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Gravity-dominated systems have a negative specific heat. We investigate the negative specific heat of
self-gravitating systems enclosed in a spherical container with reflecting walls by means of N-body simula-
tions. To simulate nonequilibrium processes, a particle reflected at a nonadiabatic wall is cooled to mimic
energy loss by reflecting walls, while an adiabatic wall is employed for microcanonical ensembles. We show
that a negative specific heat occurs not only in the microcanonical ensemble but also in certain nonequilibrium

processes with the nonadiabatic wall. With increasing cooling rates, the dependence of temperature T̂ on energy

�, i.e., the �− T̂ curve, gradually deviates from the microcanonical ensemble and approaches a certain common

curve at a low-energy region. The common curve agrees with an �− T̂ curve for stellar polytropes, especially
for the polytrope index of n�5. We show that the stellar polytrope should be related to the present nonequi-
librium process appearing in the self-gravitating system with the nonadiabatic wall. In the nonequilibrium
process, a rapid change in velocity at the nonadiabatic wall significantly affects the velocity and density
profiles. In particular, the greater the cooling rate, the greater the local velocity gradient at a low-energy region.

DOI: 10.1103/PhysRevE.80.041107 PACS number�s�: 05.20.�y, 05.70.�a, 45.50.Jf, 95.30.Tg

I. INTRODUCTION

Negative specific heat plays an important role in astro-
physical phenomena such as in gravothermal catastrophe of
globular clusters �1,2� and black hole thermodynamics �3,4�.
Accordingly, the statistical mechanics and thermodynamics
for long-range attractive interacting systems have been stud-
ied by many researchers �5–30�. For example, Lebowitz and
Lieb �5� proved that a Coulomb system of electrons and
nuclei always has a positive specific heat even in microca-
nonical ensembles, while Thirring �6� showed that a negative
specific heat can only occur in an isolated system corre-
sponding to microcanonical ensembles. Of course, there are
exceptions to these results because of the assumptions used
and, therefore, the thermodynamic properties of these sys-
tems have been examined �31–33�. In fact, a negative spe-
cific heat has been observed experimentally, e.g., in nuclear
fragmentation �34� and atomic clusters �35�.

In these works, Posch and Thirring �32� demonstrated a
negative specific heat in a purely attractive interacting sys-
tem enclosed in circular container walls. In their simulation,
a particle reflected at the wall was cooled to mimic energy
loss by radiation in stars and the dynamical evolution of the
system was examined. That is, the container wall corre-
sponds to a nonadiabatic wall for simulating a kind of non-
equilibrium process. We expect, at least in principle, that
such a nonadiabatic wall can control the thermodynamic
properties of the system. However, it is not yet understood
completely how a nonadiabatic wall affects the dynamical
evolution of a system or the thermodynamic properties such
as the incidence of negative specific heat for the best possible
cooling agent �33�. Therefore, to acquire a deeper under-

standing of negative specific heat in a nonequilibrium pro-
cess, it is necessary to investigate potential of the nonadia-
batic wall or the influence of the nonadiabatic wall
quantitatively. In this context, we examine a system enclosed
in a spherical container with nonadiabatic walls by means of
N-body simulations. In the present study, we focus on the
influence of the nonadiabatic wall on the dynamical evolu-
tion of the system especially on the relationship between
energy and temperature.

The present paper is organized as follows. In Sec. II, we
give a brief review of numerical techniques for simulating a
self-gravitating system enclosed in a spherical container with
adiabatic and nonadiabatic walls. In Sec. III, we describe the
initial conditions for the simulation. In Sec. IV, the simula-
tion results are presented. In Sec. IV A, through a nonequi-
librium process, we examine the influence of the nonadia-
batic wall on the relationship between energy and
temperature. Moreover, we investigate the nonequilibrium
process by comparing with a quasiequilibrium structure of
stellar polytropes. In Sec. IV B, we discuss the local proper-
ties of the system to observe the influence of the nonadia-
batic wall. Finally, we present our conclusions.

