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Abstract— In this paper, we discuss the manipulation of
an object under hybrid active/passive closure. We show the
orthogonality between the directions of active and passive
force closures for general grasping systems. Based on the
orthogonality, we decompose the dynamics of grasping system
into the ”active part” and the ”passive part”. By using
the decomposition, we show that the grasped object can be
manipulated only by considering the dynamics of the active
part. We also consider how to determine the desired internal
forces in order to satisfy frictional constraints during the
manipulation. In order to verify the validity of our approach,
some simulation results are shown.

Index Terms— Active/Passive Force Closure, Manipulation,
Orthogonality, Grasping

I. INTRODUCTION

The force closure has been one of the important proper-
ties of grasping [1]. However, the force closure had been
interpreted by two ways [2]. One is that ” any arbitrary
force and moment can be applied to a grasped object by
fingers. ” and the other is that ” any arbitrary external
force and moment exerted on a grasped object can be
balanced without changing the pre-loaded joint torques and
the motion of the object can be completely constrained.”

The former concept corresponds to that fingers (limbs)
can move a grasped object in arbitrary directions. On the
other hand, the latter concept corresponds to the power
grasps [3] where fingers can grasp object stably without
changing the pre-loaded joint torques. In order to remove
the ambiguity of the definition, Yoshikawa [4] named the
former concept active force closure, and the latter concept
passive force closure.

Here, we can encounter many cases where a grasp-
ing system has both the active and the passive closure
properties. Yoshikawa [4] called such grasps as hybrid
active/passive-closure grasps. For the hybrid active/passive
closure properties included in many grasping systems, the
key issue is the orthogonality between the ”active” and
the ”passive” parts. While we introduced the orthogonality
between them [5], the orthogonality has been proven for a
limited class of grasping systems. Also, the control algo-
rithm for manipulating an object has never been considered.

In this paper, we show the orthogonality between the
active and the passive parts for general grasping systems.
Also, we propose a control algorithm for manipulation
of an object considering the hybrid active/passive closure

properties for general grasping systems. While our algo-
rithm can be applicable for general grasping systems, it
has the following merit; When controlling the motion of
the grasped object, our algorithm does not need to consider
the whole dynamics of the grasping systems. This is due to
the orthogonal property between the active and the passive
parts of the grasping system.

Previously, hybrid position/force control has been pro-
posed for several robot manipulators [6]. Our proposed
algorithm can include the conventional hybrid control
algorithm. However, the extension is not straightforward.
Different from the robot manipulators, a grasping system
has uncontrollable parts such as the passive part. Our pro-
posed control algorithm can deal with such uncontrollable
parts. Off course, the frictional constraints, which are not
considered in the conventional hybrid control, also can be
dealt with.

This paper is organized as follows. At first, the target
system is shown and the directions of active and passive
force closures are defined. Then, we show the directions
of active force closure are orthogonal to those of passive
force closure. Using the orthogonality, we derive a control
algorithm. We also discuss how to determine the desired
internal forces for the manipulation. Lastly, we show some
simulation results to show the validity of our approach.

A. Related Works

Firstly Trinkle [2] gave force closure two interpretations
as described above. Yoshikawa [4] named the two concepts
active and passive force closures. Previously, the active and
the passive force closures have been studied separately.

As for active force closure, Li et al. [7], Cole et al.
[8], and Yokokohji et al. [9] presented control algorithms
for the case of point contact, rolling contact, and soft-
finger contact, respectively, for the manipulation of an
object grasped by fingertips. Harada et al. analyzed the
active force closure [10] and presented a control algorithm
[11] for manipulating multiple objects. There are some
researches focusing on active force closure in the general
grasping systems. Trinkle et al. [12] discussed a grasp
planning for manipulating an enveloped object with sliding
contacts in 2 dimensional space. Bicchi et al. [13] analyzed
the manipulability of the general grasping systems. Harada
et al. [14] presented a sufficient condition for the manip-
ulation of Envelope Family and realize the manipulation



with constant joint driving torques. Park et al. [15] derived
contact forces and accelerations consistent with dynamics
and friction law for a given torque-wrench pair.

Note that there exist two ways as which we can regard
active force closure. One is that fingers (limbs) can move
a grasped object in arbitrary directions as described above.
The other is that active force closure is standard notation
of force closure and is necessary but not sufficient for
passive force closure [16]. We follow the precedent active
force closure by Yoshikawa [4] by adopting the following
definition.

