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By means of N -body simulations, we study the evolution of gravity-dominated systems from an early relaxation
to a collapse, focusing on the velocity distributions and thermodynamic properties. To simulate the dynamical
evolution, we consider self-gravitating small N -body systems enclosed in a spherical container with adiabatic
or semipermeable walls. It is demonstrated that in the early relaxation process, the velocity distribution is
non-Gaussian and q-Gaussian, since the system is in quasiequilibrium states (here q is the Tsallis entropic
parameter). Thereafter, the velocity distribution undergoes higher non-Gaussian distributions, especially when
the core forms rapidly in the collapse process; i.e., q tends to be larger than that for the quasiequilibrium state, since
the velocity distribution further deviates from Gaussian. However, after the core forms sufficiently, the velocity
distribution gradually relaxes toward a Gaussian-like distribution. Accordingly, the velocity distribution evolves
from a non-Gaussian distribution through a higher non-Gaussian distribution to a Gaussian-like distribution;
i.e., the velocity distribution does not monotonically relax toward a Gaussian-like distribution in our collapse
simulations. We clearly show such a transition of the velocity distribution, based not only on the Tsallis entropic
parameter but also on the ratio of velocity moments. We also find that a negative specific heat occurs in a collapse
process with mass and energy loss (such as the escape of stars from globular clusters), even if the velocity
distribution is Gaussian-like.
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I. INTRODUCTION

Self-gravitating or long-range attractive interacting systems
exhibit several peculiar features [1–4], such as gravother-
mal catastrophe [5,6], negative specific heat [7–9], violent
relaxation [10], nonequilibrium thermodynamics, and nonex-
tensive statistical mechanics [11–30]. In these systems, the
velocity distributions are non-Gaussian [31–33], especially in
quasiequilibrium states and metastable states. For example,
Iguchi et al. proposed universal non-Gaussian velocity dis-
tributions for a spherical collapse in a violent gravitational
process of a collisionless stage (t < τr ) [32], and Carvalho
et al. indicated that the q parameter in the Tsallis distribution
depends on the age of open stellar clusters [33]. (Here τr

represents the relaxation time, which is driven by the two-body
encounter [1]). On the other hand, Gaussian and Maxwell-
Boltzmann velocity distributions have been discussed in
core-halo states in a collisional stage (t � τr ) by Ispolatov
et al. [34], and the velocity distribution was examined in
the central region of bound particles in a collapse process by
Merrall et al. [35]. These works suggest that after undergoing
a quasiequilibrium state in the collisionless stage, gravity-
dominated systems should finally relax toward a Boltzmann-
like state in the collisional stage through a collapse process,
even if the system does not approach the exact thermodynamic
equilibrium state. That is, time scales and energy states affect
the dynamical evolution of self-gravitating N -body systems
and, therefore, a finite lifetime of metastable states [36–39]
and phase transitions [40–50] have been examined from the
viewpoint of thermodynamics.

However, velocity distributions have not yet been ex-
tensively discussed in long-term nonequilibrium processes,
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except for a few studies [1,32–35], although they should
play an important role in the thermodynamic properties of
a system. In other words, it is not yet understood completely
how the velocity distribution evolves from an early relaxation
to a collapse. (Density profiles and energy distributions have
been extensively examined from an astrophysical viewpoint;
e.g., see Refs. [1,2] and references therein.) We expect that
an understanding of the evolution of the velocity distribu-
tion can give new insight into the thermodynamics of the
nonequilibrium process in long-range attractive interacting
systems. Accordingly, we have investigated the evolution of
a self-gravitating N -body system, focusing on the velocity
distributions and thermodynamic properties [51]. (Recently,
Latora et al. [52], Pluchino et al. [53] and Chavanis et al.
[54–56] have investigated the phase transition and relaxation of
self-gravitating systems, using Hamiltonian mean-field models
for one-dimensional systems.)

In the present study, we examine two collapse models
for a self-gravitating N -body system enclosed in a spherical
container with reflecting walls. As shown in Fig. 1(a), we first
consider a “cold collapse process” under a restriction of con-
stant mass and energy using adiabatic walls, because a system
enclosed in a spherical container is suitable for examining the
fundamental characteristics of the thermodynamic properties
[15,29,34]. (To simulate the cold collapse process, we employ
a typical small N -body system which has been analyzed in
detail [34,48], since the well-studied system is an important
benchmark system for examining a collapse theoretically and
numerically.) Of course, even high-energy particles cannot
escape from the spherical container in the above model.
In fact, the escape of stars from globular clusters or the
so-called evaporation process can drive the cluster toward
a configuration with a high-density core [57]. Therefore,
to mimic such mass and energy loss, we also consider an
evaporation process using semipermeable reflecting walls, as
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FIG. 1. (Color online) Two models for collapse processes.
(a) Cold collapse process under a restriction of constant mass and en-
ergy. (b) Evaporation-collapse process with mass and energy loss. For
the cold collapse process, an adiabatic wall is employed and the initial
temperature is set to be sufficiently low. For the evaporation-collapse
process, the particle passes through a semipermeable reflecting wall
freely when the total energy εi of the ith particle exceeds an energy
threshold εesc [30]. In this study, εesc is set to be 0. For details, see the
text in Sec. II B.

previously suggested by the present authors [30] and shown
in Fig. 1(b). (Hereafter, we call this an “evaporation-collapse
process,” since the system should undergo a collapse.)