II. N-BODY SIMULATION TECHNIQUES

We consider a system consisting of N point particles en-
closed in a spherical container of radius R. To simulate a
self-gravitating system, we integrate the set of classical equa-
tions of motion for the particles interacting through the
Plummer softened potential,

� = −
1

�r2 + r0
2

, �1�

where r and r0 represent the distance between particles and
the softening parameter, respectively �36–38�. The total en-
ergy E of the system is defined as*komatsu@t.kanazawa-u.ac.jp
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where EKE, EPE, and mi represent kinetic energy, potential
energy, and the mass of the ith point particle, respectively. G,
vi, and rij represent the gravitational constant, the speed of
the ith particle, and the distance between the ith and jth
particles, respectively. The mass of each particle is set to be
m. To apply traditional conventions for self-gravitating sys-
tems, the total rescaled energy � is defined as

� = �KE + �PE = E
R

GM2 = E
R

G�mN�2 , �3�

where M, �KE, and �PE represent the total mass, rescaled
kinetic and potential energies, respectively. All the energies
are rescaled using Eq. �3�. In this study, the units of time and
velocity are �R3 / �Gm� and �Gm /R, respectively �37�. The
units are set to be G=R=m=1 to ensure generality of the

system. In our units, the temperature T̂ of the system is given
by

T̂ =
2

3kB
�KE =

2

3
�KE, �4�

assuming that the kinetic energy corresponds to the tempera-
ture and that Boltzmann’s constant kB is 1. That is, we focus
on the temperature of the system and ignore the local distri-
bution of temperature.

In this study, we consider a small system consisting of
N=250 point particles in a spherical container of radius R
=1. For simulating the N-body system, the set of equations
of motion is integrated using Verlet’s algorithm, i.e., the
leapfrog algorithm,

�2xi

�t2 ��t�2 = xi�t + �t� − 2xi�t� + xi�t − �t� = �
j

f ij�t���t�2,

�5�

where f ij�t� is a partial force from the jth particle on the ith
particle located at position xi at time t. To maintain the ac-
curacy of our simulations, a time step �t is selected as 10−5

based on a simulation with several different time steps
�36,37�. Through the present simulations, all interparticle
forces are calculated directly at each time step �t. In this
paper, all the results are averaged over 30 simulations with
identically prepared initial setups to observe an averaged be-
havior of the system.

To mimic a spherical adiabatic wall for microcanonical
ensembles, the radial component of the velocity of a particle
is reversed when it reaches the wall �37�. Accordingly, the
velocity speed �vi� of the particle is conserved through the
reflection. In contrast, to mimic a spherical nonadiabatic wall
for nonequilibrium processes, the velocity after the reflection
is reduced as

vi
�reflected� = �1 − ��vi, �6�

where � is a velocity reduction rate or a cooling rate �38�. �In
this study, the nonadiabatic wall is employed to simulate
energy loss by reflecting walls �39�.� The cooling rate � is

varied from 0.001 to 0.5 in order to investigate the influence
of the nonadiabatic wall. Note that �=0 corresponds to the
adiabatic wall for a microcanonical ensemble. In the present
method, all the components of the reflected velocity are re-
duced as described in Ref. �32�. That is, the nonadiabatic
wall for a nonequilibrium process slightly influences total
angular momentum of the present system �40�. In fact, it is
known that total angular momentum affects a phase transi-
tion of rotating systems �41�. Therefore, we have checked the
total angular momentum through our simulations and con-
firmed that a variation in total angular momentum is suffi-
ciently small in the present study.

For the Plummer softened potential, the softening param-
eter r0 is set to be 0.005R. Accordingly, the collapse and
explosion energies for the system with the adiabatic wall are
�coll	−0.339 and �expl	0.267, respectively �42�. This
means, if the total rescaled energy � of the uniform state
becomes lower than �coll, the system should undergo a col-
lapse to a core-halo state. In contrast, if the energy � be-
comes higher than �expl, the system should undergo an ex-
plosion. When the energy of the system is between �coll and
�expl, the system should be in a stable or metastable state.
Note that the softening parameter r0 affects the properties of
the system. For example, for pure gravitational potentials,
the collapse energy is −0.335, and a mean-field phase dia-

gram or an �− T̂ curve has a spiral curve �7,10�. �For r0

=0.005R, the �− T̂ curve has high- and low-energy branches
terminating at �coll and �expl �43�.� Accordingly, we will dis-
cuss the influence of deviation from the pure gravitational
potential later.