Active force closure : A grasp is said to be of active force
closure if any resultant force and moment can be applied
to the object by fingers and the maintenance of the object’s
equilibrium requires the application of the resultant force
and moment applied by the fingers.

On the other hand, the passive force closure (power
grasp) have been researched with respect to the analysis
of robustness, the analysis of indeterminate forces, the
formulation of contact force distribution, the optimization
of pre-loaded joint torques, and so on [16]–[24].

There are many cases where a grasping system has both
active and passive force-closure properties simultaneously.
Only recently, the authors have begun some researches
focusing on the both properties [5], [25]. However, the
obtained results are still limited. In this paper, we show the
orthogonality between the active and the passive parts for
general grasping systems, and present a control algorithm
for the manipulation, based on the orthogonality.

II. NOMENCLATURE

The following nomenclatures are used in this paper.
N Number of fingers.
Mi Number of joints of the ith finger (i =

1, 2, · · · , N ).
Li Number of contact points on the ith finger.
M Number of total joints (= ΣN

i=1Mi).
L Number of total contact points (= ΣN

i=1Li).
D 3/6 in 2/3 dimensional space.
d 2/3 in 2/3 dimensional space.
ΣR Reference coordinate frame.
ΣO Object coordinate frame fixed at the object.
ΣG Coordinate frame fixed at the center of gravity

of the object.
Cij The jth contact point of the ith finger (j =

1, 2, · · · , Li).
ΣCij

Coordinate frame fixed at Cij .
ΣFij

Coordinate frame fixed at the link of the ith
finger, on which there exists Cij .

qi∈ RMi Joint angle vector of the ith finger.
p

I
∈ Rd Position of the origin of ΣI (I =

O, G, Cij, Fij).
ωI∈RD−d Rotational velocity vector of ΣI .
νCij

∈ Rd Contact point velocity at Cij where the com-
ponent of contact point motion due to rolling
is excluded (ν

Cij
= ṗ

Cij
where rolling doesn’t

occur).
v

I
∈ RD

(
ṗT

I
ωT

I

)T
.
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Fig. 1. Target System (N = 2)

w
I
∈ RD Resultant force and moment applied to the

object at ΣI (I = G, O).
f ij∈ Rd Contact force vector at Cij .
f∈ RLd (fT

11 fT
12 · · · fT

NLN
)T .

τ c∈ RM Joint torque vector equivalent to f .
nfij

Normal force component of f ij .
tfij ,k Tangential force components of f ij (k = 1, 2).
µij Frictional coefficient at Cij .
Note that since there exist some cases where it is

convenient if the origin of ΣO doesn’t coincide with the
center of gravity of the object, we define not only ΣO but
also ΣG.

III. TARGET SYSTEM AND DEFINITION

A. Target System

The target system is shown in Fig.1. In this paper, we
consider the case where an arbitrary shaped rigid object
is grasped by N fingers of a robotic hand. We make the
following assumptions: 1) Each finger makes a frictional
point contact with the object, and sliding doesn’t occur
at each contact point. 2) There exists at most one contact
point on each link of the fingers. 3) The number of contact
points does not change and the remove of contact points
does not occur.

B. Definition

When manipulating an object under hybrid active/passive
closure, the directions of object motion is limited to the
directions satisfying active force closure. To obtain a
controller for manipulating an object, we decompose the
dynamics of grasping system into the ”active part” and the
”passive part”. Here, we do not control the object motion
within the directions satisfying passive force closure since
wrench applied on the object is counteracted without
any additional joint torque input. For such purpose, we
introduce the following two spaces within the generalized
velocity space and the generalized force space (wrench
space) of the object.

Space of Active Force Closure (SAFC); Let us
consider the direction in which a grasped object can move



within a constraint applied by fingers. If the fingers can do
positive work on the object in that direction, we call the
direction as direction of active force closure (DAFC). Also,
we call the space, spanned by a set of the all DAFC’s, as
space of active force closure (SAFC).

Space of Passive Force Closure (SPFC); We call
the direction, in which external force or moment can
be counteracted without changing the joint torques, as
direction of passive force closure (DPFC). Also, we call
the space, spanned by a set of the all DPFC’s, as space of
passive force closure (SPFC).

IV. BASIC FORMULATION OF THE SYSTEM

We discuss 3 dimensional case, but the formulation can
be easily extended to 2 dimensional case.

