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Abstract

We study the problem of embedding a guest graph with minimum edge-congestion

into a multidimensional grid with the same size as that of the guest graph. Based on

a well-known notion of graph separators, we show that an embedding with a smaller

edge-congestion can be obtained if the guest graph has a smaller separator, and if the

host grid has a higher but constant dimension. Specifically, we prove that any graph

with N nodes, maximum node degree ∆, and with a node-separator of size s, where

s is a function such that s(n) = O(nα) with 0 ≤ α < 1, can be embedded into a grid

of a fixed dimension d ≥ 2 with at least N nodes, with an edge-congestion of O(∆) if

d > 1/(1 − α), O(∆ log N) if d = 1/(1 − α), and O(∆Nα−1+ 1
d ) if d < 1/(1 − α). This

edge-congestion achieves constant ratio approximation if d > 1/(1 − α), and matches

an existential lower bound within a constant factor if d ≤ 1/(1− α). Our result implies

that if the guest graph has an excluded minor of a fixed size, such as a planar graph,

then we can obtain an edge-congestion of O(∆ log N) for d = 2 and O(∆) for any fixed

d ≥ 3. Moreover, if the guest graph has a fixed treewidth, such as a tree, an outerplanar

graph, and a series-parallel graph, then we can obtain an edge-congestion of O(∆) for

any fixed d ≥ 2. To design our embedding algorithm, we introduce edge-separators

bounding extension, such that in partitioning a graph into isolated nodes using edge-

separators recursively, the number of outgoing edges from a subgraph to be partitioned

in a recursive step is bounded. We present an algorithm to construct an edge-separator

with extension of O(∆nα) from a node-separator of size O(nα).

Keywords: graph embedding, edge-congestion, grid, separator, extension

1. Introduction

A graph embedding of a guest graph into a host graph is to map (typically one-to-

one) nodes and edges of the guest graph onto nodes and paths of the host graph, respec-

tively, so that an edge of the guest graph is mapped onto a path connecting the images

of end-nodes of the edge. The graph embedding problem is to embed a guest graph into

∗Tel/Fax: +81 76 234 4837

Email address: mbayashi@t.kanazawa-u.ac.jp (Akira Matsubayashi)

Preprint submitted to Elsevier September 8, 2014



a host graph with certain constraints and/or optimization criteria. This problem has ap-

plications such as efficient VLSI layout and parallel computation. I.e., the problem of

efficiently laying out VLSI can be formulated as the graph embedding problem with

modeling a design rule on wafers and a circuit to be laid out as host and guest graphs,

respectively. Also, the problem of efficiently implementing a parallel algorithm on a

message passing parallel computer system consisting of processing elements connected

by an interconnection network can be formulated as the graph embedding problem with

modeling the interconnection network and interprocess communication in the parallel

algorithm as host and guest graphs, respectively. See for a survey, e.g., [1]. The major

criteria to measure the efficiency of an embedding are dilation, node-congestion, and

edge-congestion, load, and expansion, whose formal definitions are given in Sect. 2.

In this paper, we consider the problem of embedding a guest graph with the unit load

and minimum edge-congestion into a d-dimensional grid with d ≥ 2 and the same size

as that of the guest graph (i.e., with unit expansion). Embeddings into grids with the

minimum edge-congestion are important for both VLSI layout and parallel computa-

tion. Actually, design rules on wafers in VLSI are usually modeled as 2-dimensional

grids, and the minimum edge-congestion provides a lower bound on the number of

layers needed to lay out a given circuit. As for parallel computation, multidimensional

grid networks, including hypercubes, are popular for interconnection networks. On in-

terconnection networks adopting circuit switching or wormhole routing, in particular,

embeddings with the edge-congestion of 1 are essential to minimize the communica-

tion latency [2, 3, 4]. In addition, the setting that host and guest graphs have the same

number of nodes is important for parallel computation because the processing elements

are expensive resource and idling some of them is wasteful.

Previous Results

Graph embedding into grids with small edge-congestion has extensively been stud-

ied. Table 1 summarizes previous results of graph embeddings minimizing edge-

congestion (and other criteria as well in some results) for various combinations of guest

graphs and host grids.

VLSI layout has been studied through formulating the layout as the graph embed-

ding into a 2-dimensional grid with objective of minimizing the grid under constrained

congestion-1 routing [15]. Leiserson [16] and Valiant [17] independently proposed

such embeddings based on graph separators. In particular, it was proved in [16] that

any N-node graph with maximum node degree at most 4 and an edge-separator of

size s, where s is a function with s(n) = O(nα), can be laid out in an area of O(N) if

α < 1/2, O(N log2 N) if α = 1/2, and O(N2α) if α > 1/2. A separator of a graph G is

a set S of either nodes or edges whose removal partitions the node set V(G) of G into

two subsets of roughly the same size with no edge between the subsets. The graph G

is said to have a (recursive) separator of size s(n) if |S | ≤ s(|V(G)|) and the subgraphs

partitioned by S recursively have separators of size s(n). Separators are important tools

to design divide-and-conquer algorithms and have been extensively studied. Bhatt and

Leighton [11] achieved a better layout with several nice properties including reduced

dilation as well as the same or better area as that of [16] by introducing a special type

of edge-separators called bifurcators. An approximation algorithm for VLSI layout
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Table 1: Previous results of graph embeddings minimizing edge-congestion.

Guest Graph Host Grid Congestion Dilation

N: # nodes, ∆: max degree # nodes dimension

s: separator size

connected planar graph N 2 NP-hard for 1 any [5]

connected graph 2⌈log2 N⌉ ⌈log2 N⌉ NP-hard for 1 any [2]

complete binary tree N + 1 2 2 O(
√

N) [6]

complete binary tree N + 1 4 1 O(N1/4) [3]

complete binary tree N + O(
√

N) 2 1 O(
√

N) [7]

complete k-ary tree (k ≥ 3) N + O(N/
√

k) 2 ⌈k/2⌉ + 1 O(
√

N) [4]

binary tree 2⌈log2 N⌉ ⌈log2 N⌉ 5 ⌈log2 N⌉ [8]

2-D h × w-grid (h ≤ w) h′w′ ≥ N∗ 2 ⌈h/h′⌉ + 1 ⌈h/h′⌉ + 1 [9]

2-D h × w-grid (h ≤ w) h′w′ ≥ N† 2 5 5 [9]

2-D h × w-grid (h ≤ w) h′w′ ≥ N† 2 4 ≥ 4h − 3 [9]

2-D grid 2⌈log2 N⌉ ⌈log2 N⌉ 2 3 [10]

∆ ≤ 4, s = O(nα), α < 1/2 O(N) 2 1 O(
√

N/ log N) [11]

∆ ≤ 4, s = O(
√

n) O(N log2 N) 2 1 O(
√

N log N

log log N ) [11]

∆ ≤ 4, s = O(nα), α > 1/2 O(N2α) 2 1 O(Nα) [11]

tree width t 2⌈log2 N⌉ ⌈log2 N⌉ O(∆4t3) O(log(∆t)) [12]

s = logO(1) N 2⌈log2 N⌉ ⌈log2 N⌉ ∆O(1) O(log∆) [13]

∆ = O(1) N d = O(1) O(N1/d log N) O(N1/d log N) [14]

∆ ≤ 2⌈log2 N⌉ 22⌈log2 N⌉ 2⌈log2 N⌉ 1 2⌈log2 N⌉ [8]
∗ h′ × w′-grid with h′ < h ≤ w < w′
† h′ × w′-grid with h < h′ ≤ w′ < w

was proposed in [18]. Separator-based graph embeddings on hypercubes were pre-

sented in [19, 20, 13]. In particular, Heun and Mayr [13] proved that any N-node graph

with maximum node degree ∆ and an extended edge-bisector of polylogarithmic size

can be embedded into a ⌈log2 N⌉-dimensional cube with a dilation of O(log∆) and an

edge-congestion of ∆O(1).

A quite general embedding based on the multicommodity flow was presented by

Leighton and Rao [14], who proved that any N-node bounded degree graph G can

be embedded into an N-node bounded degree graph H with both dilation and edge-

congestion of O((log N)/α), where α is the flux of H, i.e., minU⊂V(H)
|{(u,v)∈E(H)|u∈U, v∈V(H)\U}|

min{|U|,|V(H)\U|} .

This implies that G can be embedded into an N-node d-dimensional grid with both di-

lation and edge-congestion of O(N1/d log N) for any fixed d.

Contributions and Technical Overview

In this paper, we improve previous graph embeddings into grids and hypercubes

in terms of edge-congestion, arbitrary dimension, and minimum size of host grids. In

particular, we claim that if a guest graph has a small separator, then we do not need

grids with large dimension, such as hypercubes, to suppress the edge-congestion.

First, we present an embedding algorithm based on the permutation routing. The

permutation routing is to construct paths connecting given pairs of source and destina-

tion nodes such that no two pairs have the same sources or the same destinations. This

embedding algorithm achieves an edge-congestion as stated in the following theorem:

3



Theorem 1. Any graph with N nodes and maximum node degree ∆ can be embedded

into a d-dimensional ℓ1 × · · · × ℓd-grid (
∏d

i=1 ℓi ≥ N) with a dilation at most 2
∑d

i=1 ℓi

and an edge-congestion at most 2⌈∆/2⌉ ·maxi{ℓi}.

We prove this theorem in Sect. 4.1 by observing that for any one-to-one mapping of

nodes of a guest graph G to nodes of a host graph H, routing edges of G on H can be

reduced to at most ⌈∆/2⌉ instances of permutation routing, and that the permutation

routing algorithm proposed in [21] has an edge-congestion at most 2 · maxi{ℓi}. The-

orem 1 achieves an edge-congestion of 2⌈∆/2⌉⌈N1/d⌉ if ℓi = ⌈N1/d⌉ for each i. It is

worth noting that this edge-congestion can slightly be improved if the host grid H is

a d-dimensional cube. It is well-known that any one-to-one mapping of 2d+1 inputs to

2d+1 outputs on a d-dimensional Beneš network can be routed with the edge-congestion

1 [22]. We can easily observe that mapping the nodes in each row of the Beneš net-

work to each node of H induces a (many-to-one) embedding with the edge-congestion

4. Because each node of H has exactly two inputs and two outputs in a row of the Beneš

network, any pair of instances of permutation routing on H can be routed with an edge-

congestion at most 4. At most ⌈∆/2⌉ instances of permutation routing, obtained from

any one-to-one mapping of nodes of G to nodes of H and from edges of G, can be

grouped into ⌈⌈∆/2⌉/2⌉ = ⌈∆/4⌉ pairs of instances of permutation routing. Therefore,

G can be embedded into a ⌈log2 N⌉-dimensional cube with an edge-congestion at most

4⌈∆/4⌉.
Second, we present an embedding algorithm based on separators that achieves an

edge-congestion as stated in the following theorem:

Theorem 2. Suppose that G is a graph with N nodes, maximum node degree ∆, and

with a node-separator of size s(n) = O(nα) (0 ≤ α < 1), and that M is a grid with a

fixed dimension d ≥ 2, at least N nodes, and with constant aspect ratio. Then, G can

be embedded into M with a dilation of O(dN1/d), and with an edge-congestion of O(∆)

if d > 1/(1 − α), O(∆ log N) if d = 1/(1 − α), and O(∆Nα−1+ 1
d ) if d < 1/(1 − α).