In such self-gravitating systems, the crossing time �c and
the relaxation time �r are evaluated as �c	1 /�G�=1 /�� and
�r	�0.1N / ln N��c, respectively, where � represents the den-
sity of the system �23�. In our units, the crossing and relax-
ation times are �c	0.1 and �r	0.6, respectively, assuming a
uniform density profile, i.e., �=mN / �4	R3 /3�. The collapse
time of the present system is approximately 600, since the
collapse time in a system with N=125–250 particles and
r0=0.005R is approximately �103�r �43�.

III. INITIAL CONDITIONS

For an initial setup, we prepare a self-gravitating system
at an approximate virial equilibrium state as follows:

�i� Step I: all the particles initially are distributed ran-
domly in the spherical container based on a spherically sym-
metric uniform density profile. Moreover, all the particles are
set to have a velocity of �v� but with a random direction. The
velocities v are set to keep a total energy of 0.5, which is
higher than the explosion energy �expl	0.267. Thereafter, to
keep the total momentum and the total angular momentum 0,
the velocities of the particles are slightly modified taking into
account the spherically symmetric uniform density profile.

�ii� Step II: the N-body simulation is carried out under a
restriction of constant energy. That is, the reflecting wall is
set to be the adiabatic wall. To obtain a quasiequilibrium
state, the microcanonical ensemble simulation is continued
over 10 units of time, i.e., for t�=10, where t� represents the
time for the initial setup. We have confirmed that the system
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is in an approximate virial equilibrium state at t�=10 using
the virial ratio 
�t� of the system,


�t� =
2EKE − 4	R3Pwall

�EPE�
, �7�

where Pwall represents the pressure on the container wall
�37,42�. Note that the virial ratio is 1 if the system is in the
virial equilibrium state with pure gravitational potentials.

To check the above obtained system, we have examined
density profiles. As a result, the density profile is not exactly
uniform at �0=0.5, which is generally considered as the uni-
form state. However, we have confirmed that the system is in
an approximate virial equilibrium state using the virial ratio.
Therefore, in our simulations, we employ the above obtained
system as the source for the initial setup. The initial energies
are �0=0.5000�0.0096, �KE0

=1.1206�0.0109, and �PE0
=

−0.6206�0.0076, where the errors indicate the 68% confi-
dence level in terms of the normal error distribution. We
have confirmed that our main results do not greatly depend
on the initial total energy, e.g., �0=0.3.

Using the initial setup, a simulation for the system with a
nonadiabatic wall is carried out with various cooling rates �.
For �=0.001, 0.01, 0.1, and 0.2–0.5, the simulation time is
t=100, 18, 4, and 2, respectively. Accordingly, our simula-
tion time should be shorter than the collapse time of the
present system, �600; that is, we examine an early relax-
ation process before the collapse. Only the above microca-
nonical ensemble simulation is carried out, as for �=0.

IV. RESULTS

A. Energies and temperature of the system

To examine the influence of the cooling rate, we first ob-
serve typical time evolutions of the energies for �=0.1, 0.2,
0.3, 0.4, and 0.5. As shown in Fig. 1, the total energy �
decreases rapidly with time t because of the nonadiabatic

wall �hereafter we call the first stage the rapid initial cooling
stage�. Each curve gradually tends to a gentle incline after
the rapid initial cooling stage, since both the velocity and the
density near the wall reduce as the total energy decreases.
We found that, the greater the cooling rate, the more rapid
the decrease in the total energy.

Similarly, the time evolution of the kinetic energy �KE in
Fig. 1 exhibits a decrease with time during the rapid initial
cooling stage. However, the kinetic energy gradually in-
creases after this stage, while the total energy decreases. In
other words, the kinetic energy increases with decreasing
total energy, i.e., d� /d�KE is negative. If the kinetic energy
corresponds to the temperature of the system, then this indi-
cates that an incidence of negative specific heat occurs.