A. Kinematics of the system

The relation between v
O

and v
G

is given by

v
G

= DGOv
O

(1)

where

DGO =
(

I −[(p
G
− p

O
)×]

O I

)
∈ RD×D

where I represents an identity matrix, O represents a
zero matrix, [a×] represents a skew symmetric matrix
equivalent to the cross product operation ([ a × ]b = a×b).

The relation between vFij
and q̇i, and the relation among

νCij
, vFij

and vO , respectively, are given as follows;

v
Fij

= JFij
q̇i, GT

Oij
v

O
= ν

Cij
= DT

Fij
v

Fij
(2)

where JFij
∈ RD×Mi denotes the Jacobian matrix and

GOij
=

(
I[

(p
Cij

− p
O
)×
] ) ∈ RD×d,

DFij
=

(
I[

(p
Cij

− p
Fij

)×
] ) ∈ RD×d.

By using the following vectors and matrices,

q̇ =
(

q̇T
1 q̇T

2 · · · q̇T
N

)T ∈ RM ,

J = diag

⎛
⎜⎝
⎛
⎜⎝

DT
F11

JF11

...
DT

F1L1
JF1L1

⎞
⎟⎠

⎛
⎜⎝

DT
F21

JF21

...
DT

F2L2
JF2L2

⎞
⎟⎠

· · ·

⎛
⎜⎝

DT
FN1

JFN1

...
DT

FNLN
JFNLN

⎞
⎟⎠
⎞
⎟⎠ ∈ RLd×M ,

GO =
(

GO11 GO12 · · · GONLN

) ∈ RD×Ld,

AO =
(

J −GT
O

) ∈ RLd×(M+D)

where diag denotes a block diagonal matrix, from (2) we
obtain

AO

(
q̇T vT

O

)T
= o, (3)

where o denotes a zero vector. By solving (3), we obtain

(
q̇
v

O

)
= ET

P ζ̇ =
(

ET
P1

ET
P2

)
ζ̇ (4)

where EP ∈ Ra×(M+D) denotes an orthogonal matrix
whose rows form bases of the null space of AO, ζ̇ ∈ Ra

is an arbitrary vector expressing the magnitude of each
column of ET

P . Note that ζ̇ represent the object motion
within the constraint applied by the fingers, and can be
selected arbitrary.

B. Statics of the system

From (1) and the principle of virtual work, the relation
between wO and wG is given by

w
O

= DT
GOw

G
. (5)

From (3) and the principle of virtual work, the relation
among f , w

O
and τ c is given by

(
τT

c −wT
O

)T = AT
Of =

(
J −GT

O

)T
f . (6)

From (6), the following relation is obtained;

f = (JT )+τ c + (I − (JT )+JT )k̃1, (7)

where (JT )+ denotes the pseudo-inverse matrix of JT and
k̃1∈ RLd denotes an arbitrary vector. Note that the force of
the second term in the right side of (7) expresses an internal
force which makes no influence on the joint torques.

By substituting (7) into (6), we get

(
τ c

−wO

)
=
(

I

−GO(JT )+

)
τ c+

(
O

−GO(I − (JT )+JT )

)
k̃1

∆=
(

I
−GOJ

)
τ c +

(
O
−Ξ

)
k1, (8)

where GOJ=GO(JT )+, Ξ ∈ RD×p is an orthogonal ma-
trix whose columns form bases of the GO(I−(JT )+JT ),
and k1 ∈ Rp is an arbitrary vector expressing the magni-
tude of each column of Ξ. Note that the second term in
the right side of (8) can express a generable resultant force
without changing the joint torques.

C. Frictional constraints

The frictional constraint at Cij (i = 1, 2, · · · , N , j =
1, 2, · · · , Li) can be represented by

Ffij = {f ij |
√

t2fij ,1 + t2fij ,2 ≤ µijnfij
, nfij

≥ 0}. (9)

Aggregating (9) for all contact points, we obtain

Ff = {f |f ij ∈ Ffij , ∀f ij}. (10)



D. Dynamics of the object and the fingers

The equation of motion of the object and the fingers,
respectively, can be represented as follows;

Mrv̇G
+ hr = w

G
= D−T

GOw
O
, (11)

M qq̈ + hq + τ c = τ (12)

where τ denotes the joint driving torques, M r and M q are
the inertia tensors of the object and the fingers, respectively,
hr and hq are the terms representing centrifugal, Coriolis
and gravitational forces of the object and the fingers,
respectively.