The basic idea of Theorem 2 is to partition the guest graph and the host grid using

their edge-separators, embed the partitioned guest graphs into the partitioned host grids

recursively, and to route cut edges of the guest graph on the host grid. We use Theo-

rem 1 to route cut edges with a nearly minimum edge-congestion in each recursive step.

However, just doing this is not sufficient for our goal. In fact, we need further tech-

niques to suppress the total edge-congestion incurred by whole recursive steps from

upper to lower levels. There are two reasons of the insufficiency.

The first reason is that recursive steps from upper to lower levels may use the same

edge of the grid, which yields an edge-congestion ofΩ(log N) if we minimize the edge-

congestion only in each individual recursive step. This is a crucial barrier to achieve an

edge-congestion of O(∆) for d > 1/(1− α). To solve this, we divide the edge set of the

grid into Θ(log N) subsets of appropriate size and use each subset only in a constant

number of recursive steps.

The second and more significant reason is that a small subgraph of the guest graph

to be embedded in a lower recursive step may have nodes incident to quite a large num-

ber of edges that have been cut in upper levels, which yields a large edge-congestion.

4



Specifically, if such a subgraph has n nodes and x outgoing edges to the other part of the

guest graph, then because a subgrid into which the subgraph is embedded has O(dn1− 1
d )

outgoing edges, the edge-congestion is lower bounded by x/O(dn1− 1
d ) = Ω(xn

1
d
−1/d).

A standard edge-separator aims to minimize the number of edges to be cut to parti-

tion a graph. Thus, if we recursively use such edge-separators to partition a graph into

small pieces, then although the number of cut edges in each recursive step is bounded,

the number of outgoing edges from a subgraph to be embedded in a lower recursive

step may become extremely large compared to the number of nodes of the subgraph.

Therefore, we introduce edge-separators bounding extension, i.e., the number of outgo-

ing edges from a subgraph in each recursive step, and present an algorithm to construct

an edge-separator with extension of O(∆nα) from a node-separator of size O(nα). We

describe the algorithm for edge-separators with bounded extension in Sect. 3 and prove

Theorem 2 in Sect. 4.2.

Theorem 2 achieves constant ratio approximation for a fixed d > 1/(1−α) because

any embedding has an edge-congestion at least ∆/(2d). If d ≤ 1/(1−α), then the edge-

congestion of Theorem 2 matches an existential lower bound within a constant factor.

The lower bound of Ω(log N) for d = 1/(1 − α) = 2 and ∆ = O(1) is derived from the

following fact: There exists an N-node guest graph with constant degree and a node-

separator of size s(n) = O(
√

n) whose any embedding into a 2-dimensional grid with

the edge-congestion 1 requires Ω(N log2 N) nodes of the grid [23].1 This implies that

any embedding of the guest graph into a 2-dimensional grid with N nodes requires an

edge-congestion of Ω(log N). This is because we can easily transform an embedding

into an N-node grid with an edge-congestion c into another embedding into an O(c2N)-

node grid with the edge-congestion 1 by replacing each row and each column of the

N-node grid with O(c) rows and O(c) columns, respectively.2 A similar transformation

for VLSI layout is described in [15].

The lower bound of Ω(∆Nα−1+ 1
d ) for d < 1/(1 − α) can be obtained as follows: We

consider a guest graph G with N nodes and a node-separator of size s(n) = nα such

that each node in a cut set U ⊆ V(G) with |U | = Nα is adjacent to every other node

in G. The graph G obviously has ∆ = N − 1. Suppose that we arbitrarily divide V(G)

into two subsets of the same size. Then, at least (|U |/2)(N − 1)/2 = ∆Nα/4 edges join

nodes in one of the subsets and nodes in the other subset because at least half nodes

of U are contained in one of the subsets and adjacent to all nodes in the other subset.

On the other hand, we can divide a d-dimensional N-node grid into two subgrids of the

same size by removing O(N1− 1
d ) edges. Thus, any embedding of G into the grid has an

edge-congestion at least (∆Nα/4)/O(N1− 1
d ) = Ω(∆Nα−1+ 1

d ).

Theorem 2 has the following applications. It is well-known that any planar graph

has a node-separator of size s(n) = O(
√

n) [24]. This was generalized in [25] so

that any graph with an excluded minor of a fixed size has a node-separator of size

s(n) = O(
√

n). Therefore, we obtain the following corollary:

1Strictly, this result is proved for the VLSI layout model. However, we can easily generalize this result

to the embedding model considered in this paper.
2It should be noted that the inverse transformation cannot be done in such a simple way. In fact, we do

not know whether or not the inverse transformation is always possible.
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Corollary 1. Any graph with N nodes, maximum node degree ∆, and with an excluded

minor of a fixed size can be embedded into a grid of a fixed dimension d with at least N

nodes and constant aspect ratio, with an edge-congestion of O(∆ log N) for d = 2 and

O(∆) for d ≥ 3.

Graphs with a fixed treewidth, such as trees, outerplanar graphs, and series-parallel

graphs have a node-separator of a fixed size [26]. Therefore, we obtain the following

corollary:

Corollary 2. Any graph with N nodes, maximum node degree ∆, and with a fixed

treewidth can be embedded into a grid of a fixed dimension at least 2 with at least

N nodes and constant aspect ratio, with an edge-congestion of O(∆).

Our separator-based embedding algorithm performs in a polynomial time on the

condition that a separator of the guest graph is given. Although finding a separator of

minimum size is generally NP-hard [27, 28], approximation algorithms presented in

[14, 29, 30] can be applied to our algorithm.

All our embedding algorithms yield a dilation of order of the diameter of the host

grid. Although such a dilation is trivial when only the dilation is minimized, this is not

the case when edge-congestion is minimized. As we will demonstrate in Sect. 5, in fact,

there exists an N-node guest graph whose any embedding with the edge-congestion 1

into an N-node 2-dimensional grid requires a dilation of Θ(N), far from the diameter

Θ(
√

N). We do not know whether or not we can always achieve both a dilation of

the host grid’s diameter (even with a multiplicative constant factor) and constant ratio

approximation for edge-congestion. This is negative if the host graph is general. As an

example, suppose that H is the host graph obtained from a complete binary tree with

N leaves by adding edges so that the leaves induce a
√

N ×
√

N-grid. To be precise,

the N/2i leaves of a subtree rooted by a node at an even distance i to the root induce

a
√

N/2i ×
√

N/2i-subgrid. If the guest graph G is an N-node complete graph, then

any embedding of G into H with a dilation of the diameter O(log N) of H has an edge-

congestion of Ω(N2) because Ω(N2) edges of G must be routed through a single node

of the tree part in H to achieve such a dilation, while G can be embedded into the grid

part in H with a dilation of O(
√

N) and an edge-congestion of O(N3/2) using a simple

row-column routing.

2. Preliminaries

For a directed or undirected graph G, V(G) and E(G) are the node set and edge set

of G, respectively. In the rest of the paper, we call undirected graphs simply graphs.

We denote the set of integers {i | 1 ≤ i ≤ ℓ} by [ℓ]. For a d-dimensional vector

v := (xi)i∈[d], let π j(v) := x j and π̄ j(v) := (xi)i∈[d]\{ j} for j ∈ [d]. We use π j and π̄ j also

for a set of vectors and for a directed graph whose nodes are vectors. I.e., for a set V

of d-dimensional vectors, we denote {π j(v) | v ∈ V} and {π̄ j(v) | v ∈ V} by π j(V) and

π̄ j(V), respectively. Moreover, for a directed graph G with V(G) = V , we denote the

graph with the node set π̄ j(V(G)) and edge multiset {(π̄ j(u), π̄ j(v)) | (u, v) ∈ E(G)} by

π̄ j(G). For positive integers ℓ1, . . . , ℓd, the d-dimensional ℓ1 × · · · × ℓd-grid, denoted

by M(ℓi)i∈[d], is a graph with the node set
∏

i∈[d][ℓi], i.e., the Cartesian product of sets
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M(2, 3)
R

M(3)
π̄1(R)

(1,1) (1,2) (1,3)

(2,1) (2,2) (2,3)

1 2 3

Figure 1: A routing graph R on M(2, 3) and π̄1(R) on M(3).

[ℓ1], . . . , [ℓd], and edge set {{u, v} | ∃ j ∈ [d] π j(u) = π j(v)±1, π̄ j(u) = π̄ j(v)}. The aspect

ratio of M(ℓi)i∈[d] is maxi, j∈[d]{ℓ j/ℓi}. An edge {u, v} of M(ℓi)i∈[d] with π j(u) = π j(v) ± 1

is called a dimension- j edge. The grid M(ℓi)i∈[d] is called the d-dimensional cube if

ℓi = 2 for every i ∈ [d].

A routing request on a graph H is a pair of nodes, a source and target, of H. A

multiset of routing requests can be represented as a routing graph R with the node set

V(H) and directed edges joining the sources and targets of all the routing requests. It

should be noted that R may have parallel edges and loops. In particular, if H is a d-

dimensional grid, then π̄ j(R) is a routing graph with the multiset of edges (π̄ j(u), π̄ j(v))

for every (u, v) ∈ E(R) on the (d − 1)-dimensional grid with node set π̄ j(V(H)) (cf.

Fig. 1). R is called a p-q routing graph if the maximum outdegree and indegree of R are

at most p and q, respectively. A 1-1 routing graph is also called a permutation routing

graph. We define a routing of R as a mapping ρ that maps each edge (u, v) ∈ E(R) onto

a set of edges of H inducing a path connecting u and v. We denote ρ((u, v)) simply by

ρ(u, v). The dilation and edge-congestion of ρ are maxe∈E(R) |ρ(e)| and maxe′∈E(H) |{e ∈
E(R) | e′ ∈ ρ(e)}|, respectively.

An embedding 〈φ, ρ〉 of a graph G into a graph H is a pair of mappings consist-

ing of a mapping φ : V(G) → V(H) and a routing ρ of an arbitrary orientation of

the graph with the node set V(H) and edge set {{φ(u), φ(v)} | {u, v} ∈ E(G)}. The

dilation and edge-congestion of the embedding 〈φ, ρ〉 are defined as the dilation and

edge-congestion of ρ, respectively. The load and expansion of 〈φ, ρ〉 is maxv∈V(H) |{u ∈
V(G) | φ(u) = v}| and |V(H)|/|V(G)|, respectively.

3. Edge-Separators with Bounded Extension

The (recursive) node- and edge-separators are formally defined as follows: Let

1/2 ≤ β < 1 and s(n) be a non-decreasing function. A graph G has a β-node(edge,

resp.)-separator of size s(n) if |V(G)| = 1, or if G can be partitioned into two subgraphs

with at most β|V(G)| nodes (⌈β|V(G)|⌉ nodes, resp.) and with no edges connecting the

subgraphs by removing at most s(|V(G)|) nodes (edges, resp.), and the subgraphs re-

cursively have a β-node(edge, resp.)-separator of size s(n). The process of partitioning

G into isolated nodes using the edge-separator repeatedly is often referred to as a de-

composition tree. The decomposition tree T is a rooted tree having a set of subgraphs

7



Figure 2: A (1/2)-decomposition tree for M(2, 4) with extension 3. Dashed lines represent external edges of

nodes of the decomposition tree.

of G as its node set V(T ) such that the root of T is G, each non-leaf node H ∈ V(T )

has exactly two children obtained from H by removing the edge-separator of H, and

that each leaf node of T consists of a single node of G. We call T a β-decomposition

tree with extension x(n) if it can be constructed using a β-edge-separator, and for each

H ∈ V(T ), at most x(|V(H)|) edges (called external edges of H in this paper) connect

V(H) and V(G) \ V(H) (cf. Fig. 2).