As shown in Fig. 1, for �=0.3, 0.4, and 0.5, we find that
the kinetic and potential energies oscillate considerably dur-
ing the rapid initial cooling stage, after which the amplitude
of the oscillations decays. The period of the oscillations is
approximately �0.2. Therefore, the period seems to be re-
lated to the crossing time, �c	0.1, which is proportional to
the period of plasma oscillations in a medium with charge
concentration �42�. �We have confirmed that the oscillation
shown in Fig. 1 does not greatly depend on the average op-
eration and the time step. However, the oscillation may dis-
appear when the number of particles is large �44�.� After the
rapid decrease in the kinetic energy, the first minimum of the
potential energy appears at time t	0.1 corresponding to the
crossing time �c. We expect that the extent of the decrease in
energy is too large to maintain the virial equilibrium state
and that the virial ratio significantly deviates from 1 during
the rapid initial cooling stage.

To examine this, we observe the virial ratio with various
cooling rates ��=0.001–0.5�. The value of the virial ratio

�t� given by Eq. �7� is averaged over t	0–0.1 to observe
the averaged behavior of the rapid initial cooling stage. As
shown in Fig. 2, the averaged virial ratio 
ave is approxi-
mately 1, although the value seems to decrease slightly at
large values of �. However, the error bars, i.e., the standard
deviation of 
ave, start to increase at �=0.2 and then rapidly
increase with �. This means, for ��0.2, the virial ratio os-
cillates considerably during this stage. In contrast, the initial
energy loss ���� depends clearly on � and the order of ���� is
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FIG. 1. �Color online� Time evolutions of the total energy �,
kinetic energy �KE, and potential energy �PE.
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various cooling rates �. The virial ratio is averaged over t	0−�c.
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1 for �=0.3, 0.4, and 0.5. That is, the initial energy loss is
too large to keep a quasiequilibrium state in the present sys-
tem.

The system considered above is different from microca-
nonical ensembles, since the total energy is not fixed. Nev-
ertheless, if the cooling rate is sufficiently small, the specific
heat of the system or the relationship between energy and
temperature may approach that for a microcanonical en-
semble. Accordingly, we examine a system with a small
cooling rate, �=0.001, for comparison with a microcanonical
ensemble.

To observe the properties of the microcanonical ensemble,
two results are shown in Fig. 3�a�. The first is our simulation
result ��=0�, for which the total energy � is varied from 0.5
to −0.33. The second is from the work of Ispolatov and Kart-
tunen �43�; a high-energy branch terminating at the collapse
energy �coll	−0.339 is plotted for the uniform state. Taking
into account a comparison with their work, we calculate the

temperature T̂ from the kinetic energy using Eq. �4�. As
shown in Fig. 3�a�, our microcanonical ensemble simulation
��=0� agrees well with the Ispolatov and Karttunen work;
that is, we can confirm that the kinetic energy corresponds to
the temperature of the system at an approximate virial equi-

librium state. For −0.2��, the temperature T̂ increases with
the total energy �. Accordingly, the system behaves like an

ideal gas with a positive specific heat, i.e., d� /dT̂0. In
contrast, for ��−0.2, the temperature decreases with in-
creasing total energy. In other words, the specific heat in this

region is negative, i.e., d� /dT̂�0.
Now, we focus on the result for a system with a nonadia-

batic wall, i.e., �=0.001. The simulation starts from an initial
total energy of �0=0.5, as shown in Fig. 3�a�. For −0.2��,
the total energy and the temperature decrease from the initial
value because of the nonadiabatic wall. In this region, we
find excellent agreement between �=0.001 �a nonequilib-
rium process� and �=0 �microcanonical ensemble�. In con-
trast, for ��−0.2, while a specific calculation oscillates con-
siderably due to statistical fluctuations, we can observe a
negative specific heat from the averaged value, since the
temperature increases with decreasing �. Moreover, as ex-

pected, the result for �=0.001 agrees well with the microca-
nonical ensemble. Note that the temperature for �=0.001 is
slightly lower than that for �=0. If the cooling rate is smaller
than �=0.001, the dependence of temperature on energy can
further approach that of the microcanonical ensemble. How-
ever, when � is too small, the system should undergo a col-
lapse since the simulation time is longer than the collapse
time. �If the simulation time is longer than the collapse time,

our �− T̂ curve may be extended to a core-halo or low-energy
branch terminating at the explosion energy �expl, where the
low-energy �core-halo� branch is located above the high-
energy branch for the uniform state �43�. However, through

the present study, the simulations are carried out below T̂

�0.5 to examine the �− T̂ curve near the high-energy branch
before the collapse. For simulating a system at lower-energy
and higher-temperature states, smaller time steps and longer
computational time are required to maintain the accuracy of
the simulations. Accordingly, we would leave such a long-
term simulation for the future research.�

Finally, we examine the influence of the cooling rate more
closely by investigating the dependence of the temperature
on the total energy for various cooling rates. As shown in
Fig. 3�b�, for −0.2��, the curve further deviates from the
microcanonical ensemble ��=0� with increasing cooling rate
� �45�. That is, the greater the cooling rate, the steeper the
slope of the curve. This is because the system deviates from
the virial equilibrium state, since the decrease in the kinetic
energy is rapid due to the large cooling rate. For ��−0.2, or
rather ���coll, the temperature increases with decreasing to-
tal energy, excepting several large oscillations. Therefore, it
is clearly demonstrated that a negative specific heat occurs in
the system with various cooling rates assuming that the ki-
netic energy corresponds to the temperature of the system.
�In fact, this assumption should be accepted, since all the
systems are in an approximate virial equilibrium state except
around the large oscillations and the rapid initial cooling
stage.� In particular, it seems that each curve gradually shifts
toward a common curve and that the extent of the negative

specific heat or d� /dT̂ does not greatly depend on the cool-
ing rate. For example, the saddle point or the bottom of the
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FIG. 3. �Color online� �a� Dependence of the temperature T̂ on the total energy � for the microcanonical ensemble ��=0, the Ispolatov

and Karttunen work �43�� and a nonequilibrium process ��=0.001�. �b� Dependence of the temperature T̂ on the total energy � for various
cooling rates �. For simplicity, typical results are plotted. Note that, as for �0, the simulation starts from an initial total energy of �0

=0.5. The values for �=0 are averaged over at least ten simulations and over t�=9–10.
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curve seems to shift to �	�coll. This is probably because the
influence of the gravitational potential is extremely large for
���coll. The tendency toward a common curve, confirmed
for our results even for �=0.5–1.0, remains an open ques-
tion. �We have confirmed the tendency toward a certain com-
mon curve even for r0=0.050R.� Therefore, we will investi-
gate the tendency toward a common curve in the following.

Recently, Taruya and Sakagami �23–27� have clearly
shown that an extremum state of Tsallis’ generalized entropy,
i.e., the stellar polytrope, has a consistent thermodynamic
structure, which predicts thermodynamic instability because
of a negative specific heat. Moreover, they found that a stel-
lar polytropic distribution is expected to be quasiattractors of
self-gravitating systems. In fact, we expect that a quasiequi-
librium structure of the stellar polytrope should be related to
our nonequilibrium process appearing in the self-gravitating
system with nonadiabatic walls. In this context, we examine
the present nonequilibrium process by comparing with the
stellar polytrope.

We first give a brief review of the stellar polytrope ac-
cording to the works of Taruya and Sakagami �26,27�. In
their works, the polytropic relation can be given as

P�r� = Kn
��r��1+1/n, �8�

where Kn, P�r�, and ��r� are the dimensional constant, the
isotropic pressure, and density at radius r, respectively. The
polytrope index n is given by

n =
1

1 − q
+

1

2
, �9�

where q is the Tsallis’ entropic parameter. Let us consider a
quasiequilibrium structure of the stellar polytropic system
enclosed in a spherical container with adiabatic walls. Con-
sequently, in our units, the total energy and temperature of
the system are given by

� =
1

n − 5
�3

2
1 −

n + 1

ve
� + �n − 2�

ue

ve
� , �10�

T̂ =
n + 1 − 2ue − ve

�n − 5�ve
, �11�

where ue and ve are homology invariants at the wall. The
homology invariants are obtained from Emden solutions
�46�. The details are summarized in Refs. �26,27�.