From (1) and (5), (11) can be rewritten by

MOrv̇O
+ hOr = w

O
= GOf , (13)

where

MOr = DT
GOM rDGO,

hOr = DT
GOM rḊGOvO + DT

GOhr.

V. ORTHOGONALITY BETWEEN SAFC AND SPFC

In this section, we show the orthogonality between
SAFC and SPFC [5].

Let us consider the case where the object is stably
grasped with τ c and is in steady state. Namely, from (8)
and (10), τ c hold(

τ c

−wOst

)
=AT

Ofst =
(

I
−GOJ

)
τ c+

(
O
−Ξ

)
k1st

, fst∈Ff

(14)

where w
Ost

, fst and k1st
, respectively, are w

O
, f and k1

in the case where the system is in the steady state. SAFC
and SPFC are considered in this case.

A. SAFC

At first, we consider a canonical/reduced form of EP2.
EP given in (4) can be written as follows (refer to [13]);(

ET
P1

ET
P2

)
=
(

ET
P11 ET

P12 O

O ET
P22 ET

P23

)
. (15)

Here Im(ET
P11) (= ker(J)) denotes the redundancy sub-

space of joint velocities that do not affect the object
velocities, and Im(ET

P23) (= ker(GT
O)) denotes the in-

determinacy subspace of object velocities. Then, the di-
rections indicated by the columns of (ET

P22 ET
P23) is

the directions in which the object can move within the
constraint applied by the fingers. Here, we consider the
following transformation;

(
ET

P1

ET
P2

)
Ψ =

(
ET

P11 ET
P12 O

O ET
P22 ET

P23

)⎛⎝ I O O
O Ψ2 O
O O Ψ3

⎞
⎠

�
(

ET
P11 Ẽ

T

P1

O Ẽ
T

P2

)
, (16)

ζ̇ = Ψ
(

˙̂
ζT ˙̃

ζT
)T

, (17)

where Ψ ∈ Ra×a is a nonsingular matrix for the transfor-
mation which makes both ET

P22Ψ2 and ET
P23Ψ3 be or-

thogonal matrices. Note that since ζ̇ is arbitrary, ˙̂
ζ ∈ Ra−ã

and ˙̃ζ ∈ Rã are also arbitrarily and express the magnitude
of each column of ET

P11, and that of ET
P22Ψ2 (ET

P12Ψ2)
and ET

P23Ψ3, respectively. Note also that Ẽ
T

P1∈ RM×ã

and Ẽ
T

P2∈ RD×ã.
From the transformation, we obtain(

ET
P1

ET
P2

)
ζ̇ =

(
ET

P11 Ẽ
T

P1

O Ẽ
T

P2

)( ˙̂
ζ
˙̃ζ

)
. (18)

Note that Im(Ẽ
T

P1)∈ Im(JT ) because Im(ET
P1) ∩ ker(J)

= Im(ET
P11).

Then, the allowable motions of the object are given by

A = {∆r|∆r = Ẽ
T

P2∆ζ̃} (19)

where ∆r denotes the displacements of the object.
From (8), the work done by τ c is given by

Work = ∆rT w
O

= ∆rT GOJτ c + ∆rTΞk1. (20)

Note that Ξk1 is resultant force and moment which work
to counteract external force and moment in the direction
contained in Im(Ξ), only when the external force and
moment are exerted on the object. Then, the applied
force and moment by τ c in the direction contained in
(Im(GOJ )∩Im(Ξ)) will be counteracted. Then, defining
E so that (E Ξ)∈ RD×D is an orthogonal matrix, from
(14) and (19), DAFC can be described as follows;

DAFC = {∆r|Work = ∆rT EET GOJτ c > 0, ∆r ∈ A,

(I − EET )GOJτ c + GO(I − (JT )+JT )k̃1 = o,

(JT )+τ c + (I − (JT )+JT )k̃1 + fst ∈ Ff}. (21)

When any (JT )+τ c, whose magnitude is finite, can be
applied to the object for the appropriately assigned fst,
(21) becomes

DAFC = {∆r|∆r = Ẽ
T

P2ẼP2EET GOJτ c}. (22)

B. SPFC
SPFC is the space spanned by the generable resultant

forces and moments without changing τ c at the steady
state. From (14), such resultant forces and moments, w