A decomposition tree with reasonably small extension can be obtained from a node-

separator as stated in the following lemma:

Lemma 1. Any graph G with maximum node degree ∆ and a β-node-separator of size

s(n) = Cnα (C > 0, 0 ≤ α < 1, 1/2 ≤ β < 1) has a
β

1−ǫ -decomposition tree with

extension x(n) = O(C∆nα/ǫ), where 0 < ǫ < 1 − β.

Proof. We present an algorithm constructing a desired decomposition tree T . We

initially set G as the root of T and construct T from the root toward leaves. Assume

that we have constructed T up to depth (distance to the root) i − 1 ≥ 0. For a subgraph

H of G at depth i − 1 in T , we construct children H1 and H2 of H as follows:

1. We inductively assume the following:

(a) Each node of T up to depth i − 1 has been constructed by partitioning a

subgraph of G using a β-node-separator and distributing the node-separator

between the partitioned graphs. Let Xi−1 be the set of nodes of H contained

in the node-separator used for any ancestor of H in T .

(b) All the external edges of H are incident to nodes in Xi−1.

(c) The graph H′ obtained from H by removing Xi−1 has a β-node-separator

S i ⊆ V(H′) of size Cnα.

It should be noted that X0 = ∅, and therefore, these assumptions hold if H = G.
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H′1 H′2

Xi−1

S i

Y1

H1 H2

Y2

H

H′

Figure 3: Partition of H into H1 and H2.

2. If C|V(H′)|α ≤ ǫ|V(H′)|, then we partition H′ into subgraphs H′
1

and H′
2

using

the node-separator S i with |S i| ≤ C|V(H′)|α. It follows that |V(H′
1
)| + |V(H′

2
)| =

|V(H′)| − |S i| ≥ (1 − ǫ)|V(H′)| ≥ 1−ǫ
β
|V(H′

1
)|. Assume without loss of generality

that |V(H′
1
)| ≥ |V(H′

2
)|. Then, there exists 1/2 ≤ β′ ≤ β

1−ǫ with |V(H′
1
)| =

β′(|V(H′
1
)| + |V(H′

2
)|).

3. If C|V(H′)|α > ǫ|V(H′)|, then reset S i := V(H′), and arbitrarily choose 1/2 ≤
β′ ≤ β

1−ǫ .

4. Partition Xi−1∪S i into two disjoint sets Y1 and Y2 such that |Y1| = ⌈β′(|Xi−1|+|S i|)⌉
and |Y2| = ⌊(1 − β′)(|Xi−1| + |S i|)⌋.

5. Let H j be the subgraph of H induced by V(H′
j
) ∪ Y j for j = 1, 2. We illustrate

the construction in Fig. 3.

We first observe that H1 and H2 satisfy the inductive assumptions of the algorithm.

For j ∈ {1, 2}, by inductive assumption, Y j is the set of nodes of H j contained in

the node-separator used for an ancestor of H j. As shown in Fig. 3, all the external

edges of H j are incident to nodes of Y j. Moreover, the subgraph of H j obtained by

removing Y j is H′
j
, which is the subgraph of H′ partitioned by the node-separator S i

of H′. Therefore, H′
j
has a β-node-separator of size Cnα.

We then estimate the numbers of nodes of H1 and H2. By definition, it follows that

|V(H1)| = |V(H′1)| + |Y1| = β′(|V(H′1)| + |V(H′2)|) + ⌈β′(|Xi−1| + |S i|)⌉
= ⌈β′|V(H)|⌉, and

(1)

|V(H2)| = |V(H′2)| + |Y2| = (1 − β′)(|V(H′1)| + |V(H′2)|) + ⌊(1 − β′)(|Xi−1| + |S i|)⌋
= ⌊(1 − β′)|V(H)|⌋ ≤ β′|V(H)|.

(2)

These imply that the algorithm constructs T as a β′-decomposition tree of G.

We finally prove that for j = 1, 2, H j has O(C∆|V(H j)|α/ǫ) external edges, implying

extension O(C∆nα/ǫ) of T . We prove this only for H1 because the proof for H2 is

obtained with a similar argument. Because all the external edges of H1 are incident to

Y1, it suffices to show that |Y1| = O(C|V(H1)|α/ǫ). When we construct children of H1

using the algorithm, Xi is set to Y1. Let ni := |V(H1)| and n j (0 ≤ j < i) be the number

9



of nodes of the ancestor of H1 at depth j in T . Moreover, let β j (1 ≤ j ≤ i) be β′ or

1 − β′ defined in Step 2 or 3 in partitioning the ancestor at depth j − 1. This implies

that n j = ⌈β jn j−1⌉ as in (1) or n j = ⌊β jn j−1⌋ as in (2). Therefore,

n j ≤ ⌈β jn j−1⌉ ≤ β jn j−1 + 1 ≤ n0

j
∏

h=1

βh +

j
∑

ℓ=1

j
∏

h=ℓ+1

βh = n0

j
∏

h=1

βh + O(1), and (3)

n j ≥ ⌊β jn j−1⌋ ≥ β jn j−1 − 1 ≥ n0

j
∏

h=1

βh −
j

∑

ℓ=1

j
∏

h=ℓ+1

βh = n0

j
∏

h=1

βh − O(1). (4)

Here, we have used the fact that
∑ j

ℓ=1

∏ j

h=ℓ+1
βh ≤

∑ j

ℓ=1
(
β

1−ǫ ) j−ℓ = O(1). By the defini-

tion of Y1, we have the following recurrence of |Xi|:

|Xi| = |Y1| = ⌈βi(|Xi−1| + |S i|)⌉ ≤ βi(|Xi−1| + |S i|) + 1 ≤
i

∑

j=1

|S j|
i

∏

h= j

βh +

i
∑

j=1

i
∏

h= j+1

βh.

The number |S j| is less than Cnα
j−1
/ǫ because |S j| ≤ C|V(H′)|α ≤ Cnα

j−1
< Cnα

j−1
/ǫ if

S j is defined in Step 2, and |S j| = |V(H′)| < C|V(H′)|α/ǫ ≤ Cnα
j−1
/ǫ if S j is defined in

Step 3. Moreover,
∑i

j=1

∏i
h= j+1 βh = O(1) as estimated for (3) and (4). Therefore,

|Y1| <
i

∑

j=1

Cnα
j−1

ǫ

i
∏

h= j

βh + O(1) ≤
i

∑

j=1

C

ǫ

















n0

j−1
∏

h=1

βh + O(1)

















α
i

∏

h= j

βh + O(1) [by (3)]

= O

















Cnα
0

ǫ

i
∑

j=1

j−1
∏

h=1

βαh ·
i

∏

h= j

βh

















= O

















Cnα
0

ǫ

i
∏

h=1

βαh ·
i

∑

j=1

i
∏

h= j

β1−α
h

















= O

















C

ǫ















n0

i
∏

h=1

βh















α

·
i

∑

j=1

(

β

1 − ǫ

)(1−α)(i− j+1)
















= O

(

C

ǫ
(ni + O(1))α · O(1)

)

[by (4)]

= O

(

Cnα
i

ǫ

)

.

Therefore, T is a desired decomposition tree. �

4. Embedding Algorithm

In this section, we first prove Theorem 1 by estimating the edge-congestion of

the previously known permutation routing algorithm on multidimensional grids pre-

sented in [21]. We then provide an embedding algorithm based on edge-separators

with bounded extension as well as the permutation routing algorithm. Combining this

algorithm with Lemma 1, we prove Theorem 2.
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4.1. Permutation Routing and Embedding

Any permutation routing can be used to construct a graph embedding as follows:

Lemma 2. If any 1-1 routing graph on a host graph H can be routed with an edge-

congestion at most c, then any graph with maximum node degree ∆ can be embedded

into H with an edge-congestion at most c⌈∆/2⌉.

Proof. Let G be a graph with maximum node degree ∆ to be embedded into H. We

arbitrarily choose a one-to-one mapping φ : V(G) → V(H). Let G′ be the graph with

node set φ(V(G)) and edge set {{φ(u), φ(v)} | {u, v} ∈ E(G)}. Because G′ is an undirected

graph with maximum node degree ∆, there is an orientation R of G′ whose maximum

indegree and outdegree are both at most ⌈∆/2⌉. Such an orientation can be obtained by

adding dummy edges joining nodes with odd degree so that the resulting graph has an

Euler circuit, and by orienting edges along with the Euler circuit. It suffices to prove

that R as a routing graph on H can be routed with an edge-congestion at most c⌈∆/2⌉.
We decompose R into at most ⌈∆/2⌉ edge-disjoint 1-1 routing graphs each of which

has nodes V(R) and edges with the same color in an edge-coloring of R such that no

two edges with the same sources or with the same targets have the same color. Such

coloring can be obtained by edge-coloring the bipartite graph consisting of the source

and target sets of R, i.e., two copies V+ and V− of V(R), and edges joining u ∈ V+ and

v ∈ V− for all (u, v) ∈ E(R). It should be noted that the resulting bipartite graph has

node-degree at most ⌈∆/2⌉, and hence, ⌈∆/2⌉ colors are enough for the coloring [31].

Therefore, R can be routed on H with an edge-congestion at most c⌈∆/2⌉ if each of the

1-1 routing graphs can be routed with an edge-congestion at most c. �

The algorithm of [21] routes a 1-1 routing graph R on M := M(ℓi)i∈[d] as follows:

1. Color edges of R using at most ℓ1 colors so that when we identify edges in R

with corresponding edges in π̄1(R), no two edges with the same sources or with

the same targets in π̄1(R) have the same color. This coloring can be obtained as

done in the proof of Lemma 2. It should be noted that π̄1(R) is a ℓ1-ℓ1 routing

graph with node set π̄1(V(M)).

2. Decompose R into edge-disjoint subgraphs R1, . . . ,Rℓ1
each of which has nodes

V(R) and edges with the same color.

3. For each i ∈ [ℓ1], π̄1(Ri) is a 1-1 routing graph with node set π̄1(V(M)). There-

fore, we can recursively find a routing ρi of π̄1(Ri) on the (d − 1)-dimensional

subgrid Mi induced by the nodes {v ∈ V(M) | π1(v) = i}. If d = 2, i.e., if Mi is a

path, then ρi simply routes each routing request of π̄1(Ri) on the path connecting

its source and target in Mi.

4. We route each (s, t) ∈ E(Ri) on the edge set consisting of dimension-1 edges

connecting s to Mi, ρi(π̄1(s), π̄1(t)), and dimension-1 edges connecting t to Mi.

We can easily observe that in this algorithm, any dimension-i edge of M is con-

tained in at most 2ℓi images of ρ. Moreover, each image of ρ contains at most 2ℓi

dimension-i edges. I.e., ρ has an edge-congestion of 2 · maxi∈[d]{ℓi} and a dilation of

2
∑d

i=1 ℓi. This property and Lemma 2 prove Theorem 1. With our aim of using this

permutation routing algorithm to prove Theorem 2, we generalize this property as the

following lemma:
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Lemma 3. Let R be a routing graph on M := M(ℓi)i∈[d] with d ≥ 2 and ℓh :=

maxi∈[d]{ℓi}. If π̄h(R) is a p-q routing graph with node set π̄h(V(M)), then R can

be routed on M with a dilation at most 2
∑d

i=1 ℓi and an edge-congestion at most

2 ·max{p, q}.