The nonequilibrium process for various cooling rates and
the stellar polytrope obtained from Eqs. �10� and �11� are
shown in Fig. 4. In this figure, for the nonequilibrium pro-
cess, we plot not only typical results shown in Fig. 3 but also
the result for �=0.8. �For �=0.8, the simulation time is t
=2.� For the stellar polytrope, we plot trajectories of Emden
solutions for polytrope indices of n=5, 12, and �. The poly-
trope index of n=� corresponds to isothermal spheres or
microcanonical ensembles �For details, see the Appendix and
Fig. 10.�. Note that the softening parameter for the Plummer
softened potential is r0=0.005R in our N-body simulations,
while the pure gravitational potential is assumed for the stel-
lar polytrope. Accordingly, we have to take into account the
influence of the softening parameter.

As shown in Fig. 4, our microcanonical ensemble simu-
lations ��=0� are consistent with the isothermal sphere �n
=�� except for a part of the spiral curve. �The difference
between �=0 and n=� indicates the influence of deviation

from the pure gravitational potential.� Moreover, the �− T̂
curve for �=0.01 agrees well with the curve for the poly-
trope index of n=12 except for a part of the spiral curve.

Therefore, the �− T̂ curve for various cooling rates seems to

correspond to the �− T̂ curve for various polytrope indices.
In other words, the stellar polytrope should be consistent
with a behavior of the nonequilibrium process appearing in
the self-gravitating system with the nonadiabatic wall.

As described above, the �− T̂ curve varies from the mi-
crocanonical ensemble to a certain common curve with in-
creasing cooling rates. Interestingly, the common curve ap-
pearing in the present nonequilibrium process agrees well

with the �− T̂ curve for the polytrope index of n=5 as shown
in Fig. 4. �If the pure gravitational potential, i.e., r0=0, is
employed for our simulation, a common curve moves up-
ward slightly. Accordingly, we expect that the common curve

for r0=0 should agree with the �− T̂ curve for n�5 or rather
n5.� As a matter of fact, the polytrope index of n=5 indi-
cates the appearance of gravothermal instability for the stel-
lar polytrope within an adiabatic wall �26,27�. That is, for
n5, the stellar polytrope within the adiabatic wall exhibits
the gravothermal instability. Therefore, the stellar polytrope
with n�5 should be related to a quasiattractor of the present
nonequilibrium process.

To observe an overview of density profiles, we select
three conditions from Fig. 4 as follows: for �=0.8, 0.4, and
0.1, the temporal total energy is approximately �=−0.80 �at
t=1.83�, �=−0.6 �at t=1.86�, and �=−0.4 �at t=1.92�, re-
spectively. In Fig. 5, the density profiles for the present non-
equilibrium process are indicated as the symbols, i.e., �, �,
and �. Each real line represents the Emden solution with n
=5, which is fitted with the corresponding simulation result,
using Eq. �A.7� in Ref. �26� or Eq. �3.22� in Ref. �27�. As
shown in Fig. 5, each curve for the stellar polytrope with n
=5 can be well fitted with the simulation result. Of course,
the stellar polytrope considered here is assumed to be quasi-
equilibrium structures of the system enclosed in a spherical

FIG. 4. �Color online� Dependence of the temperature T̂ on the
total energy � for various cooling rates � and polytrope indices n.
Trajectories of Emden solutions with n=5, 12, and � are indicated
for the stellar polytrope.
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container with adiabatic walls. However, these results indi-
cate that the behavior of the present nonequilibrium process
should be consistent with the stellar polytrope.

B. Local properties of the system

In this subsection, we observe the local properties of the
system simulated in Sec. IV A to examine the influence of
nonadiabatic walls. For this purpose, we investigate a shell-
averaged value. To calculate the shell-averaged value, we
consider the following imaginary shells: in the spherical con-
tainer of radius R=1, the container is divided into ten spheri-
cal shells in the radial direction r. The distance between the
inner and outer shells is set to be �r=0.1. Note that the
origin of r is set to be the center of gravity in the present
study, since the center of gravity moves slightly through the
simulations. That is, for calculating a shell-averaged value,
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FIG. 5. �Color online� Density profiles for the nonequilibrium
process and the stellar polytrope. The symbols represent the simu-
lation results for the nonequilibrium process. The real lines repre-
sent the stellar polytrope with n=5. For the nonequilibrium process,
the origin of r is set to be the center of gravity.
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FIG. 6. �Color online� Time evolutions of the shell-averaged velocity �left� and density �right� for each shell. The cooling rate is set to
be �=0.01 �top�, �=0.1 �middle�, and �=0.5 �bottom�, respectively. The results are averaged over 30 simulations with identically prepared
initial setups. The r values, i.e., r=0.15–0.85, are the midpoint radius within the shell �see the text�.
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we consider the imaginary spherical shells which are fixed at
the center of gravity. The value in the shell is averaged over
30 simulations. In the following, we discuss the shell-
averaged value except for the innermost and outermost shells
to observe an overview of the local properties �47�.