Oex

hold(
τT

c −wT
Oex

−wT
Ost

)T
= AT

O(fst + fex) =(
I −GOJ

)T
τ c +

(
O −ΞT

)T
(k1st

+ k1ex
) (23)

where fex and k1ex
, respectively, are f and k1, which

correspond to w
Oex

. Note that(
o −wT

Oex

)T
= AT

Ofex =
(

O −ΞT
)T

k1ex
, (24)

fex = (I − (JT )+JT )k̃1ex
. (25)

If fst +fex ∈ Ff , Ξk1ex
becomes DPFC. Then, SPFC

is given by

SPFC = {w|w = Ξk1ex
, fex = (I − (JT )+JT )k̃1ex

,

fst + fex ∈ Ff}. (26)



C. Orthogonality
In order to show the orthogonality between SAFC and

SPFC, we have only to show that every possible DPFC is
orthogonal to every possible DAFC. Then, let us consider
the case where every column of Ẽ

T

P2 in (22) (or (21))
corresponds to DAFC and every column of Ξ in (26)
corresponds to DPFC.

From the definition of EP (see (4)), AOET
P = O. Then,

we obtain

EP AT
Of = o, ∀f .

Then, with respect to fex in (25), we obtain

EP AT
Ofex = o, EP AT

O(I − (JT )+JT )k̃1ex
= o.

Then, from (24), we obtain

EP

(
O −ΞT

)T
k1ex

= o.

Since k1ex
is an arbitrary vector, we obtain

EP

(
O −ΞT

)T
= O, EP2Ξ = O,

ẼP2Ξ = O. (27)

(27) represents the orthogonality between SAFC (DAFC)
and SPFC (DPFC).

Remark: Let us consider the generalized force space of
object, spanned by the all columns of Ξ and Ẽ

T

P2. Using
Ξ, the generalized force space of object can be represented
by

{w
O
|w

O
∈RD} = Im(Ξ) ⊕ ker(ΞT )

= Im(Ξ) ⊕ ker((I − (JT )+JT )GT
O).

ker((I − (JT )+JT )GT
O) is given by

ker((I − (JT )+JT )GT
O)

= ker(GT
O) ∪ {w

O
|GT

Ow
O
∈ Im(J)}

= {w
O
|(xT wT

O
)T ∈ ker(AO), x ∈ RM}

= {w
O
|w

O
= Ẽ

T

P2x, x ∈ Rã}. (28)

Then, the generalized force space of object can be spanned
by the all columns of Ξ and Ẽ

T

P2, namely rank (Ξ Ẽ
T

P2)=
D.

Using this orthogonality, (21) and (22), respectively, are
rewritten by

DAFC = {∆r|Work = ∆rT GOJτ c > 0, ∆r ∈ A,

(I − Ẽ
T

P2ẼP2)GOJτ c + GO(I − (JT )+JT )k̃1 = o,

(JT )+τ c + (I − (JT )+JT )k̃1 + fst ∈ Ff}, (21’)

DAFC = {∆r|∆r = Ẽ
T

P2ẼP2GOJτ c}. (22’)

VI. CONTROL LAW

In this section, a control law is derived. In order to
manipulate the object under the hybrid active/passive clo-
sure, we assume that the space spanned by the all columns
of Ẽ

T

P2 is SAFC and that the space spanned by the all
columns of Ξ is SPFC. Note that these assumptions corre-
spond to assume a force-closure grasp, which is needed to
grasp and manipulate the object stably.

A. Decomposition of object dynamics into the Parts corre-
sponding to SAFC and SPFC

We decompose the object dynamics into the part corre-
sponding to SAFC and the part corresponding to SPFC. By
using the decomposition, we have only to control the part
corresponding to SAFC because any applied force and mo-
ment in the direction contained in SPFC are counteracted
without any additional joint torque input and then control
is not needed (if the frictional constraints are satisfied).

From (4), (8), (13) and (18), the dynamics of the object
is rewritten by

MOrẼ
T

P2
¨̃ζ + h̃Or = wO = GOJτ c + Ξk1, (29)

h̃Or = hOr + MOr
˙̃ET

P2
˙̃
ζ.