The present paper is organized as follows. In Sec. II,
we give a brief review of numerical methods for simulating
self-gravitating N -body systems. In Sec. II A, we describe
simulation techniques for a system enclosed in a spherical
container with reflecting walls. In Sec. II B, we introduce two
models for collapse simulations using adiabatic and semiper-
meable walls. In Sec. II C, we describe several parameters, e.g.,
the virial ratio, the ratio of velocity moments, and the Tsallis
entropic parameter. In Sec. III, we present the simulation
results of two collapse processes. In Sec. III A, we examine
a cold collapse process with constant mass and energy. In
Sec. III B, we investigate an evaporation-collapse process
with mass and energy loss. We also discuss the correlation
between the Tsallis entropic parameter and the ratio of velocity
moments. Moreover, we observe the energy distributions and
the density-velocity correlations in typical collapse processes.
Finally, in Sec. IV, we present our conclusions.

II. METHODS

A. Simulation techniques

In this study, we consider a system consisting of N point
particles enclosed in a spherical container of radius R with
reflecting walls. As shown in Fig. 1, we examine two collapse
models: (1) a cold collapse process under a restriction of
constant mass and energy and (2) an evaporation-collapse
process with mass and energy loss. In the present paper, to
mimic a cold collapse, the initial kinetic energy is set to be
negligible values smaller than the order of 1% of the total
energy. We call this the “cold collapse.” The details for the
models are given in Sec. II B.

To simulate the two processes, we integrate a set of classical
equations of motion for the particles interacting through the
Plummer softened potential [1–3]:

� = −1/

√
r2 + r2

0 , (1)

where r and r0 represent the distance between particles and
the softening parameter, respectively. The total energy Ew of
the whole system is defined as

Ew = Ew
KE + Ew

PE =
N∑
i

miv
2
i

2
−

N∑
i<j

Gmimj√
r2
ij + r2

0

, (2)

where Ew
KE, Ew

PE, and mi represent kinetic energy, potential
energy, and mass of the ith point particle, respectively [30].
G, vi , and rij represent the gravitational constant, the speed
of the ith particle, and the distance between the ith and j th
particles, respectively. The mass mi of each particle is set to
be m. The superscript notation w represents a value of the
whole system, since a high-energy particle passes through
the semipermeable reflecting wall in our evaporation-collapse
process [30]. That is, in the evaporation-collapse process, the
number Ns (ri,rj < R) of particles in the sphere decreases
from the number N of particles in the whole system. Of course,
Ns is equal to N during the cold collapse process, because of
the adiabatic walls. In this paper, we investigate the properties
of the system in the sphere and, therefore, we consider the
system within the semipermeable reflecting wall as an open
system. We define the total energy E in the sphere, substituting
Ns into N in Eq. (2) [30]. (In the cold collapse process, E is
equal to Ew, since Ns is equal to N .)

The total rescaled energy ε in the sphere is defined as

ε = εKE + εPE = E
R

GM2
s

= E
R

G(mNs)2
, (3)

where Ms represents the total mass in the sphere and εKE and
εPE represent the rescaled kinetic and potential energies in the
sphere, respectively [30]. In this study, the units of time t and
velocity v are

√
R3/(Gm) and

√
Gm/R, respectively [29].

The units are set to be G = R = m = 1, to ensure generality
of the system. Therefore, ε depends on the temporal energy E

and the temporal number Ns of particles in the sphere. In our
units, the temperature T of the system in the sphere is given
by

T = 2

3kB

εKE = 2

3
εKE, (4)

assuming that the kinetic energy corresponds to the tempera-
ture and that Boltzmann’s constant kB = 1.

In our simulations, r0 for the Plummer softened potential
is set to be 0.005R [29,30], which is sufficiently smaller than
the critical value 0.021R, above which the collapse-explosion
transition is replaced by a normal first-order phase transition
[34,47]. The collapse energy for the system with an adiabatic
wall is εcoll ≈ −0.339 [34], which means that if ε of a uniform
state becomes lower than εcoll, the system should undergo a
collapse to a core-halo state.

In the present study, we consider a system consisting of
N = 125–250 point particles inside and outside a spherical
container of R = 1. For simulating an N -body system, the set
of equations of motion is integrated using Verlet’s algorithm,
as for our previous studies [29,30]. To maintain the accuracy
of our simulations, a time step of �t = 10−5 or �t = 0.5 ×
10−5 is selected, based on a simulation with several different
time steps [29,30,58]. (Since Verlet’s algorithm is a third-order
symplectic integrator, higher-order symplectic integrators are
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required to select a larger time step.) The results are averaged
over 30 simulations, to determine the averaged behavior of the
system. Therefore, incoherent phenomena, e.g., gravothermal
oscillations, are not observed clearly in this study.