Proof. Assume without loss of generality that h = 1 and ℓ1 ≥ · · · ≥ ℓd. We prove

the lemma by induction on d. If d = 2, then R has at most ℓ2 · max{p, q} edges. We

decompose R into ℓ1 edge-disjoint subgraphs R1, . . . ,Rℓ1
so that

⋃ℓ1

i=1
E(Ri) = E(R) and

|E(Ri)| ≤ ⌈ℓ2 · max{p, q}/ℓ1⌉ ≤ max{p, q} for i ∈ [ℓ1]. For each i ∈ [ℓ1], π̄1(Ri) can be

routed on the 1-dimensional grid Mi induced by the nodes {v ∈ V(M) | π1(v) = i} with

a dilation at most ℓ2 and an edge-congestion at most max{p, q}. The routing of R is

completed by adding the dimension-1 edges connecting s to Mi and t to Mi for each

(s, t) ∈ E(Ri). Any dimension-1 edge has a congestion at most p+q. Moreover, at most

2ℓ1 dimension-1 edges are added to each image of the routing. Therefore, we have the

lemma for d = 2.

If d ≥ 3, then we color edges of R using at most ℓ2 ·max{p, q} colors so that when

we identify edges in R with corresponding edges in π̄2(π̄1(R)), no two edges with the

same sources or with the same targets in π̄2(π̄1(R)) have the same color. Such coloring

exists because π̄2(π̄1(R)) is a ℓ2 p-ℓ2q routing graph with node set π̄2(π̄1(V(M))). Then,

we decompose R into ℓ1 edge-disjoint subgraphs R1, . . . ,Rℓ1
that have edge sets with

disjoint sets of ⌈ℓ2 · max{p, q}/ℓ1⌉ ≤ max{p, q} colors. This implies that π̄2(π̄1(Ri))

is a max{p, q}-max{p, q} routing graph with node set π̄2(π̄1(V(M))) for i ∈ [ℓ1]. By

induction hypothesis, π̄1(Ri) can be routed on the (d − 1)-dimensional subgrid induced

by the nodes {v ∈ V(M) | π1(v) = i} with a dilation at most 2
∑d

i=2 ℓi and an edge-

congestion at most 2 ·max{p, q}. The routing of R is completed by adding dimension-1

edges as done in the case of d = 2, so that any dimension-1 edge has congestion at

most p + q, and at most 2ℓ1 dimension-1 edges are added to each image of the routing.

Thus, we have routed R with a dilation at most 2
∑d

i=1 ℓi and an edge-congestion at most

2 ·max{p, q}. �

If we do not have the assumption ℓh = maxi∈[d]{ℓi} in Lemma 3, then we can es-

timate ⌈ℓ2 · max{p, q}/ℓ1⌉ ≤ ⌈µ · max{p, q}⌉ in its proof, where µ is the aspect ratio

of M. This means that |E(Ri)| ≤ ⌈µ · max{p, q}⌉ for d = 2, and that π̄2(π̄1(Ri)) is a

⌈µ · max{p, q}⌉-⌈µ · max{p, q}⌉ routing graph on π̄2(π̄1(M)) for d ≥ 3. Therefore, ini-

tially assuming without loss of generality that ℓ1 = ℓh and ℓ2 ≥ · · · ≥ ℓd in the proof,

we have the following lemma:

Lemma 4. Let R be a routing graph on M := M(ℓi)i∈[d] with d ≥ 2 and aspect ratio µ.

If π̄h(R) is a p-q routing graph with node set π̄h(V(M)) for some h ∈ [d], then R can

be routed on M with a dilation at most 2
∑d

i=1 ℓi and an edge-congestion at most 2⌈µ ·
max{p, q}⌉.

4.2. Separator-Based Embedding

The following is our core theorem:

Theorem 3. Suppose that G is a graph with N nodes, maximum node degree ∆, and

with a β-decomposition tree of extension x(n) = Cnα (C > 0, 0 ≤ α < 1, 1/2 ≤ β < 1),
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and that M is a grid with a dimension d ≥ 2, at least N nodes, and with constant

aspect ratio. Then, G can be embedded into M with a dilation of O(dN1/d), and with

an edge-congestion of O(dC + d2∆) if d > 2/(1 − α), O(C/(1 − α − 1
d
) + d2∆) if

1/(1 − α) < d ≤ 2/(1 − α), and O(C(Nα−1+ 1
d + log N) + d2∆) if d ≤ 1/(1 − α),

In fact, we can obtain Theorem 2 by combining Theorem 3 with Lemma 1. If G is

a graph with N nodes, maximum node degree ∆, and with a β-node-separator of size

O(nα), then by Lemma 1, G has a
β

1−ǫ -decomposition tree with extension O(∆nα/ǫ) =

O(∆nα) for any 0 < ǫ < 1−β. By Theorem 3, therefore, G can be embedded into M with

a dilation of O(dN
1
d ), and with an edge-congestion of O(∆·max{d, 1/(1−α− 1

d
)}+d2∆) =

O(∆) if d > 1/(1−α) is fixed, O(∆(Nα−1+ 1
d +log N)+d2∆) = O(∆ log N) if d = 1/(1−α),

and O(∆(Nα−1+ 1
d + log N) + d2∆) = O(∆Nα−1+ 1

d ) if d < 1/(1 − α).

We prove Theorem 3 by constructing a desired embedding algorithm, called SBE.

We first outline ideas and analysis of SBE, then specify the definition of SBE, and

finally prove the correctness and the edge-congestion.

Proof Sketch

We describe a proof sketch for the case 1/(1 − α) < d ≤ 2/(1 − α) since the

essential part of idea appears in this case. Basically, we partition G according to its

decomposition tree, recursively embed the partitioned subgraphs of G into separated

subgrids of the host grid M := M(ℓi)i∈[d], and route cut edges, i.e., edges removed in

partitioning G. In order to avoid an edge of M being used in too many recursive steps,

we route the cut edges on one of edge-disjoint subgraphs of M, called channels. The

channel associated with a positive integer w roughly equal to 1
2
(1 − α − 1

d
) log2 N is

a grid-like graph homeomorphic3 to M′ := M( ℓ1

2w ,
ℓ2

2w , ℓ3, . . . , ℓd) and induced by the

nodes v ∈ V(M) with πi(v) ≡ 2w−1 (mod 2w) for each i = 1, 2. We can find the channel

in M as a non-empty subgraph if d ≤ 2/(1 − α). When we embed an n-node subgraph

H of G appeared in the decomposition tree, we partially route the external edges of

each child of H to the channel associated with w ≃ 1
2
(1 − α − 1

d
) log2 n and route the

cut edges of H by connecting the two sets of the external edges of children of H on this

channel. We here say “partially” in two meanings: One meaning is that external edges

are viewed as half-edges just leaving a child of H and are routed halfway. The other is

that an external edge leaving a node in the decomposition tree is also an external edge

of some descendants and is routed step by step among recursive steps. I.e., a cut edge

is routed by connecting two partially routed external edges of the children, which are

recursively routed using partially routed external edges of grandchildren, and so on.

Consequently, cut edges of H are routed through channels associated with integers up

to 1
2
(1 − α − 1

d
) log2 n in recursive steps from base embeddings to the embedding of H.

The section of M′ across a dimension i is a (d − 1)-dimensional grid with node set

π̄i(V(M′)). If M′ is associated with w = 1
2
(1 − α − 1

d
) log2 n, then the minimum size S

of the section is mini |π̄i(V(M′))| = Ω(n(d−1)/d/22w) = Ω(n1− 1
d /2(1−α− 1

d
) log2 n) = Ω(nα).

Since H and children of H have at most Cnα external edges, we route the external edges

3A graph X is homeomorphic to a graph Y if some subdivision of X, i.e., a graph obtained from X by

subdividing some edges of X is isomorphic to some subdivision of Y .
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(or half-edges) of each child to the channel so that at most D := Cnα/S = O(C) halfway

points v have the same π̄i(v), where i minimizes |π̄i(V(M′))|. We can inductively ob-

serve that this routing can be done with an edge-congestion O(D) using Lemma 3.

The integer w is decremented by at least 1 in P = O(1/(1 − α − 1
d
)) recursive steps

because a guest graph is partitioned into two graphs of roughly the same size in one

recursive step. Therefore, the total edge-congestion incurred by entire recursive steps

is at most O(PD) = O(C/(1 − α − 1
d
)) since channels associated with different w’s are

edge-disjoint. We stop the recursive procedure at the point min{ℓi} = Θ(d), by which

we can obtain a base embedding with an edge-congestion B = O(d∆) using Lemmas

2–4. Because an edge of M can possibly be contained in O(d) base embeddings, the

total edge-congestion is at most O(PD + dB) = O(C/(1 − α − 1
d
) + d2∆).

The reason of the limit min{ℓi} = Θ(d) of recursive procedure is as follows: We

cannot always separate the host grid with a “flat” section due to the difference between

the number of nodes of a partitioned guest graph and multiples of the size of the section.

In our algorithm, therefore, we separate a host grid into two subgrids that may share a

(d−1)-dimensional grid as “ragged” sections. Such a (d−1)-dimensional grid might be

used as channels in two separated grids during O(d) recursive steps in the worst case,

which would yield a 2O(d) factor in the edge-congestion. To avoid this, we actually

remove any boundary of a host grid from a channel, so that two separated grids have

disjoint channels. However, we might have an exponential factor again if we would

continue the recursive procedure until min{ℓi} is much smaller than d. For instance,

if min{ℓi} = O(1), then removal of the boundary for each dimension would shrink the

channel exponentially, implying S = nα/2O(d) and hence D = O(C2O(d)).

Definition of SBE

Suppose that G0 and M0 are a guest graph and a host grid, respectively, satisfying

the conditions of Theorem 3. Let T be a β-decomposition tree for G0 with exten-

sion Cnα. We define a number µ as follows:

µ := max

{

aspect ratio of M0,
1

1 − β

(

1

7β
+ eβ

)

+
5

4

}

> 4,

where e is base of the natural logarithm. It should be noted that µ > 4 by 1
1−β ( 1

7β
+eβ)+

5
4
> 4. We assume that any proper subgrid of M0 has less than N nodes.

We use the following notations to define SBE formally: Let Vw := {v ∈ V(M0) |
πi(v) ≡ 2w−1 (mod 2w) for each i = 1, 2} for an integer w ≥ 1, and let V0 := V(M0).

For a d-dimensional subgrid M of M0, let Ww
M

:= {v ∈ Vw ∩ V(M) | degM(v) = 2d},
where degM(·) is the node degree in M. The channel of Ww

M
is the subgraph of M

homeomorphic to a d-dimensional grid having Ww
M

as grid points. Specifically, this

graph is induced by the node set Ww
M
∪ {s ∈ V(M) | ∃i ∈ {1, 2} ∃{u, v} ⊆ Ww

M
πi(u) <

πi(s) < πi(v) = πi(u) + 2w, π̄i(u) = π̄i(s) = π̄i(v)}. Two channels in M(8, 8, 4) are

illustrated in Fig. 4. It should be noted that for any w > w′ ≥ 1, Ww
M
∩ Ww′

M
= ∅

and channels of Ww
M

and Ww′

M
are edge-disjoint. The direction of Ww

M
is a dimension

i ∈ [d] minimizing S
i,w

M
:= |π̄i(W

w
M

)|. In other words, the direction is a dimension

of the longest side length of a grid having grid points Ww
M

. In Fig. 4, the channel

for w = 1 has direction 1 or 2 because S 1,1
M
= S 2,1

M
= 6 and S 3,1

M
= 9. A mapping
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Figure 4: Channels of W1
M

and W2
M

for M = M(8, 8, 4). Black nodes are contained in W1
M

or W2
M

. Dashed

lines represent dimension-1 and -2 edges of the channel of W2
M

.