By multiplying ẼP2 to the both side of (29) from the
left side and using (27) (the orthogonality between SAFC
(DAFC) and SPFC (DPFC)), we obtain

ẼP2MOrẼ
T

P2
¨̃ζ + ẼP2h̃Or = ẼP2GOJτ c. (30)

This equation shows the component of object dynamics,
which corresponds to SAFC. From the first assumption at
the beginning of this section and (21’) or (22’), ẼP2GOJ

has full row rank. Since MOr is nonsingular and ẼP2 has
full row rank, ẼP2MOrẼ

T

P2 is also nonsingular. Hence,
an arbitrary acceleration in the direction contained in SAFC
can be generated by the joint torques.

From (30), we obtain

τ c = (ẼP2GOJ )+(ẼP2MOrẼ
T

P2
¨̃ζ+ẼP2h̃Or) + Φk2.

(31)

where Φ ∈ RM×(M−ã) is a full column rank matrix whose
columns form bases of the null space of ẼP2GOJ , and k2

∈ R(M−ã) is an arbitrary vector expressing the magnitude
of each column of Φ.

On the other hand, by multiplying ΞT to the both side
of (29) from the left side, the part corresponding to SPFC
is given by

k1 = ΞT MOrẼ
T

P2
¨̃ζ + ΞT h̃Or−ΞT GOJτ c. (32)

Note that substituting τ c given by (31) and k1 given
by (32) into the right side of (29) and using the relation;
(Ξ Ẽ

T

P2) (Ξ Ẽ
T

P2)T = I , we obtain o = o.

B. Internal force

From (8), the following relation is obtained;

τ c = G+
OJ(wO − Ξk1) + Λf̃ (33)

where Λ ∈ RM×b is a full column rank matrix whose
columns consist of the bases contained in the space
(Im(JT ) ∩ ker(GOJ)), and f̃ ∈ Rb is an arbitrary vector
expressing the magnitude of each column of Λ. Note that
(JT )+Λf̃ is the internal forces which can be controlled
by the joint torques, τ c (GO(JT )+Λf̃ = o). Note also
that since τ c is contained in Im(JT ) from (6), Λ must be
contained in Im(JT ).



C. Dynamics of the total system

From (4), (7), (12) and (18), the dynamics of the fingers
is rewritten by;

τ = M q(Ẽ
T

P1
¨̃
ζ + ET

P11
¨̂
ζ) + h̃q + τ c, (34)

h̃q = M q(
˙̃ET

P1
˙̃
ζ + Ė

T

P11
˙̂
ζ) + hq.

Then, from (29), (33) and (34), the following relation is
obtained;

τ =M q(Ẽ
T

P1
¨̃ζ + ET

P11
¨̂
ζ) + h̃q + Λf̃

+ G+
OJ (MOrẼ

T

P2
¨̃ζ + h̃Or − Ξk1). (35)

D. Controller

Assume that the desired trajectories ζ̃d and f̃d for the
movable object position/orientation ζ̃ and the internal force
component f̃ are given. From (31), (33) and (34) , the
following linearizing control law is considered;

τ = MW up + ΛuI + Q + M qE
T
P11dζd (36)

where

MW = M qẼ
T

P1 + (ẼP2GOJ)+(ẼP2MOrẼ
T

P2),

Q = h̃q + (ẼP2GOJ)+(ẼP2h̃Or),

and up and uI are new control inputs and correspond to ¨̃ζ
and f̃ , respectively, and dζd denotes an arbitrary constant
vector that can provide finger motion that does not affect
the object motion. dζd is given such that the fingers meet
a certain criterion.

By applying the control law to the system given by (35),
we obtain

M qẼ
T

P1(up − ¨̃ζ) + Λ(uI − f̃) + M qE
T
P11(dζd − ¨̂

ζ)

+ (ẼP2GOJ)+(ẼP2MOrẼ
T

P2up + ẼP2h̃Or)

− G+
OJ(MOrẼ

T

P2
¨̃ζ + h̃Or − Ξk1) = o. (37)

Here, since ẼP2GOJ has full row rank, Im(Ẽ
T

P2)/∈
ker(GT

OJ), namely Im(Ẽ
T

P2)∈ Im(GOJ) and then
(G+

OJ)T GT
OJ Ẽ

T

P2 =Ẽ
T

P2. Hence, by multiplying
ẼP2GOJ to the both side of (37) from the left side and
using the relation; GOJΛ= O, ẼP2GOJ(ẼP2GOJ )+=
I , ẼP2GOJG+

OJ= ẼP2 and (27), the following relation
is obtained;

Mwr(up − ¨̃ζ) + Mwrq(dζd − ¨̂
ζ) = o, (38)

where

Mwr = ẼP2MOrẼ
T

P2 + ẼP2GOJM qẼ
T

P1,

Mwrq = ẼP2GOJM qE
T
P11.