In self-gravitating N -body systems, two time scales are
typically discussed, the crossing time τc, corresponding to the
free-fall time, and the relaxation time τr , which is driven by
the two-body encounter. The two time scales are evaluated
as τc ≈ 1/

√
Gρ and τr ≈ (0.1N/ ln N )τc, respectively, where

ρ represents the density assuming a uniform density profile
[1,25]. In our units, τc and τr for the present system of N =
125 (or N = 250) are evaluated as τc ≈ 0.2 (or τc ≈ 0.1) and
τr ≈ 0.5 (or τr ≈ 0.6), respectively. However, it takes a much
longer time for the collapse to be complete in a core-halo
state. For example, the complete collapse time in a system with
N = 100–200 particles is approximately 103–104 τc [48] and,
therefore, the collapse time of the present study is evaluated
as being of the order of 102–103 in our units. (The collapse
time for the evaporation-collapse process should be slightly
shorter than the above value, since Ns decreases to ∼20 in our
evaporation-collapse simulation.) Note that we do not discuss
the system in the complete core-halo state.

To simulate the cold collapse process, we employ a typical
small N -body system which has been analyzed in detail
[34,48], i.e., the system consisting of 125 particles enclosed
in a spherical container with adiabatic walls. This is because
the well-studied system is an important benchmark system for
examining a collapse theoretically and numerically. Therefore,
in this paper, we first examine the cold collapse process
step-by-step, by comparing with the result in Ref. [34]. To this
end, several parameters for our simulations, e.g., the number
N of particles, the softening parameter r0, and the criteria of
the core rc (discussed in Sec. II C), are set to be the same as
Ref. [34]. The details of our models are summarized in the
next subsection.

B. Numerical models

1. Cold collapse process with constant mass and energy

Spherical adiabatic walls are employed to simulate a cold
collapse process under a restriction of constant mass and
energy, as shown in Fig. 1(a). In this model, the radial com-
ponent of the velocity of a particle is reversed when it reaches
the adiabatic wall [58]. To mimic a cold collapse, the initial
temperature is set to be sufficiently low in nonequilibrium
states. For the initial setup, we prepare the initial density
profiles and velocities as follows.

For the initial density profile, we assume a radial density
profile based on the Plummer model, ρ(r) ∝ (1 + r2/a2)−5/2

[1,2]. The Plummer density profile is determined from the
initial potential energy. The initial potential energy εPE0 is set to
be negligible, lower than the target total energy, since the initial
kinetic energy εKE0 is sufficiently small for the cold collapse
(Table I). To distribute the particles in the spherical container
of radius R = 1, the container is first divided into 10 spherical
shells in the radial direction r , where the distance between
the inner and outer shells is set to be �r = 0.1 [58]. Based
on the density profile of the Plummer model, the particles
are distributed randomly in the spherical shells, taking into
account the spherically symmetric profile.

TABLE I. Initial setup of the cold collapse process with constant
mass and energy. The errors indicate the 68% confidence level in
terms of the normal error distribution using 30 simulations.

ε εPE0 εKE0

−0.6 −0.602 ± 0.001 0.002 ± 0.001
−0.8 −0.802 ± 0.001 0.002 ± 0.001
−1.0 −1.002 ± 0.002 0.002 ± 0.002
−1.2 −1.203 ± 0.002 0.003 ± 0.002

We set the initial velocity |v0| to be sufficiently small so
that 2εKE0/|εPE0| < 0.01. That is, we assume that the initial
velocity is that of a nonequilibrium state. For our initial setup,
all the particles are set to have a small velocity with equal
|v0| but with a random direction, keeping the target total
energy ε and 2εKE0/|εPE0| < 0.01. Thereafter, to keep the
total momentum and total angular momentum equal to 0, the
velocities of the particles are slightly modified, taking into
account the subsequent density profile. These operations are
iterated until the total energy of the system approaches the
target total energy. Therefore, the obtained density profiles
are slightly different from those for the Plummer model. We
have confirmed that our main results in the present study are
not influenced much by such a small difference in the initial
density profiles or in the initial velocity distributions.

In our cold collapse simulation, N = 125. To examine the
influence of the total energy, ε is set to −0.6, −0.8, −1.0,
and −1.2, respectively. The total energy is sufficiently smaller
than the collapse energy, εcoll ≈ −0.339. The simulation time
is set to 300–400 in our units. The details for the initial setup
are summarized in Table I.

Self-gravitating systems for −1 � ε � 1 have been ex-
tensively examined from a thermodynamic viewpoint, since
the thermodynamic properties rapidly vary [25,26,29,30,34].
In this study, we examine the cold collapse process of the
system for ε = −0.6 ∼ −1.2, to observe variations in velocity
distributions clearly. This is because we expect that the
variation in velocity distributions increases with increasing
negative energy. Moreover, for ε = −0.6 ∼ −1.2, the velocity
distribution approaches a Gaussian-like distribution in a
reasonable time scale (and a reasonable computational time).
Therefore, in the present paper, we do not discuss the lifetime
of metastable states close to εcoll. (Note that the lifetime of
the metastable state is an important and unresolved issue of
the collapse processes. For example, it has been theoretically
discussed that a typical lifetime of the metastable state should
depend on the number N of particles and on the offset of the
energy from the collapse energy, ε − εcoll [38]. However, the
details remain unresolved.)