ψ : X → Ww
M

is said to be uniform across dimension i if ψ(X) are uniformly distributed

on π̄i(W
w
M

), i.e., λi(ψ) := maxv∈π̄i(W
w
M

) |{s ∈ X | π̄i(ψ(s)) = v}| = ⌈|X|/S i,w

M
⌉. In Fig. 4,

for example, if ψ : [4] → W1
M

maps 1, 2, 3, 4 to (3, 3, 2), (3, 5, 2), (5, 3, 3), (5, 5, 3),

respectively, then ψ is uniform across dimensions both 1 and 3 but not dimension 2

because λ1(ψ) = 1 = ⌈|[4]|/S 1,1
M
⌉ = ⌈4/6⌉, λ2(ψ) = 2 > ⌈|[4]|/S 2,1

M
⌉ = ⌈4/6⌉, and

λ3(ψ) = 1 = ⌈|[4]|/S 3,1
M
⌉ = ⌈4/9⌉. We note here that for any two dimensions i and j, we

can construct ψ uniform across dimensions both i and j by uniformly distributing ψ(X)

among nodes on a (d − 1)-dimensional diagonal hyperplane between dimensions i and

j in Ww
M

.

Step 0—Input and Output

The formal input and output of SBE is as follows:

Algorithm SBE(G, X, M, U).

Input

• An n-node subgraph G of G0 contained in V(T ).

• A multiset X of nodes of G incident to distinct external edges of G, i.e.,

a node appears in X as many times as the number of the external edges

incident to the node.

• A subgrid M = M(ℓi)i∈[d] of M0 with aspect ratio at most µ, together with

a set U ⊆ V(M) such that U ⊇ {v ∈ V(M) | degM(v) = 2d} and |U | = n.

Suppose that h is a dimension such that ℓh = maxi∈[d]{ℓi}.

Output

• An embedding 〈φ, ρ〉 of G into M such that φ(V(G)) = U.
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dimension 1
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Figure 5: An example of separation a host grid M with 50 nodes in U (represented by black nodes) into a

grid M1 with |U1 | = 20 and a grid M2 with |U2 | = 30. We choose h = 2 here.

• A mapping ψ : X → Ww
M

uniform across the direction k of Ww
M

, where

w ≥ 0 is an integer defined in Step 1.

• A routing σ of the routing graph with node set φ(X) ∪ ψ(X) and edge set

{(φ(u), ψ(u)) | u ∈ X}.

Initially, we arbitrarily choose U as desired and perform SBE(G0, ∅, M0, U).

Step 1—Channel Configuration

This step sets an integer w, by which we configure the channel of Ww
M

to route

ρ and σ. We define w := max{⌊ 1
2
((1 − α̃ − 1

d
) log2 n − log2

µ

1−β )⌋, 0}, where α̃ :=

max{1 − 2
d
, α}. In other words, w = max{⌊ 1

2
( 1

d
log2 n − log2

µ

1−β )⌋, 0} if d > 2/(1 − α),

w = max{⌊ 1
2
((1 − α − 1

d
) log2 n − log2

µ

1−β )⌋, 0} if 1/(1− α) < d ≤ 2/(1− α), and w = 0

if d ≤ 1/(1 − α).

Step 2—Base Embedding

If ℓh ≤ 2µd, then SBE does not call itself recursively any longer and constructs a

base embedding as follows:

1. If X = ∅, then let φ : V(G)→ U be an arbitrary one-to-one mapping. Otherwise,

let Y be the set (not a multiset) of nodes incident to external edges of G. We

construct a one-to-one mapping φ : V(G) → U so that degrees of nodes in Y

are uniformly distributed on π̄k(U). Specifically, for any v ∈ π̄k(U), the sum

of degrees of nodes s ∈ Y with π̄k(φ(s)) = v is at most e|X|/|π̄k(U)| + ∆. We

prove later in Lemma 5 that φ can be constructed as desired. This construction

implies that if R is the routing graph to be routed by σ, then π̄k(R) has maximum

outdegree at most e|X|/|π̄k(U)| + ∆ ≤ e|X|/S k,w

M
+ ∆.

2. Construct a mapping ψ : X → Ww
M

so that ψ is uniform across dimension k,

implying that π̄k(R) has maximum indegree at most ⌈|X|/S k,w

M
⌉.

3. Apply Lemmas 2 and 3 on M to obtain ρ.

4. If X , ∅, then apply Lemma 4 on M to obtain σ.

5. Return.
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M j

ψ̃ j(X j)

ψ j(X j)

σ̃ jφ j(X j)

σ j

dimension k j

dimension k

Figure 6: Mapping ψ̃ j and routing σ̃ j constructed in Step 4. Symbols φ j, σ j , and ψ j are the output φ, σ,

and ψ in the embedding of M j , respectively. The horizontal and diagonal planes represent the uniformness

of ψ j(X j) and ψ̃ j(X j), respectively.

Step 3—Separation

Suppose ℓh > 2µd. Let G1 and G2 be children of G in T and have n1 and n2 nodes,

respectively. Now M is separated into two subgrids M1 := M(ℓ1, . . . , ℓh−1,m1, ℓh+1,

. . . , ℓd) and M2 := M(ℓ1, . . . , ℓh−1,m2, ℓh+1, . . . , ℓd), together with node sets U1 ⊆
V(M1) and U2 ⊆ V(M2) such that m1 + m2 = ℓh + 1, U1 ∪ U2 = U, U1 ∩ U2 = ∅,
and |U j| = n j for j = 1, 2 (cf. Fig. 5). We here duplicate the (d − 1)-dimensional grid

induced by {v ∈ V(M) | πh(v) = m1} to be shared by M1 and M2, so that m1 + m2

equals not ℓh but ℓh + 1. We have to do this because M1 and M2 must have enough

numbers of nodes in U onto which V(G1) and V(G2) can be mapped, respectively. In

Fig. 5, actually, no matter how we partitioned M so that m1 + m2 = ℓh with 1 ≤ h ≤ 3,

we would have either |V(M1) ∩ U | < 20 or |V(M2) ∩ U | < 30. We will prove later in

Lemma 6 that the resulting subgrids have aspect ratio at most µ.

Step 4—Recursive Embedding

This step recursively embeds G1 and G2 into M1 and M2, respectively. We also

construct a routing σ̃ j for j = 1, 2, which draws the external edges of G j to ψ̃ j(X j).

Here, X j is the multiset of nodes of G j incident to distinct external edges of G j, and

ψ̃ j : X j → Ww
M j

is a mapping uniform across dimension k, i.e., the direction of Ww
M

.

With this routing, in the subsequent step, we will make a routing graph with sources

and targets in ψ̃1(X1) and ψ̃2(X2), respectively, on the channel of Ww
M

to connect cut

edges. Projecting this routing graph along dimension k yields a ⌈|X1|/S k,w

M
⌉-⌈|X2|/S k,w

M
⌉

routing graph. Thus, the cut edges will be routed on the channel of Ww
M

with an edge-

congestion of 2 ·max j=1,2⌈|X j|/S k,w

M
⌉ using Lemma 3. In applying Lemma 3, we regard

the underlying channel as the homeomorphic grid with grid points Ww
M

. A detailed

analysis for this edge-congestion will later be provided in Lemmas 8-10. We aim to

suppress the edge-congestion of σ̃ j in a similar way. Therefore, we make ψ̃ j uniform

across not only dimension k but also the direction k j of W
w j

M j
, where w j is w computed

for n j in the recursive procedure, since ψ j is made uniform across dimension k j in the

recursive procedure (cf. Fig. 6). We need to treat two more matters in constructing σ̃ j.

First, we need a channel (a grid-like graph) containing both ψ j(X j) ⊆ W
w j

M j
and

ψ̃ j(X j) ⊆ Ww
M j

. Just taking union of two channels of W
w j

M j
and Ww

M j
would not suffice

because W
w j

M j
and Ww

M j
are disjoint if w j , w. We define the channel for w j and w as
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the graph homeomorphic to a d-dimensional grid having W
w j ,w

M j
:= {v ∈ V(M0) | πi(v) ≡

2w j−1 or 2w−1 (mod 2w) for i = 1, 2} ∩ {v ∈ V(M j) | degM j
(v) = 2d} as grid points. It

should be noted that if w > w j > 0, then edges contained in the channel of W
w j ,w

M j
but

in the channel of neither W
w j

M j
nor Ww

M j
are uniquely determined by w j and w and not

contained any other channel in M j except the channel of W0
M j

.

The second matter is that the direction of W
w j ,w

M j
may differ from k j, across which

ψ j and ψ̃ j are uniform. This means that just applying Lemma 3 would not guarantee

a desired edge-congestion. If we applied the algorithm of Lemma 3 on the channel

of W
w j ,w

M j
, then the algorithm would be recursively called in the non-increasing order

of side lengths of a grid having W
w j ,w

M j
as grid points. We here modify the order by

replacing W
w j ,w

M j
with W

w j

M j
. The modified algorithm yields a desired edge-congestion as

we will later prove in Lemma 8.

For each j = 1, 2, specifically, SBE performs the following procedures:

1. Call SBE(G j, X j, M j, U j). Let φ j, ρ j, ψ j, and σ j denote the output φ, ρ, ψ, and σ

of the recursive call, respectively.

2. Construct a mapping ψ̃ j : X j → Ww
M j

uniform across dimensions both k and k j,

where k j is the direction of W
w j

M j
, and w j := max{⌊ 1

2
((1 − α̃ − 1

d
) log2 n j −

log2
µ

1−β )⌋, 0}.
3. Let σ̃ j be a routing from ψ j(X j) to ψ̃ j(X j) on the channel of W

w j ,w

M j
obtained

by using the modified algorithm of Lemma 3 in which we recursively call the

algorithm in the non-increasing order of side lengths of a grid having W
w j

M j
as

grid points.

Step 5—Routing Cut and External Edges

This step constructsψ, then completes ρ andσ using ψ̃ j andψ. The routings ρ andσ

are obtained simply using Lemma 3 on the channel of Ww
M

since ψ̃ j(X j) ⊆ Ww
M j
⊆ Ww

M
.

The following are specific procedures of this step:

1. Construct a mapping ψ : X → Ww
M

uniform across dimension k.

2. By using Lemma 3, construct σ̃ for the routing graph on the channel of Ww
M

with node set ψ̃1(X1) ∪ ψ̃2(X2) and edge set {(ψ̃1(s1), ψ̃2(s2)) | s1 ∈ X1 \ X, s2 ∈
X2 \ X, {s1, s2} ∈ E(G)} ∪⋃

j=1,2{(ψ̃ j(s), ψ(s)) | s ∈ X j ∩ X} (cf. Fig. 7). It should

be noted that {s1, s2} ∈ E(G) with s1 ∈ X1 \ X and s2 ∈ X2 \ X is a cut edge of G,

and s ∈ X j ∩ X is a node incident to an external edge of G.