We first examine time evolutions of a shell-averaged ve-
locity and density for �=0.01, 0.1, and 0.5 as shown in Fig.
6. The shell-averaged velocity considered here is the shell-
averaged velocity speed. In this figure, for instance, the curve
with “r=0.85” �or “r=0.15”� represents a shell-averaged
value between r=0.8 and r=0.9 �or between r=0.1 and r
=0.2�. As shown in Fig. 6�a� and 6�c�, each shell-averaged
velocity reduces with time during the rapid initial cooling
stage. Thereafter, the velocity in an inner region, i.e., for r
	0.15–0.25, gradually increases. The shell-averaged density
in the inner region increases with time as shown in Fig. 6�b�
and 6�d�. These indicate that an incidence of negative spe-
cific heat occurs. On the other hand, in an outer region, i.e.,
for r	0.65–0.85, the shell-averaged velocity and density
should reduce with time. Therefore, the behavior of the inner
region is different from that of the outer region.

Now, we observe the influence of the nonadiabatic wall
with various cooling rates. To this end, we focus on the outer
shell near the wall, i.e., r=0.85. As shown in Fig. 6�a�, 6�c�,
and 6�e�, the decrease in the velocity for r=0.85 is the largest
and the most rapid. The shell-averaged velocity for �=0.1
�Fig. 6�c�� approaches a smaller value than that for �=0.01

�Fig. 6�a�� because of the large cooling rate. Similarly, as for
r=0.85, the shell-averaged density for �=0.1 �Fig. 6�d��
seems to approach a smaller value than that for �=0.01 �Fig.
6�b��. However, for the large cooling rate of �=0.5 �Fig.
6�e��, the velocity oscillates considerably during the rapid
initial cooling stage, since the velocity reflected at the wall
reduces rapidly. We find that the velocity in the inner region
increases within the crossing time, �c	0.1. That is, the in-
fluence of the nonadiabatic wall propagates to the inner re-
gion within the crossing time. However, it should take at
least the relaxation time, �r	0.6, for the amplitude of the
oscillations to decay. The rapid change in the velocity sig-
nificantly affects the density profile as shown in Fig. 6�f�.

In later time shown in Fig. 6�a�, 6�c�, and 6�e�, a spread of
the shell-averaged velocity profiles or a velocity gradient be-
tween the inner and outer regions seems to increase as the
cooling rate increases. To examine this, we observe local
velocity gradients calculated from the shell-averaged veloc-
ity. In Fig. 7, we plot d�v�

dr �0.75
0.25 as one of the typical velocity

gradients, where the velocity gradient is defined as

�d�v�r��
dr

�
rb

ra

=
�v�ra�� − �v�rb��

�ra − rb�
. �12�

As shown in Fig. 7, the velocity gradients for �=0.1–0.5
increase rapidly with time, while the velocity gradient for
�=0.01 gradually increases with time. In other words, the
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greater the cooling rate, the greater the velocity gradient in
later time. To investigate the influence of the cooling rate
more closely, we observe several velocity gradients at time
t=2 as a function of the cooling rate. For this purpose, we
examine three velocity gradients, i.e., d�v�

dr �0.85
0.15, d�v�

dr �0.75
0.25, and

d�v�
dr �0.65

0.35. As shown in Fig. 8, the behavior of three velocity
gradients is consistent with each other. As expected, the ve-
locity gradients considered here increase with the cooling
rate. That is, it is clearly shown that the cooling rate or the
nonadiabatic wall affects the velocity gradient of the system.