2. Evaporation-collapse process with mass and energy loss

For an evaporation-collapse process with mass and energy
loss, we employ semipermeable reflecting walls, as shown in
Fig. 1(b). We give a brief review of this model, according to
Ref. [30]. In this model, when the total energy εi of the ith
particle in the sphere exceeds an energy threshold εesc, the
particle freely passes through the semipermeable reflecting
wall as if there was no wall. In contrast, when εi is equal to or
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smaller than εesc, i.e., εi � εesc, the spherical wall behaves like
an adiabatic wall. Usually, the energy threshold εesc should
be 0, since the particle can escape from the system when its
kinetic energy is larger than the potential energy. To calculate
the rescaled energy εi , the total energy Ei of the ith particle in
the sphere is defined as

Ei = mv2
i

2
−

Ns∑
j �=i(rj <R)

Gm2√
r2
ij + r2

0

, (5)

where Ei is rescaled using Eq. (3). Note that the particles
outside the sphere can pass through the wall freely and,
therefore, the system inside and outside the sphere evolves as
microcanonical ensemble simulations; i.e., all particles inside
and outside the sphere interact with each other during our
evaporation process. If a particle reenters the sphere, we count
it again as a particle inside the sphere. The properties in the
sphere are computed including the reentering particle. We
consider such a mass and energy loss in the container as a kind
of evaporation process. We call this the “evaporation-collapse
process” in the present study.

N is set to be 250, which is larger than 125 for the cold
collapse process. This is because the number Ns of particles in
the sphere decreases during the evaporation-collapse process.
For the initial setup, we prepare the self-gravitating system
at an approximate virial equilibrium state, using adiabatic
walls [30]. To obtain the approximate virial equilibrium state,
the microcanonical ensemble simulation is continued over
10 units of time. Based on the initial setup, a simulation
of the evaporation-collapse process is carried out, using
semipermeable walls. εesc and the initial total energy ε0

are set to εesc = 0 and ε0 = −0.3, respectively. (ε0 = −0.3
is slightly higher than the collapse energy, εcoll ≈ −0.339.
If the initial total energy is further higher, it is difficult
to observe the evaporation-collapse process properly since
most particles rapidly evaporate.) The simulation time for the
evaporation-collapse process is set to 40 in our units.

To simulate the evaporation-collapse process, a couple of
well-studied simple mechanisms are added to the cold collapse
process. We expect that the evaporation-collapse process is
difficult to predict theoretically, since both mass and energy
vary simultaneously. Therefore, it is worthwhile to study
this simple model numerically, in order to acquire a deeper
understanding of nonequilibrium phenomena appearing in
self-gravitating N -body systems.

C. Parameters for simulations

For velocity distributions in the sphere, we examine one-
dimensional velocity distribution functions combining all-
directional components of the velocity distribution [32]. The
velocity distribution function f (v) is first averaged over 30
simulations. After the ensemble average is obtained, velocity
distribution functions for t � 30 and t > 30 are time-averaged
over �t = 0.1 and �t = 1–2, respectively, to observe the
distribution function more clearly. We have confirmed that
the above operations do not greatly influence our main result.

Since the 1960s, several non-Gaussian velocity distribu-
tion functions have been suggested and examined for self-
gravitating systems [20–23,27,31–33,54]. In those works, the

q-Gaussian distribution based on Tsallis’ statistics [4,20–22]
was selected as a model to study whether the obtained
distribution function is Gaussian. (Lynden-Bell’s statistics
[10], Renyi’s statistics [16], Tsallis’ statistics [17], etc., have
been suggested for generalized statistics of the self-gravitating
system.) In the present paper, the q-Gaussian distribution
function is given by

fq(v; q,A,B) = A expq(−Bv2), (6)

where

expq(−Bv2) ≡ [1 − B(1 − q)v2]1/(1−q) (7)

and

exp1(−Bv2) = exp(−Bv2). (8)

q is the Tsallis entropic parameter. (A and B correspond
to a normalization parameter and an inverse of temperature
1/2kBT , respectively [20,22]. The three parameters q, A,
and B depend on time t . In the present study, we determine
the parameters from the simulated velocity distribution, as
described later.) If q = 1, the velocity distribution is Gaussian
and Maxwell-Boltzmann. We determine q, minimizing the
following function χ2 [26]:

χ2(q,A,B) =
Nv∑
i=1

[
fsim(v) − fq(v; q,A,B)

fsim(v)

]2

, (9)

where fsim(v) and Nv represent the simulated velocity dis-
tribution function at time t and the number for computing
the summation, respectively. Note that Nv in Eq. (9) is set
to 10–50, taking into account the range of the simulated
velocity distribution function, as described in step I and step II.
(Figure 2 shows typical simulated velocity distribution
functions.)

In this study, we determine the three temporal parameters
q, A, and B in Eq. (6) in the following steps [59]:

(I) We first assume a Gaussian distribution (i.e., q = 1) to
determine A. By means of a quasi-Newton method, A and

fv_t=200
Gaussian
q-Gaussian

fv_t=1
Gaussian
q-Gaussian

10-1

10-2

10-3

10-4

0 20 40 60 0 20 40 60
v v

f(v)

(a)
t=1
Gaussian
q-Gaussian

t=200
Gaussian
q-Gaussian

(b)

Gaussian

q-Gaussian

q=1.10 q=1.02

2

2

2

2

×

×

×

×

FIG. 2. (Color online) Velocity distribution functions of a cold
collapse process for ε = −1.0. (a) t = 1. (b) t = 200. The open
circles represent the simulated velocity distribution functions. The
interval of the velocity is set to �v = 1 in our units. The error
bars indicate the 68% confidence level in terms of the normal
error distribution (typical error bars are plotted). Note that the fitted
Gaussian and q-Gaussian distributions are superposed. For step I, the
Gaussian distributions are fitted by using only low-velocity particles,
i.e., v < 10 (see the text for details).
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B are computed, minimizing χ2. In this step, we employ the
simulation results only for low-velocity particles for v < 10.
Accordingly, Nv in Eq. (9) is set to be 10 in this step.