Since ẼP2GOJ has full row rank, ẼP2GOJ can be
written by

(ẼP2GOJ)+ = GT
OJẼ

T

P2(ẼP2GOJGT
OJẼ

T

P2)
−1. (39)

From Im(ET
P11)∈ker(J), EP11(ẼP2GOJ)+ = O.

Hence, by multiplying EP11 to the both side of (37)

from the left side and using the relation; EP11 Λ = O
(note that Im(Λ)∈Im(JT )), EP11(ẼP2GOJ )+ = O, and
EP11G

+
OJ = O, the following relation is obtained;

Mwqr(up − ¨̃
ζ) + Mwq(dζd − ¨̂

ζ) = o, (40)

where

Mwqr = EP11M qẼ
T

P1,

Mwq = EP11M qE
T
P11.

Here, from (3) and (4), we obtain

JET
P1ζ̇ = GT

OET
P2ζ̇.

From (18) and using the relation; JET
P11= O, this equa-

tion is rewritten by

JẼ
T

P1
˙̃ζ = GT

OẼ
T

P2
˙̃ζ.

Since ˙̃ζ is arbitrary, we obtain

JẼ
T

P1 = GT
OẼ

T

P2.

By multiplying J+ to the both side of this equation from
the left side and using the relation; J+JẼ

T

P1= Ẽ
T

P1 (note
that Im(Ẽ

T

P1)∈ Im(JT )), we obtain

Ẽ
T

P1 = GT
OJẼ

T

P2.

Then, Mwr and Mwqr become

Mwr = ẼP2MOrẼ
T

P2 + ẼP2GOJM qG
T
OJẼ

T

P2,

Mwqr = EP11M qG
T
OJẼ

T

P2 = MT
wrq.

From (38) and (40), we obtain(
Mwr Mwrq

MT
wrq Mwq

)(
(up − ¨̃ζ)

(dζd − ¨̂
ζ)

)
�W

(
(up − ¨̃ζ)

(dζd − ¨̂
ζ)

)
=o.

(41)

Since Mwq is positive definite and then

W = W b

(
W a O
O Mwq

)
W T

b ,

W a = Mwr − MwrqM
−1
wqMT

wrq,

W b =
(

I MwrqM
−1
wq

O I

)
,

the determinant of W is given by

detW = det(Mwq) det(W a). (42)

Since M q is positive definite symmetric, we can define a
nonsingular matrix Bm∈ RM×M such that M q=BT

mBm.
Letting BT

r =ẼP2GOJBT
m and BT

q =EP11B
T
m, we obtain

W a = ẼP2MOrẼ
T

P2 + BT
r (I − Bq(BT

q Bq)−1BT
q )Br.

Since both Br and Bq are of full rank, (BT
q Bq)−1BT

q

represents B+
q . Then, the second term of this equation

is nonnegative definite. Since ẼP2 is of full row rank,
ẼP2MOrẼ

T

P2 is positive definite. Hence, W a is positive



definite. Therefore, from(42), det W �= 0. Thus, from (41),
we obtain

up = ¨̃ζ, dζd = ¨̂
ζ. (43)

From (39), ΛT (ẼP2GOJ)+ = O. By multiplying ΛT

to the both side of (37) from the left side and using the
relation; ΛT (ẼP2GOJ )+ = O and (43), the following
relation is obtained;

ΛTΛ(uI − f̃) = o.

Since ΛTΛ is nonsingular, we obtain

uI = f̃ . (44)

From (43) and (44), the system can be decoupled and
linearized by the control law (36). Then, we adopt the
following servo controllers with respect to up and uI ;

up = ¨̃ζd + KV ( ˙̃ζd − ˙̃ζ) + KP (ζ̃d − ζ̃), (45)

uI = f̃d + KI

∫ t

0

(f̃d − f̃)dt
′

(46)

where KP , KV and KI are gain matrices. Then, the
object position/orientation error ep = ζ̃d − ζ̃ and the force
error ef = f̃d − f̃ satisfy the following equations;

ëp + KV ėp + KP ep = o, (47)
ėf + KIef = o. (48)

Thus, with appropriate KP , KV and KI , the actual
object position/orientation ζ̃ and the component of the
internal forces f̃ will converge to the desired trajectories
asymptotically.