In the above discussion, an energy loss or a rate of energy
loss is different at each time. Accordingly, we rearrange Fig.
7 and show Fig. 9 as a function of the energy loss and the
rate of energy loss. In Fig. 9, the energy loss and the rate of
energy loss are given by ���t�−�0� and ���t�−�0� / �t− t0�, re-
spectively. Here �0 and t0 represent an initial total energy of
0.5 and an initial time of 0.

As shown in Fig. 9�a�, the behavior of each curve depends
on the cooling rate, since the rate of energy loss is different
from each other even initially. �Note that each curve moves
from right to left as time goes on.� For example, the rate of
energy loss for �=0.01 is smaller than the others because of
the low cooling rate. On the other hand, as shown in Fig.
9�b�, the velocity gradient should not greatly depend on the
cooling rate, for ��−�0��0.5 corresponding to ��t�0.
However, for ��−�0�0.5 or ��t��0, the velocity gradient
depends on the cooling rate. In other words, for ��t��0 or in
a gravity-dominated state, the velocity gradient for �
=0.1–0.5 increases more rapidly than that for �=0.01; i.e.,
the greater the cooling rate, the greater the velocity gradient.
This means that the cooling rate affects the velocity gradient
especially in the gravity-dominated state.

V. CONCLUSIONS

To clarify the negative specific heat appearing in self-
gravitating systems, we examined a system enclosed in a
spherical container with adiabatic and nonadiabatic walls by
means of N-body simulations. For nonequilibrium processes,
a particle reflected at a nonadiabatic wall was cooled to
mimic energy loss by reflecting walls. Through the present
study, we have shown that a negative specific heat occurs not
only in microcanonical ensembles but also in certain non-
equilibrium processes with various cooling rates. We found
that with increasing cooling rates, the dependence of the

temperature on energy, i.e., the �− T̂ curve, varies from the
microcanonical ensemble to a common curve. Interestingly,
the common curve appearing in the nonequilibrium process

agrees with an �− T̂ curve for stellar polytropes especially for
the polytrope index of n�5. Therefore, it seems that the
stellar polytrope with n�5 corresponds to a quasiattractor of
the nonequilibrium process appearing in the self-gravitating

system with the nonadiabatic wall. Moreover, the �− T̂ curve

for various cooling rates is consistent with the �− T̂ curve for
various polytrope indices. In other words, the present non-
equilibrium process should be related to the stellar polytrope.
In the nonequilibrium process, a rapid change in velocity at
the nonadiabatic wall significantly affects the velocity and
density profiles. The cooling rate affects the velocity gradient
especially in a gravity-dominated state. That is, the greater
the cooling rate, the greater the local velocity gradient in a
low-energy region. The influence of the nonadiabatic wall
has been revealed through the simulations. If the nonadia-
batic wall considered here can be actualized, it will in prin-
ciple be possible to control the specific heat of a long-range
attractive interacting system.

APPENDIX: TRAJECTORIES OF EMDEN SOLUTIONS IN

ε− T̂ PLANE FOR STELLAR POLYTROPES

To observe the thermodynamic properties of stellar poly-
tropes �26,27�, we examine typical trajectories of Emden so-

lutions in an �− T̂ plane as shown in Fig. 10. The polytrope
index of n=� corresponds to isothermal spheres and their
characteristics have been investigated in detail �10�. As
shown in Fig. 10, for larger energies, the system behaves like
an ideal gas with a positive specific heat. In contrast, for
smaller energies, the specific heat should be negative, i.e.,

d� /dT̂�0. Now, we focus on the influence of the polytrope
index n. As examined by Taruya and Sakagami, the trajecto-
ries for n5 gradually change their direction and finally
spiral around a fixed point, while the trajectories for n�5
terminate suddenly because of the finite radius �26�. In fact,
it is shown that, for n5, the stellar polytrope within an
adiabatic wall exhibits the gravothermal instability �26,27�.
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FIG. 10. �Color online� Trajectories of Emden solutions in �

− T̂ plane for stellar polytropes. Each point along the trajectory rep-
resents the Emden solution evaluated at different values of radius
re, where re represents the radius at the wall. All the trajectories

start from �� , T̂�= �� ,�� corresponding to the limit re→0. Accord-
ingly, with increasing re, the trajectories move as indicated by the
arrow. The trajectories for n=5, 12, and � are plotted in Fig. 4 as
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