(II) We determine q and B, assuming that the obtained A is
fixed. In this step, we employ the simulation results for low-
and high-velocity particles, to determine q and B minimizing
χ2. For example, in Fig. 2, the q-Gaussian distributions are
fitted with the simulation results for v < 40; i.e., Nv = 40.
[To set Nv , we monitor the temporal simulated velocity
distribution function for f (v) > 2 × 10−4, as shown in Fig.
2. Therefore, in several cases, Nv is set to be different values;
e.g., Nv = 35, 45, or 50.]

We have evaluated q through the above procedure and have
confirmed that the determined parameters converge on nearly
identical solutions and that B increases approximately linearly
with the inverse of temperature, 1/T . [The temperature T is
given by T = (2/3)εKE, assuming that the rescaled kinetic
energy εKE corresponds to the temperature, as shown in
Eq. (4).] In this paper, we have checked fsim(v), the q-Gaussian
distribution fq(v; q,A,B), and the function χ2. Moreover, to
observe the temporal goodness of fit, we have examined the
normalized goodness of fit χ2:

χ2 = χ2

Nv

. (10)

To obtain an overview of the velocity distributions from
another viewpoint, we define the ratio of velocity moments,
vm(t), as

vm(t) =
〈
vi

2
〉2

〈
vi

4
〉 , (11)

where vi is the speed of the ith particle in the sphere, and
〈X〉 represents the mean of X at time t [34,58]. If the speed
distribution functions are Maxwell-Boltzmann and Gaussian,
i.e., f (v) = 4πv2(m/2πkBT )3/2 exp(−mv2/2kBT ), vm(t) ap-
proaches the specific value vmMB of 0.6. In this study, the ratio
of velocity moments is normalized as

VM(t) = vm(t)

vmMB
. (12)

Accordingly, the normalized ratio of velocity moments VM(t)
approaches 1 when the speed distribution is Gaussian. As
mentioned above, the speed vi of the ith particle in the sphere
is employed to compute vm(t), since the speed distributions
are directly related to the velocity distributions. In this paper,
we call VM(t) the normalized ratio of velocity moments. We
observe q and VM(t) to discuss an overview of the velocity
distributions. [The fluctuations of VM(t) considered here are
slightly smaller than those of V ′

M(t) which is computed from
the one-dimensional velocity of the particles inside the sphere.
We have confirmed that a time-averaged VM approximately
agrees with a time-averaged V ′

M, when VM(t) and V ′
M(t) are

time-averaged over �t = 0.1.]
The virial ratio α(t) is defined as

α(t) = 2EKE − 4πR3Pwall

|EPE| , (13)

where Pwall represents the pressure on the container wall by the
reflecting particles [29,30,34]. The pressure on the reflecting

wall at time t can be evaluated as

Pwall(t) =
∑t̂=t+t ′′/2

t̂=t−t ′′/2 2mvr( t̂ )

4πR2t ′′
=

∑t̂=t+t ′′/2
t̂=t−t ′′/2 mvr( t̂ )

2πR2t ′′
, (14)

where vr( t̂ ) is the sum of the radial components of the
velocities of all particles reflected by the wall, at each time
step t̂ . In the present study, the interval t ′′ in Eq. (14) is set to
be t ′′ = 0.02–0.20 in our units to reduce large fluctuations in
the pressure [29,30]. The virial ratio is 1 if the system is in the
virial equilibrium state with pure gravitational potentials. Note
that the virial ratio in core-halo states with soft gravitational
potentials is not 1, since particles in the core are well within
the softening radius (i.e., the softening parameter r0), unlike
for pure gravitational potentials [34]. For example, the virial
ratio defined by Eq. (13) is evaluated as 0.555, in the core-halo
state with ε = −0.339 and r0 = 0.005 [34].

During a collapse process of small N -body systems, it
is difficult to observe density profiles because of strong
fluctuations in the position of the high-density parts, even if
the center of mass of the system of reference is considered
[34]. Therefore, instead of the density profile, we examine
the number Nc of core particles of a prescribed radius rc

[34]. According to Ref. [34], we count the number Ni of
particles which are within rc from the ith particle and find
the particle which has the largest Ni . The prescribed radius
rc is set to be 0.01 [34]. We have confirmed that, except for
an early relaxation process, the number Nc of core particles
is not influenced much by the choice of a larger radius; e.g.,
rc = 0.02. In our simulations, we generally did not observe a
second-largest core containing more than two particles.

III. RESULTS

A. Cold collapse process

In this subsection, we examine a cold collapse process with
constant mass and energy; i.e., we discuss the properties of
the system enclosed in a spherical container with adiabatic
walls. Figure 3 shows time evolutions of the properties of the
cold collapse process for ε = −0.6, −0.8, −1.0, and −1.2.
In this figure, the horizontal axis t is a logarithmic scale to
observe evolutions of the system on time scales of the crossing,
relaxation, and collapse times.