3. Let ρ map the cut edges of G onto paths obtained by concatenating the images

of σ1, σ̃1, σ̃, σ̃2, and σ2. Specifically, for {s1, s2} ∈ E(G) with s1 ∈ X1 \ X and

s2 ∈ X2 \ X, let

ρ(φ(s1), φ(s2)) :=
⋃

j=1,2

(

σ j(φ(s j), ψ j(s j)) ∪ σ̃ j(ψ j(s j), ψ̃ j(s j))
)

∪ σ̃(ψ̃1(s1), ψ̃2(s2)).
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dimension k

M2M1

ψ̃1(X1 \ X)

σ̃
ψ̃1(X1 ∩ X)

ψ̃2(X2 \ X)

ψ̃2(X2 ∩ X)ψ(X)

σ̃

σ̃

Figure 7: Mapping ψ and routing σ̃ constructed in Step 5. The left, center, and right planes represent the

uniformness of ψ̃1(X1), ψ(X), and ψ̃2(X2), respectively.

4. Let σ map the external edges of G onto paths obtained by concatenating the

images of σ j, σ̃ j, σ̃. Specifically, for s ∈ X j ∩ X ( j = 1, 2), let

σ(φ(s), ψ(s)) :=σ j(φ(s), ψ j(s)) ∪ σ̃ j(ψ j(s), ψ̃ j(s)) ∪ σ̃(ψ̃ j(s), ψ(s)).

Correctness

To prove that SBE yields an output satisfying the conditions specified in Step 0, we

first prove in Lemma 5 below that we can construct φ as desired in Step 2 for the case

X , ∅. We then prove in Lemmas 6 and 7 below that M j defined in Step 3 has aspect

ratio at most µ, and that Ww
M j

is non-empty as well as Ww
M

. These facts guarantee that a

valid input is given to a child procedure in Step 4, and that mappings ψ̃ j and ψ can be

constructed in Steps 4 and 5, respectively.

Lemma 5. Suppose X , ∅ in Step 2. We can construct a one-to-one mapping φ :

V(G) → U such that for any v ∈ π̄k(U), the sum of degrees of nodes s ∈ Y with

π̄k(φ(s)) = v is at most e|X|/|π̄k(U)| + ∆, where Y is the set (not a multiset) of nodes

incident to external edges of G.

Proof. If U = V(M), then we can map Y onto U in a trivial manner so that maxv∈π̄k(U)
∑

s∈Y, π̄k(φ(s))=v degG(s) ≤ ∑

s∈Y degG(s)/|π̄k(U)| + ∆ = |X|/|π̄k(U)| + ∆. This is because

this mapping can be viewed as a packing of |Y | items of size at most ∆ to |π̄k(U)| bins

that can contain the same number |U |/|π̄k(U)| = ℓk of items.

If U ⊂ V(M), i.e., U does not contain some nodes on the boundary of M, then

some of the bins cannot contain ℓk items. An upper bound can be obtained in the

assumption that U contains no node on the boundary of M, and that we must map Y

onto
∏

i∈[d]\{k}(ℓi−2) bins, in which the mapping is not one-to-one if |Y | > ∏

i∈[d](ℓi−2).

Thus, we have

max
v∈π̄k(U)

∑

s∈Y
π̄k(φ(s))=v

degG(s) ≤
∑

s∈Y degG(s)
∏

i∈[d]\{k}(ℓi − 2)
+ ∆ ≤ |X|

∏

i∈[d]\{k}(ℓi − 2)
·
∏

i∈[d]\{k} ℓi

|π̄k(U)| + ∆.

(5)
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We have X , ∅ only if the current base embedding is called by a parent procedure.

This implies mini∈[d] ℓi > 2d as proved in Lemma 6 below, and therefore,
∏

i∈[d]\{k} ℓi
∏

i∈[d]\{k}(ℓi − 2)
=

∏

i∈[d]\{k}

ℓi

ℓi − 2
<

(

2d

2d − 2

)d−1

< e.

Combined with (5), we have the lemma. �

Lemma 6. For j = 1, 2, M j defined in Step 3 has aspect ratio at most µ and min{ℓ1,

. . . , ℓh−1,m j, ℓh+1, . . . , ℓd} > 2d.

Proof. Assume without loss of generally that m1 ≤ m2. Since M has aspect ratio at

most µ, we have ℓh/mini∈[d] ℓi ≤ µ. Moreover, it follows that mini∈[d] ℓi > 2d, for

otherwise, ℓh ≤ µ ·mini∈[d] ℓi ≤ 2µd, and hence, SBE entered the base step. Therefore,

it suffices to prove that m1 > 2d and ℓh/m1 ≤ µ.

Because n j = |U j| ≥ |{v ∈ V(M j) | degM j
(v) = 2d}| for j = 1, 2, it follows that

(m j − 2)
∏

i∈[d]\{h}(ℓi − 2) ≤ n j ≤ m j

∏

i∈[d]\{h} ℓi, and hence,

m j − 2 ≤
n j

∏

i∈[d]\{h}(ℓi − 2)
≤ m j

∏

i∈[d]\{h}

ℓi

ℓi − 2
< m j

(

2d

2d − 2

)d−1

< em j.

We have by the inequalities that

m2 − 2

n2

≤ 1
∏

i∈[d]\{h}(ℓi − 2)
<

em1

n1

. (6)

Because n − n1 = n2 ≤ ⌈βn⌉ ≤ βn + 1, it follows that

n1 ≥ (1 − β)n − 1 ≥ (1 − β)
n2 − 1

β
− 1 =

(1 − β)n2

β
− 1

β
,

by which we obtain

n2 ≤
βn1 + 1

1 − β . (7)

Moreover, it follows that n ≥ ∏

i∈[d](ℓi − 2) > (2µd − 2)(2d − 2)d−1 ≥ 8µ − 4, which

is larger than 7µ because µ > 4. Furthermore, µ > 1
1−β ( 1

7
+ eβ) by the definition of µ.

Hence, it follows that

n1 ≥ (1 − β)n − 1 > 7µ(1 − β) − 1 > 7eβ. (8)

Thus, by (6)–(8) and µ ≥ 1
1−β ( 1

7β
+ eβ) + 5

4
,

m2 − 2 <
em1n2

n1

≤ em1

1 − β

(

β +
1

n1

)

<
em1

1 − β

(

β +
1

7eβ

)

≤
(

µ − 5

4

)

m1,

by which we obtain (µ − 1
4
)m1 > m1 + m2 − 2 = ℓh − 1 > 2µd − 1. Therefore,

m1 >
2µd − 1

µ − 1
4

=
2d(µ − 1

2d
)

µ − 1
4

≥ 2d, and

ℓh

m1

< µ − 1

4
+

1

m1

< µ − 1

4
+

1

2d
≤ µ.

�
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Lemma 7. For j = 1, 2, Ww
M j

in Step 4 is non-empty.

Proof. Suppose M j = M(ℓ
j

i
)i∈[d] and ℓ

j

min
:= mini∈[d] ℓ

j

i
. We can observe by the defini-

tion of Ww
M j

that if ⌊(ℓ j

i
− 2)/2w⌋ > 0 for i = 1, 2, and if ℓ

j

i
− 2 > 0 for 3 ≤ i ≤ d, then

Ww
M j

is non-empty. Because ℓ
j

min
> 2d > 4 by Lemma 6, the lemma holds if w = 0.

Assume w ≥ 1. Then, the lemma is implied by ℓ
j

min
/2w ≥ 2. The assumption w ≥ 1

implies that d > 1/(1 − α) by the definition of w, and that

2w ≤












(1 − β)n1−α̃− 1
d

µ













1/2

=













(1 − β)nmin{1/d,1−α− 1
d
}

µ













1/2

≤
(

(1 − β)n1/d

µ

)1/2

. (9)

As estimated in (7) and (8), it follows that n1 ≥ (1− β)n− 1 and n > 7µ. It also follows

that n2 ≥ (1 − β)n − 1, since n − n2 = n1 ≤ ⌈βn⌉ ≤ βn + 1. Moreover, µ > 1
1−β ·

1
7β

.

Therefore,

n j ≥
(

1 − β − 1

n

)

n >

(

1 − β − 1

7µ

)

n > (1 − β − (1 − β)β) n = (1 − β)2n. (10)

Because M j has aspect ratio at most µ by Lemma 6, it follows that

n
1/d

j
≤ max

i∈[d]
{ℓ j

i
} ≤ µℓ j

min
. (11)

Combining (9)–(11), and by d ≥ 2,

ℓ
j

min

2w
≥

n
1/d

j

µ

(

µ

(1 − β)n1/d

)1/2

>













(1 − β)
4
d
−1n1/d

µ













1/2

≥
(

(1 − β)n1/d

µ

)1/2

≥ 2w ≥ 2.

�

Edge-Congestion

We first estimate the edge-congestion of σ̃ j and σ̃ in each recursive call of SBE.

Then, we prove the total edge-congestion. In what follows, for an n-node guest graph

given to SBE as input, we will use Dw(n) to denote the maximum value of maxi∈[d]⌈Cnα/S i,w
H
⌉

over all feasible d-dimensional host grids H.

Lemma 8. For j = 1, 2, σ̃ j in Step 4 imposes an edge-congestion at most 2Dw(n j) on

the channel of W
w j ,w

M j
.

Proof. As described in Step 4, in constructing σ̃ j, we recursively call the algorithm

of Lemma 3 in the non-increasing order of side lengths of a grid having not W
w j ,w

M j
but

W
w j

M j
as grid points. We can prove through a similar argument to that of Lemma 3 that

the modified algorithm achieves an edge-congestion of 2⌈|X j|/S
k j,w

M j
⌉ ≤ 2⌈Cnα

j
/S

k j,w

M j
⌉ ≤

2Dw(n j), noting that W
w j

M j
∪ Ww

M j
⊆ W

w j ,w

M j
and |πi(W

w j

M j
)| ≥ |πi(W

w
M j

)| for i ∈ [d]. The

following is an explicit proof.
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Suppose that grids having W
w j

M j
and W

w j ,w

M j
as grid points are M′ := M(ℓ′

1
, . . . , ℓ′

d
) and

M′′ := M(ℓ′′
1
, . . . , ℓ′′

d
), respectively. I.e., ℓ′

i
= |πi(W

w j

M j
)| and ℓ′′

i
= |πi(W

w j ,w

M j
)| for i ∈ [d].

Because W
w j

M j
⊆ W

w j ,w

M j
, ℓ′

i
≤ ℓ′′

i
for each i ∈ [d]. In this proof, we assume without loss of

generality that k j = 1 and ℓ′
1
= ℓ′

k j
≥ ℓ′

2
· · · ≥ ℓ′

d
. Moreover, we regard the routing graph

R from sources ψ j(X j) to targets ψ̃ j(X j) on the channel of W
w j ,w

M j
as its corresponding

routing graph on M′′. Then, π̄1(R) is a p-q routing graph with node set π̄1(V(M′′)),

where p := ⌈|X j|/S
k j,w j

M j
⌉ = ⌈|X j|/|π̄k j

(W
w j

M j
)|⌉ and q := ⌈|X j|/S

k j,w

M j
⌉ = ⌈|X j|/|π̄k j

(Ww
M j

)|⌉,
because ψ j : X j → W

w j

M j
and ψ̃ j : X j → Ww

M j
are uniform across dimension k j = 1.

Because w j ≤ w, it follows that |πi(W
w j

M j
)| ≥ |πi(W

w
M j

)| and |π̄i(W
w j

M j
)| ≥ |π̄i(W

w
M j

)| for

i ∈ [d]. This implies that p ≤ q.