VII. DETERMINATION OF DESIRED INTERNAL FORCES

In this section, it is shown how to determine the desired
magnitudes of internal forces, f̃d. These magnitudes are
determined so that the frictional constraints can be satisfied
during the manipulation.

At first, let us consider to formulate internal forces, with
respect to contact forces, f . From (6), we get

f = G+
Ow

O
+ Ωk3 (49)

where Ω ∈ RLD×(LD−D) is a full column rank matrix
whose columns form bases of the null space of GO and k3

∈ R(LD−D) is an arbitrary vector expressing the magnitude
of each column of Ω.

Here, Ωk3 expresses the internal forces. However, it
is possible that Ωk3 includes the internal forces which
cannot be controlled by the joint torques. Then, in (49),
we use (JT )+Λf̃ , which is the internal forces that can be
controlled by the joint torques, in place of Ωk3;

f = G+
Ow

O
+ (JT )+Λf̃ . (50)

Then, assuming the object moves along the desired
trajectory, we consider the following problem from (9), (29)
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and (50);

min
f̃

ρ(f̃)

subject to f = G+
O(w

Od
+ w

Oext
) + (JT )+Λf̃

f ∈ Ff

w
Od

= MOrẼ
T

P2
¨̃ζd + h̃Or

(51)

where ρ is a criterion function and w
Oext

is unexpected
external forces and moments. Note that for the practical
use, we should better use smaller µij in Ff than the real
one. Note also that as a candidate for ρ, we can cite
magnitudes of contact forces, magnitudes of joint torques,
and so on.

VIII. SIMULATION

In order to verify our approach, we show simulation
results. Fig.2 shows the target system in the simulation.



ΣO is placed at the root of the 1st finger. ΣG is placed at
the geometrical center of the object. The scale markings
shown in Fig.2 represent the ones of ΣR. Note that when
the object is at the initial state, ΣO corresponds to ΣR (see
Fig.2).

The robotic hand is composed of 2 fingers which are
same form. The length of each link is set to 0.1[m]. The
mass of each link is set to 0.025[kg]. The object is a
0.075

√
2 × 0.1[m] quadrangle. The mass of the object is

set to 0.408[kg]. The density of the object is set to be
uniform. The contact positions at the initial state are set to
(−0.0177 0.0177), (−0.0177 0.1237), and (0.0823 0.1).
The servo gains are set to KP = diag(10000. 10000.
10000.) [1/sec2], KV = diag(100. 100. 100.) [1/sec], and
KI = diag(100. 100. 100.) [1/sec]. The sampling time for
calculating the input torques is set to 1.0[msec] and the one
for calculating the direct dynamics is set to 0.1[msec].

We consider to rotate counterclockwise the object around
ΣO from 0[degree] to 10 [degree]. However, to make
an initial error, we rotate the object around ΣO from
−1[degree] to 10 [degree] in the desired trajectory. The
frictional coefficients at all contact points are set to 0.3. The
desired magnitudes of internal forces are set to (1 1 1)[N]
which can satisfy the constraints of the problem given by
(51).

Fig.3 shows the results of the simulation. Fig.3 (a) shows
the outline of the motion of the grasped object. Fig.3
(b) shows the trajectories of desired and actual φ’s that
corresponds to the orientation of the object. Fig.3 (c)∼(e)
show the trajectories of desired and actual f̃i’s (i = 1, 2, 3)
that corresponds to the magnitudes of internal forces. From
Fig.3, we can see that the φ and f̃i’s (i = 1, 2, 3) all
converge to their desired trajectories, although there are
initial errors.

IX. CONCLUSION

In this paper, we have proposed a control algorithm for
manipulating an object under hybrid active/passive closure.
For the purpose, we have shown the orthogonality between
the directions of active and passive force closures for
general grasping systems. By using the orthogonality, we
have decomposed the object dynamics into the part corre-
sponding to active force closure and the part corresponding
to passive force closure. By using the decomposition, we
have shown that we have only to take into consideration
the dynamics of the active part in order to derive a control
algorithm. In order to satisfy the frictional constraints, we
also have shown a way for determining desired internal
forces. The simulation results show the effectiveness of our
approach.
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