We first focus on the simulation results for ε = −1.0 as
a typical result and discuss the influence of the total energy.
As shown in Fig. 3(a), initially (t � 0.2) the number Nc of
core particles is approximately constant, because a collapse
has not yet started. However, the temperature T significantly
fluctuates, since the initial temperature is extremely low in
strong nonequilibrium states due to our initial setup for the
cold collapse. The period of the oscillations is approximately
0.2. (The period is likely related to the crossing time τc of
the present system with N = 125 particles, τc ≈ 0.2, which is
proportional to the period of plasma oscillations in a medium
with charge concentration [29,34].) Of course, the crossing
time discussed here likely depends on the total energy. That is,
the higher the negative energy, the shorter the crossing time or
the earlier the temperature increases.

Similarly, the virial ratio α for ε = −1.0 fluctuates initially,
as shown in Fig. 3(b). However, α gradually approaches 1 for
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FIG. 3. (Color online) Time evolutions of the properties of the
cold collapse process for various total energies ε. (a) Temperature T

and number Nc of core particles. (b) Virial ratio α. (c) Normalized
ratio of velocity moments VM and Tsallis entropic parameter q.
(d) Normalized goodness of fit χ 2. The horizontal axis t and the
vertical axis for T are logarithmic scales. α starts from t = 0.1
(=t ′′/2), since the interval t ′′ in Eq. (14) is set to be t ′′ = 0.2 in
our units. q is plotted from t = 0.5.

0.5 � t � 1. Therefore, the system is in an approximate virial
equilibrium state or a quasiequilibrium state during this stage.
However, after this stage (t � 1), Nc increases and α gradually
deviates from 1 [Figs. 3(a) and 3(b)]. This suggests that a
collapse should start from t ≈ 1. (In this study, the Plummer
softened potential is employed to simulate self-gravitating
N -body systems. Therefore, the virial ratio in core-halo states
deviates from 1, since the core particles are well within the
softening radius.) As described in Ref. [34], the collapse

starts immediately in the present small N -body system, since
the total energy is set to be lower than the collapse energy,
εcoll ≈ −0.339. We expect that the system starts to deviate
from the virial equilibrium state or the quasiequilibrium state,
since the core starts to form. This deviation of α depends on
the total energy; i.e., the higher the negative energy, the earlier
the deviation starts. (Note that α for ε = −1.2 likely deviates
from 1 even in the early stage, because of its higher negative
energy.) Similarly, the higher the negative energy, the earlier
the core starts to form [Fig. 3(a)].

For t � 7, the increase of Nc with ε = −1.0 tends to be
slower than that of the early stage [Fig. 3(a)] and α gradually
approaches a certain value [Fig. 3(b)]. Therefore, we expect
that the system should gradually approach a core-halo state,
after undergoing the virial equilibrium state. Interestingly, T

starts to increase after a delay of several time units (t � 10).
In other words, T increases clearly, after the core forms
sufficiently. This indicates that the density evolution due to a
growth of the core plays a leading role in the collapse process,
as has been pointed out by Ispolatov and Karttunen [34]. It
should be noted that our system has not yet approached a
complete core-halo state, since the simulated temperature is
lower than the predicted value based on mean-field theory [34].
In this paper, we do not discuss the system in the complete
core-halo state. (For example, in the complete core-halo
state, the predicted temperature for ε = −1.0 is approximately
evaluated as 2.3 from a phase diagram in Ref. [34].)

As shown in Fig. 3(a), all the slopes of Nc are similar after a
rapid increase of Nc (t � 10); i.e., Nc increases approximately
logarithmically with time. (We call this a start time of
logarithmic increase of Nc.) In particular, since T increases
approximately linearly with t in the logarithmic-scale plot,
the time evolution of the temperature may be related to a
power law, T ∝ t δ (δ ≈ 0.2), in this stage. We expect that
collisions tend to be further dominant in this stage, since t � 10
is sufficiently longer than the relaxation time, τr ≈ 0.5.

In our cold-collapse process, the number N of particles is
set to be 125. We can expect that the complete collapse time
gradually increases with increasing N , in our units [34]. (In
Ref. [34], the complete collapse time has been examined for
systems consisting of 125–500 particles.) Similarly, the start
time of logarithmic increase of Nc mentioned above is expected
to increase with N . Therefore, we have examined the cold
collapse process for the system consisting of 250 particles for
ε = −1.0, to observe an overview of the effect of the size of the
system (Appendix). Consequently, the start time of logarithmic
increase of Nc likely depends on N ; i.e., the start time for N =
250 is slightly later than the start time for N = 125. Moreover,
the cold collapse process for N = 250 is consistent with the
process for N = 125 discussed in this subsection. The details
are summarized in the Appendix. (Note that larger N -body
systems should be simulated to study the effect of the size of
the system in more detail. However, longer computational time
and smaller time steps are required to maintain the accuracy of
the collapse simulation for the larger systems. In the present
paper, we focus on the small N -body systems.)

