger (j = 1, · · · ,Mi, i =

1, · · · , N ).
qij The jth joint angle of the ith finger (j = 1, · · · ,Mi, i =

1, · · · , N ).
|τijmax

| (≥ 0) Generable maximum absolute value of τij .
|q̇ijmax

| (≥ 0) Generable maximum absolute value of q̇ij .
|τijUmax

|(≥ 0) Usable maximum absolute value of τij determined by
currently generating q̇ij .

|q̇ijUmax
|(≥ 0) Usable maximum absolute value of q̇ij determined by
currently generating τij .

Spol
rew REWS given as a convex polyhedron.

Selip
rew REWS given as an ellipsoid.

w Resultant wrench applied to the object (∈ RD).
wex External wrench (∈ RD).
αall
max Maximum magnitude of the object velocity available in any

arbitrary direction.
αmax Maximum magnitude of the generable object velocity.
Cij The jth contact point of the ith finger (j = 1, · · · , Li, i =

1, · · · , N ).
ΣCFij

Coordinate frame fixed at the contact point on the finger
(corresponding to Cij ).

ΣCOij
Coordinate frame fixed at the contact point on the object
(corresponding to Cij ).

p
Iij

Position of the origin of ΣIij (I ∈ {CF , CO}) (∈ Rd).

qi = [qi1 qi2 · · · qiMi
]T (∈ RMi ).

r Position and orientation of ΣO (∈ RD).
p

O
Position of the origin of ΣO (∈ Rd).

nij Unit normal vector (directing to the inward of the object) at
Cij .

Lfi Number of F-points of the ith finger.
Lni Number of N-points of the ith finger.
Lci = Lfid+ Lni.
ṗCi = col[Hij ṗCFij

] = col[Hij ṗCOij
].

Lc = ΣN
i=1Lci.

ṗC = col[ṗCi](∈ RLc ).
q = col[qi] (∈ RM ).
τ = col[τij ] (∈ RM ).
f ij Contact force vector (∈ Rd).
f = col[Hijf ij ] ∈ RLc .
tkij

Unit tangential vector at Cij (k ∈ {1, 2}).
T ij = [t1ij t2ij ]

T (∈ Rd−1×d). [t1ij ]
T in 2 dimensional space.

μij Frictional coefficient at Cij .
nfij Normal force component of f ij (= nT

ijf ij ).
nfric Number of sides of frictional convex polyhedral cone.
Lv = nfricΣ

N
i=1Lfi +ΣN

i=1Lni.
|τijmr

| Absolute value of minimum required joint torque of jth joint
of ith finger for stable grasping.

τmr = col[|τijmr
|].
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