If d = 2, then R has |X j| ≤ ℓ′2 p ≤ ℓ′
2
q edges. Therefore, we can decompose R into ℓ′

1

edge-disjoint subgraphs R1, . . . ,Rℓ′
1

so that
⋃ℓ′

1

i=1
E(Ri) = E(R) and |E(Ri)| ≤ ⌈ℓ′2q/ℓ′

1
⌉ ≤

q for i ∈ [ℓ′
1
]. Since ℓ′′

1
≥ ℓ′

1
, π̄1(Ri) can be routed with an edge-congestion at most q

on the 1-dimensional subgrid of M′′ induced by the nodes {v ∈ V(M′′) | π1(v) = i} for

each 1 ≤ i ≤ ℓ′
1
≤ ℓ′′

1
. Thus, we can route R on M′′ with an edge-congestion at most 2q

as in the proof of Lemma 3.

If d ≥ 3, then since ℓ′
2
= |π2(W

w j

M j
)| ≥ |π2(Ww

M j
)|, π̄2(π̄1(R)) is an ℓ′

2
p-ℓ′

2
q rout-

ing graph with node set π̄2(π̄1(V(M′′))). Using an edge-coloring described in the

proof of Lemma 3, therefore, we can decompose R into ℓ′
1

edge-disjoint subgraphs

R1, . . . ,Rℓ′
1

such that π̄2(π̄1(Ri)) is a max{p, q}-max{p, q} routing graph with node set

π̄2(π̄1(V(M′′))). Since ℓ′′
1
≥ ℓ′

1
, π̄1(Ri) can inductively be routed with an edge-congestion

at most 2 · max{p, q} = 2q on the (d − 1)-dimensional subgrid induced by the nodes

{v ∈ V(M′′) | π1(v) = i} for each 1 ≤ i ≤ ℓ′
1
≤ ℓ′′

1
. Thus, we can route R on M′′ with an

edge-congestion at most 2q as in the proof of Lemma 3. �

Lemma 9. The routing σ̃ in Step 5 imposes an edge-congestion at most 2·max{2Dw(n j),

Dw(n j) + Dw(n)} on the channel of Ww
M

.

Proof. Because ψ̃1, ψ̃2, and ψ are uniform across dimension k, it follows that λk(ψ̃ j) =

⌈|X j|/S k,w

M j
⌉ ≤ ⌈Cnα

j
/S

k,w

M j
⌉ ≤ Dw(n j) for j = 1, 2, and that λk(ψ) = ⌈|X|/S k,w

M
⌉ ≤

⌈Cnα/S k,w

M
⌉ ≤ Dw(n). Therefore, if R is the routing graph for σ̃ on the channel of Ww

M
,

then π̄k(R) has maximum outdegree at most λk(ψ̃1) + λk(ψ̃2) ≤ 2Dw(n j) and maximum

indegree at most λk(ψ̃2) + λk(ψ) ≤ Dw(n j) + Dw(n) as shown in Fig. 7. By Lemma 3,

therefore, σ̃ has a desired edge-congestion. �

Lemma 10. For j = 1, 2, it follows that

max
i∈[d]























Cnα
j

S i,w

M j























=



















O(C) if d > 1/(1 − α),

O

(

Cn
α−1+ 1

d

j

)

otherwise.

Proof. Suppose that M j = M(ℓ
j

i
)i∈[d], ℓ

j
max := maxi∈[d]{ℓ j

i
}, and ℓ

j

min
:= mini∈[d]{ℓ j

i
}. We

begin with bounds of ℓ
j
max and ⌊(ℓi−2)/2w⌋. Because ℓ

j

min
> 2d by Lemma 6, it follows

22



that

n j ≥
∏

i∈[d]

(ℓ
j

i
− 2) =

∏

i∈[d]















1 − 2

ℓ
j

i















ℓ
j

i
>

(

1 − 1

d

)d 











ℓ
j
max

µ













d

≥












ℓ
j
max

2µ













d

,

yielding

ℓ
j
max < 2µn

1/d

j
. (12)

It follows from the proof of Lemma 7 that ℓ
j

min
/2w ≥ 2. Therefore,





















ℓ
j

i
− 2

2w





















≥
ℓ

j

i
− 2w − 1

2w
≥
ℓ

j

i
− ℓ

j

min

2
− 1

2w
≥
ℓ

j

i
− 2

2w+1
. (13)

If k′ is the direction of Ww
M j

, then it follows from (12) and (13) that

min
i∈[d]
{S i,w

M j
} ≥

















∏

i∈{1,2}\{k′}





















ℓ
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
















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

























∏

i∈[d]\{1,2,k′}
(ℓ

j

i
− 2)

















≥ 1

22w+2

∏

i∈[d]\{k′}
(ℓ

j

i
− 2)

=
1

22w+2

∏

i∈[d]\{k′}















1 − 2

ℓ
j

i















ℓ
j

i
>

(

1 − 1

d

)d−1 ∏

i∈[d]\{k′} ℓ
j

i

22w+2
>

n j/ℓ
j
max

4e22w
>

n
1− 1

d

j

8eµ22w
.

Therefore, we have maxi∈[d]⌈Cnα
j
/S

i,w

M j
⌉ < ⌈8eµ22wCn

α−1+ 1
d

j
⌉. If w = 0, then the lemma

is immediate. If w ≥ 1, which implies d > 1/(1 − α), then it follows from inequalities

in (9) and (10) that

22w ≤ (1 − β)nmin{1/d,1−α− 1
d
}

µ
≤ (1 − β)n1−α− 1

d

µ
≤

(1 − β)−1+2α+ 2
d n

1−α− 1
d

j

µ
.

Therefore, we have maxi∈[d]⌈Cnα
j
/S

i,w

M j
⌉ < ⌈8e(1 − β)−1+2α+ 2

d C⌉ = O(C). �

Through an analysis similar to that of Lemma 10, we can prove that ⌈Cnα/S k,w

M
⌉ is

O(C) if d > 1/(1−α), and O(Cnα−1+ 1
d ) otherwise. These upper bounds are independent

of w and hold for any feasible guest and host graphs processed in each step of SBE un-

less the minimum side length of the host grid is at most 2d. In what follows, therefore,

we denote Dw(·) simply by D(·) and use these upper bounds of D(·) on the condition

that the host grid has the minimum side length larger than 2d.

Lemma 11. The edge-congestion B of the base embedding in Step 2 is O(d∆ +C).

Proof. The edge-congestion of ρ constructed in the base embedding is at most 2⌈∆
2
⌉ℓh

by Lemmas 2 and 3. If X , ∅, then the edge-congestion of σ is at most with an edge-

congestion at most 2⌈µ(e|X|/S k,w

M
+ ∆)⌉ ≤ 2⌈µ(eD(n) + ∆)⌉. This bound is obtained

from Lemma 4 and the fact that for the routing graph R to be routed by σ, π̄k(R)

has maximum outdegree at most e|X|/S k,w
M
+ ∆ by Lemma 5 and maximum indegree

at most ⌈|X|/S k,w

M
⌉ as mentioned in Step 2. Because n1/d ≤ ℓh ≤ 2µd in the base

embedding and mini∈[d] ℓi > 2d as described in the proof of Lemma 5, we have B ≤
2(⌈∆

2
⌉ℓh + ⌈µ(eD(n) + ∆)⌉) = O(d∆ +C) if d > 1/(1 − α), and B = O(d∆ +Cnα−1+ 1

d ) =

O(d∆ +C(2µd)d(α−1)+1) = O(d∆ +C) otherwise. �
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We now estimate the total congestion of a fixed edge r of M0. If r is contained in

the channel of W
w,w′

M0
but of neither Ww

M0
nor Ww′

M0
for a certain unique pair of w > 0

and w′ > 0, then r incurs a congestion less than that in the case that it is contained in

the channel of either Ww
M0

or Ww′

M0
. This is because the channel of W

w,w′

M0
is used only in

Step 4, while the channels of Ww
M0

and Ww′

M0
are used in other steps as well. To analyze

an upper bound of congestion of r, therefore, it suffices to assume that r is contained in

the channel of W
wr

M0
with wr ≥ 1 uniquely determined by r, as well as in the channel of

W0
M0

and some base embeddings.

Lemma 12. The number P1 of recursive calls of SBE that set w ≥ 1 in Step 1, perform

inductive steps (i.e., not a base embedding), and use a channel containing r is O(d) if

d > 2/(1 − α), O(1/(1 − α − 1
d
)) if 1/(1 − α) < d ≤ 2/(1 − α), and 0 otherwise.

Proof. Because SBE sets w ≥ 1 only if d > 1/(1−α), P1 = 0 if d ≤ 1/(1−α). Assume

d > 1/(1 − α). In Step 4, channels configured in separated grids are edge-disjoint

because the channels do not contain boundaries of the separated grids. Therefore, there

is a unique sequence of P1 recursive calls that set w ≥ 1, perform inductive steps, and

use a channel containing r. Two consecutive calls in the sequence are a parent and

its child procedures. Moreover, all but the first call (the ancestor of any other call) in

the sequence set w to wr ≥ 1, while the first call may set w > wr and use the channel

associated with w and wr in Step 4. The number n of nodes of the guest graph in the

second call in the sequence decreases to

n′ ≤ βP1−2

(

n − 1

1 − β

)

+
1

1 − β ≤ β
P1−2n +

1

1 − β

at the last call in the sequence. Because the last call performs inductive steps, it follows

that n′ > 2µd > 2/(1 − β). Thus, we have n′ < βP1−2n + n′

2
, yielding n′ < 2βP1−2n.

Because the second and last calls set w = wr ≥ 1 in Step 1, it follows that

⌊

1

2

((

1 − α̃ − 1

d

)

log2 n − log2

µ

1 − β

)⌋

=

⌊

1

2

((

1 − α̃ − 1

d

)

log2 n′ − log2

µ

1 − β

)⌋

.

Removing the floors,

1

2

((

1 − α̃ − 1

d

)

log2 n − log2

µ

1 − β

)

<
1

2

((

1 − α̃ − 1

d

)

log2 n′ − log2

µ

1 − β

)

+ 1.

Combined with the upper bound of n′ obtained above,

log2 n < log2 n′ +
2

1 − α̃ − 1
d

< log2

(

2βP1−2n
)

+
2

1 − α̃ − 1
d

,

by which we obtain

P1 <

1 + 2

1−α̃− 1
d

log2 β
−1
+ 2.

Because α̃ = max{1 − 2
d
, α}, P1 is O(d) if d > 2/(1 − α), and O(1/(1 − α − 1

d
)) if

1/(1 − α) < d ≤ 2/(1 − α). �
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Lemma 13. The number P0 of recursive calls of SBE that set w = 0 in Step 1, perform

inductive steps (i.e., not a base embedding), and use a channel containing r is O(d) if

d > 2/(1 − α), O(1/(1 − α − 1
d
)) if 1/(1 − α) < d ≤ 2/(1 − α), and at most log1/β N

otherwise.

Proof. By an argument similar to that in the proof of Lemma 12, there exists a unique

sequence of P0 recursive calls that set w = 0, perform inductive steps, and use a channel

containing r. Moreover, n in the first call of the sequence decreases to n′ with 2µd <

n′ < 2βP0−1n at the last call in the sequence. Therefore, it follows that P0 < log1/β n −
log1/β(µd) + 1 < log1/β n − log1/β 8 + 1 < log1/β n. Because n ≤ N obviously, we have

the lemma for the case d ≤ 1/(1 − α). If d > 1/(1 − α), then w = 0 implies that
⌊

1

2

((

1 − α̃ − 1

d

)

log2 n − log2

µ

1 − β

)⌋

≤ 0.