To study the influence of the total energy more clearly, we
observe the dependence of T , α, and Nc on the total energy, as
shown in Fig. 4. In this figure, as a typical result, the properties
at time t = 30 are plotted from Figs. 3(a) and 3(b). [Figure 3(c)
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FIG. 4. (Color online) Dependence of T , α, and Nc on the total
energy ε at t = 30. The plotted α is the average of the values for
t = 29.9 and t = 30.1.

is discussed in the next paragraph.] As shown in Fig. 4, T and
Nc increase with increasing negative total energy, −ε (or with
decreasing total energy, ε). In contrast, α decreases with the
negative total energy. This indicates that the core forms easier
for higher negative energy and, therefore, the system further
deviates from the virial equilibrium state.

We now examine time evolutions of the normalized ratio of
velocity moments VM and the Tsallis entropic parameter q, to
discuss the velocity distributions. (Note that VM is computed
from the speed of particles, as described in Sec. II C.) As shown
in Fig. 3(c), VM and q deviate from 1 for t � 1. Therefore, the
velocity distribution is non-Gaussian in a quasiequilibrium
state, since ε is lower than εcoll ≈ −0.339. For example, as
shown in Fig. 2(a), the velocity distribution for ε = −1.0 is
well fitted with the q-Gaussian distribution with q ≈ 1.1 in the
early relaxation process (t = 1). The q-Gaussian distribution
is likely well fitted with the simulation results through the
cold collapse process, since the normalized goodness of fit χ2

defined by Eq. (10) is sufficiently small as shown in Fig. 3(d).
(In Sec. III B, we will discuss this in detail.) From Fig. 3(c), we
found that VM and q with ε = −1.0 further deviate from 1 for
1 � t � 7. That is, the velocity distribution further deviates
from the Gaussian distribution, when the core forms rapidly.
The deviation of q and VM from 1 depends on the total energy.

To examine this deviation more closely, we plot the
maximum Tsallis entropic parameter qmax and the normalized
ratio VMqmax

of velocity moments required for qmax, as a
function of ε. As shown in Fig. 5, qmax and VMqmax

further
deviate from 1 with increasing negative total energy, −ε. In
other words, the greater the negative energy, the farther the
deviation from a Gaussian distribution.

We further observe the time evolutions of q and VM for
ε = −1.0. As shown in Fig. 3(c), for t � 7, VM starts to
increase while q starts to decrease and they gradually approach
1. This indicates that the velocity distribution evolves from
non-Gaussian to an approximate Gaussian distribution after the
core forms sufficiently. For t � 200, the velocity distribution
for ε = −1.0 approaches a Gaussian-like distribution, since
VM and q are approximately 1. In fact, as shown in Fig. 2(b),
q at time t = 200 is close to 1. (The Gaussian distribution
at t = 200 is well fitted with the simulation result, although
only low-velocity particles are employed for the fitting.)
(Such a variation in velocity distributions is also affected
by a temperature change during the collapse process; i.e.,
the velocity distribution should deviate from the original

0.5
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1.5

-1.4 -1.2 -1.0 -0.8 -0.6 -0.4
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VM

VMqmax
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FIG. 5. (Color online) Dependence of qmax and VMqmax on the total
energy ε. The maximum Tsallis entropic parameter qmax for each
total energy is plotted from Fig. 3(c). Note that VMqmax represents
the normalized ratio of velocity moments required for qmax. VMqmax is
averaged over the same time interval for fsim(v) to determine q.

distribution due to the temperature change. If the original
velocity distribution is Gaussian and if the negative energy of
the system is not high, the deviation from Gaussian is expected
to decrease immediately, following the temperature change.)

In the present cold collapse simulation, the velocity
distribution likely approaches the approximate Gaussian dis-
tribution for t � 200–300; that is, the velocity distribution
relaxes faster than other thermodynamic properties, e.g.,
temperature T . Therefore, the velocity distribution evolves
from a non-Gaussian distribution (q = q1 > 1) through a
higher non-Gaussian distribution (q > q1; i.e., the velocity
distribution further deviates from Gaussian) to a Gaussian-like
distribution (q ≈ 1), in the long-term evolution of the cold
collapse process, where q1 represents q for quasiequilibrium
states. Of course, it takes much longer for the velocity distri-
bution to evolve from the higher non-Gaussian distribution
to the Gaussian-like distribution. As shown in Fig. 3(b),
the virial ratio should evolve monotonically from the value
for a quasiequilibrium state to that for a core-halo state.
However, we found that the velocity distribution does not
evolve monotonically, unlike the virial ratio. In other words,
the velocity distribution undergoes higher non-Gaussian dis-
tributions, especially when the core forms rapidly in an early
collapse process. We have clearly shown that such a transition
of the velocity distribution based not only on q but also on VM.

As discussed above, it takes a longer time for the velocity
distribution to approach the Gaussian distribution in our cold
collapse process. However, in plasma physics, it is well
known that the velocity distributions in a Coulomb system
approach the Gaussian distributions in a short time. For
example, it has been reported that the velocity distribution
remains Gaussian during collapse simulations, because of the
fast velocity relaxation [34]. In Ref. [34], the initial velocity
distribution is Gaussian, and the total energy for a collapse
is typically set to be ε = −0.3 ∼ −0.5. In contrast, in our
cold collapse simulation, the initial velocity distribution is a
delta-function-like distribution with negligible small values,
and the total energy is set to be ε = −0.6, −0.8, −1.0, and
−1.2, which are relatively lower than the collapse energy
εcoll = −0.339. (This is because we would like to observe
variations in velocity distributions clearly.) In fact, we have
confirmed that, for ε = −0.6, the velocity distribution further
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deviates from Gaussian after a collapse starts, even if the initial
velocity distribution is set to be a Gaussian-like distribution
[60]. Therefore, the deviation from Gaussian discussed here is
likely influenced by higher negative energy. We can confirm
this from Fig. 5; i.e., qmax and VMqmax

further approach
1 with increasing ε. Moreover, we have checked that, for
ε = −0.2, the velocity distribution does not likely deviate
from a Gaussian-like distribution except in an early relaxation
process, even if the initial velocity distribution is set to be a
delta-function-like distribution [61]. Note that further research
is required to examine the velocity relaxation in more detail.