Removing the floor,

1

2

((

1 − α̃ − 1

d

)

log2 n − log2

µ

1 − β

)

< 1,

by which we obtain

log1/β n =
log2 n

log2 β
−1

<
2 + log2

µ

1−β
(

1 − α̃ − 1
d

)

log2 β
−1
.

Because α̃ = max{1 − 2
d
, α}, P0 is O(d) if d > 2/(1 − α), and O(1/(1 − α − 1

d
)) if

1/(1 − α) < d ≤ 2/(1 − α). �

Lemma 14. The edge-congestion on r is O(dC + d2∆) if d > 2/(1 − α), O(C/(1 − α −
1
d
) + d2∆) if 1/(1 − α) < d ≤ 2/(1 − α), and O(C(Nα−1+ 1

d + log N) + d2∆) otherwise.

Proof. The edge r is congested by σ̃ j with j equal to either 1 or 2 and σ̃ in each

recursive call performing inductive steps and using a channel containing r, and by base

embeddings. The congestion on r imposed by σ̃ j and σ̃ in the ith recursive call in

the sequence obtained by concatenating the sequences of recursive calls mentioned in

Lemmas 12 and 13 is at most max{6D(Ni+1), 4D(Ni+1)+ 2D(Ni)} ≤ 6D(Ni+1)+ 2D(Ni)

by Lemmas 8 and 9, where Ni is the number of nodes of a guest graph embedded in the

ith recursive call in the concatenated sequence. If r is on the boundary of a host grid in

some base embedding, then r can be involved in at most 2(d − 1) base embeddings in

total. Thus, the congestion on r is at most
∑P1+P0

i=1
(6D(Ni+1) + 4D(Ni)) + 2(d − 1)B.

By Lemmas 10–13, this congestion is O((P0 +P1)C+d(d∆+C)) = O(dC+d2∆) if

d > 2/(1−α), and O(C/(1−α− 1
d
)+d2∆) if 1/(1−α) < d ≤ 2/(1−α). If d ≤ 1/(1−α),

then because Ni ≤ βNi−1 + 1, implying Ni ≤ βi−1(N − 1
1−β ) + 1

1−β = O(βi−1N), we have

P1+P0
∑

i=1

(6D(Ni+1) + 4D(Ni)) + 2(d − 1)B ≤
log1/β N
∑

i=1

O

(

C
(

βi−1N
)α−1+ 1

d

)

+ O(d(d∆ +C))

= O
(

C(Nα−1+ 1
d + log N) + d2∆

)

.

�
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Figure 8: G(13).

By Lemma 3 and (12), the dilation of SBE is at most
∑

i≥1 O(d(βi−1N)1/d) = O(dN1/d).

Therefore, we have obtained Theorem 3.

5. Lower Bound on Dilation with Minimum Edge-Congestion

In this section, we demonstrate that minimizing edge-congestion may require a

dilation of nearly the size of the host grid as stated in the following theorem:

Theorem 4. There exists an N-node graph G such that any embedding of G into an

N-node 2-dimensional grid with an edge-congestion 1 must have a dilation of Ω(N).

Proof. For an integer ℓ ≥ 9 with ℓ mod 4 = 1, we define a guest graph G(ℓ) obtained

from M(ℓ, ℓ) by removing edges

{{(i, j), (i, j + 1)} | 3 ≤ i ≤ ℓ − 2, i mod 2 = 1, 3 ≤ j ≤ ℓ − 3}
∪{{(i, 3), (i + 1, 3)} | 5 ≤ i ≤ ℓ − 3, i mod 4 ∈ {1, 2}}
∪{{(i, ℓ − 2), (i + 1, ℓ − 2)} | 3 ≤ i ≤ ℓ − 5, i mod 4 ∈ {3, 0}}

and by adding an edge joining e := {(3, 3), (ℓ − 2, ℓ − 2)}. We illustrate G(13) in

Fig. 8. The graph G(ℓ) can be embedded into M(ℓ, ℓ) with the edge-congestion 1 with

an identity mapping for nodes and routing e on the edges removed from M(ℓ, ℓ) to

obtain G(ℓ). This embedding clearly has a dilation of Θ(ℓ2). We prove that if G(ℓ) can

be embedded with the edge-congestion 1 into M := M(ℓ1, ℓ2) with ℓ1 ≤ ℓ ≤ ℓ2 and

ℓ1ℓ2 = ℓ2, then ℓ1 = ℓ2 = ℓ and such an embedding 〈φ, ρ〉 is unique within rotation

and/or reflection. Our proof is based on the following observation:
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Observation 1. If ρ maps k edges of G(ℓ) on k paths h out of which ends at a node v

of M, and the other k − h of which pass through v, then

degM(v) ≥ degG(ℓ)(φ
−1(v)) + 2(k − h).

It should be noted that because G(ℓ) and M have exactly the same number of nodes,

there exists a node φ−1(v) of G(ℓ) for every node v of M. We actually use this observa-

tion in different forms.

Observation 2. If ρ maps an edge of G(ℓ) on a path containing a node v of M with

degree 3, then this edge is incident to φ−1(v).

Observation 3. If ρ maps two edges of G(ℓ) on two paths containing a node v of M

with degree 4, then at least one of these edges is incident to φ−1(v).

Observations 2 and 3 are implied by Observation 1 because G(ℓ) has no node with

degree less than 2, and therefore, for k ≥ ⌊degM(v)/2⌋,

h ≥
degG(ℓ)(φ

−1(v))

2
+ k −

degM(v)

2
≥ 1 +

⌊

degM(v)

2

⌋

−
degM(v)

2
≥ 1

2
,

implying h ≥ 1.

We first identify nodes of G(ℓ) mapped onto the boundary of M. Because G(ℓ) has

no node with degree less than 2, the node φ−1((1, 1)) has degree 2. Two edges of G(ℓ)

incident to φ−1((1, 1)) must be routed on nodes (1, 2) and (2, 1) of M with degree 3.

By Observation 2, therefore, these edges are incident to φ−1((1, 2)) and φ−1((2, 1)).

Because only four corner nodes of G(ℓ), i.e., (1, 1), (1, ℓ), (ℓ, 1), and (ℓ, ℓ) have degree

2 and are incident to a node with degree 3, we may assume without loss of generality

that φ−1((1, 1)) = (1, 1), φ−1((1, 2)) = (1, 2), and φ−1((2, 1)) = (2, 1). Repeating a

similar argument, we can identify φ−1((i, 1)) = (i, 1) for 3 ≤ i ≤ ℓ1. This implies that

if ℓ1 < ℓ, then degM((ℓ1, 1)) = 2 and degG(ℓ)((ℓ1, 1)) = 3, yielding an edge-congestion

more than 1. Hence, we obtain ℓ1 = ℓ2 = ℓ. As a consequence, φ((i, 1)) = (i, 1),

φ((i, ℓ)) = (i, ℓ), φ((1, i)) = (1, i), and φ((ℓ, i)) = (ℓ, i) for 1 ≤ i ≤ ℓ.
We then identify nodes of G(ℓ) mapped onto nodes on one row and one column

inside the boundary of M. Because φ((1, 2)) = (1, 2) and φ((2, 1)) = (2, 1), two edges

of G(ℓ) incident to (1, 2) and (2, 1) must be routed on the node (2, 2) of M. By Ob-

servation 3, therefore, at least one of these two edges of G(ℓ) is incident to φ−1((2, 2)).

Thus, we can identify φ−1((2, 2)) = (2, 2) because all the other nodes of G(ℓ) adja-

cent to (1, 2) or (2, 1), i.e, (1, 1), (1, 3), and (3, 1) have already been identified to be

mapped to other positions. Repeating a similar argument, we obtain φ((i, 2)) = (i, 2),

φ((i, ℓ − 1)) = (i, ℓ − 1), φ((2, i)) = (2, i), and φ((ℓ − 1, i)) = (ℓ − 1, i) for 2 ≤ i ≤ ℓ − 1.

Because φ((2, 3)) = (2, 3) and φ((3, 2)) = (3, 2), we can identify φ((3, 3)) = (3, 3)

as done for φ((2, 2)) = (2, 2), and similarly, φ((i, 3)) = (i, 3) for i ∈ {3, 4, 5, ℓ − 2} and

φ((i, ℓ − 2)) = (i, ℓ − 2) for i ∈ {3, ℓ − 4, ℓ − 3, ℓ − 2}.
Now we identify the routing of e. Two edges of G(ℓ) incident to φ−1((3, 3)) = (3, 3)

and φ−1((2, 4)) = (2, 4) must be routed on the node (3, 4) of M. By Observation 3,

therefore, we can identify φ−1((3, 4)) = (3, 4) and ρ(e) passing through (3, 4) because
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all the other nodes of G(ℓ) adjacent to (3, 3) or (2, 4), including (ℓ−2, ℓ−2), have already

been identified to be mapped to other positions. With this fact, either e or an edge of

G(ℓ) incident to φ−1((3, 4)) = (3, 4), and an edge of G(ℓ) incident to φ−1((4, 3)) = (4, 3)

must be routed on the node (4, 4) of M. By Observation 3 again, we can identify

φ−1((4, 4)) = (4, 4) because all the other nodes of G(ℓ) adjacent to (3, 3), (3, 4), or (4, 3)

have already been identified to be mapped to other positions. This implies that ρ(e)

passes through (3, 4) toward (3, 5). Repeating a similar argument, we obtain φ((3, i)) =

(3, i), φ((4, i)) = (4, i), and ρ(e) passes through (3, i) toward (3, i + 1) for 4 ≤ i ≤ ℓ − 3.

The path ρ(e) passes through (3, ℓ−2) toward (4, ℓ−2) because it cannot go toward

other directions. Then, ρ(e) passes through (4, ℓ−2) and (5, ℓ−2) toward (5, ℓ−3) with

fixing φ−1((4, ℓ−2)) = (4, ℓ−2), φ−1((5, ℓ−2)) = (5, ℓ−2), and φ−1((6, ℓ−2)) = (6, ℓ−2)

as similarly discussed above. We can also identify φ−1((7, ℓ − 2)) = (7, ℓ − 2) since

φ−1((6, ℓ − 2)) = (6, ℓ − 2) and φ−1((7, ℓ − 1)) = (7, ℓ − 1).

At this point we have obtained the situation for ρ(e) leaving from (5, ℓ − 2) toward

(5, ℓ − 3), together with identified nodes of G(ℓ) mapped onto the 4th row, (i, ℓ − 2) for

i ∈ {5, 6, 7}, and onto (5, 3). Continuing this process until ρ(e) arrives at (ℓ − 2, ℓ − 2),

we conclude that the embedding 〈φ, ρ〉 is unique. �

6. Concluding Remarks

An open question is to improve the approximation ratio for d ≤ 1/(1 − α). A

main defect of SBE in approximation for d ≤ 1/(1 − α) is the use of an edge of the

host grid in Θ(log N) recursive steps, yielding a gap of Θ(log N) factor to the optimal

edge-congestion in the worst case. Another open question is to improve the dilation.

In this connection, the author suspects that there is a general trade-off between edge-

congestion and dilation, such as existence of guest graphs whose any embedding into a

grid does not allow constant ratio approximation for both dilation and edge-congestion.

An analogous fact to Theorem 4 for hypercubes can also be proved using the exis-

tence of an induced path of length Θ(N) in an N-node hypercube [32].
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