In this study, q is obtained from fitting with the simulated
velocity distributions. Therefore, we should not deny a
phenomenological aspect of our study. However, we can expect
a good correlation between VM and q, from Fig. 3(c) or Fig. 5.
That is, the increase of q and the decrease of VM are consistent
with each other, and vice versa. We will discuss this correlation
in the next subsection.

B. Evaporation-collapse process

To examine mass and energy loss in a collapse, we consider
an “evaporation-collapse process” in this subsection. In the
evaporation-collapse process, a particle outside the sphere can
return into the sphere freely. All particles inside and outside the
sphere interact with each other during the evaporation-collapse
process, because of long-range potentials. If a particle reenters
the sphere, we count it again as a particle inside the sphere. The
properties in the sphere are computed including the reentering
particle. However, most particles outside the sphere do not
likely return into the sphere again. The model considered here
is one of the possible models to simulate the evaporation-
collapse process. Since the number Ns of particles in the sphere
is initially set to be 250, the crossing and relaxation times
are evaluated as τc ≈ 0.1 and τr ≈ 0.6, respectively. In the
following, we discuss the properties of the open system in the
sphere. Note that the simulation results of the evaporation-
collapse process are slightly complicated to interpret, since
mass and energy vary simultaneously.

We first observe the time evolutions of the properties of
the evaporation-collapse process with mass and energy loss.
As shown in Fig. 6(a), Ns decreases from the initial value
of 250, since high-energy particles escape from the sphere.
For t � 0.6, the virial ratio α deviates from 1 because of
our initial setup [Fig. 6(b)]. However, for 0.6 � t � 7, α is
approximately 1 and, therefore, we expect that the system is
in an approximate virial equilibrium state. In this stage, the
temperature T and the negative total energy −ε in the sphere
gradually increase [Fig. 6(a)]. That is, a negative specific
heat occurs in the evaporation-collapse process. However, for
t � 7, α gradually deviates from 1 [Fig. 6(b)]. This indicates
that the system in the sphere gradually deviates from the virial
equilibrium state, as for the cold collapse process. In this stage,
Ns decreases rapidly, as shown in Fig. 6(a). Moreover, T , −ε,
and the number Nc of core particles increase rapidly.

As discussed in Ref. [30], we expect that the deviation of
α from 1 is related to a deviation from an ε-T curve for stellar
polytropes. To examine this, we plot the dependence of the
properties on the total energy ε in the early stage (t ≈ 0–10).
In Fig. 7, the ε-T curve of Emden solutions with n = 9 and
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FIG. 6. (Color online) Time evolutions of the properties of
the evaporation-collapse process with mass and energy loss.
(a) Temperature T , negative total energy −ε, number Nc of core
particles, and number Ns of particles in the sphere. (b) Virial ratio
α. (c) Normalized ratio of velocity moments VM and Tsallis entropic
parameter q. (d) Normalized goodness of fit χ 2. For α, the interval t ′′

in Eq. (14) is set to be t ′′ = 0.02 in our units. The initial q(0) is not
shown due to the logarithmic time scale.

n = ∞ are also plotted for stellar polytropes, where n

represents the polytrope index [30]. (The polytropic relation
can be given as P ∝ ρ1+1/n. The polytrope index of n = ∞
corresponds to isothermal spheres. In Ref. [30], the simulated
ε-T curve for an evaporation process agrees well with the
curve for the stellar polytrope with n ∼ 9.) In this figure, the
simulated system evolves as indicated by the arrow, since the
simulation starts from the initial total energy of −0.3.

As shown in Fig. 7(a), for −0.7 � ε < −0.3, α is ap-
proximately 1 and T agrees well with that for the stellar
polytrope with n = 9. However, for ε � −0.7, α gradually
deviates from 1. As expected, α starts to deviate from 1 when
T starts to deviate from that for the stellar polytrope with
n = 9. Moreover, we found that Nc increases for ε � −0.6.
That is, after the core starts to form, the system deviates from

021132-8



TRANSITION OF VELOCITY DISTRIBUTIONS IN . . . PHYSICAL REVIEW E 85, 021132 (2012)

Nc

q,VM

T

VM

(a)

(b)

Nc

n =       ∞
n = 9

t=0t=5q

t=0t=5t=10

T,

30

10

20

0
-1.6           -1.2           -0.8           -0.4            0.0

-1.6           -1.2           -0.8           -0.4            0.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

FIG. 7. (Color online) Dependence of the properties on the total
energy ε in the early evaporation-collapse process for t ≈ 0–10.
(a) Temperature T , virial ratio α, and number Nc of core particles.
(b) Normalized ratio of velocity moments VM and Tsallis entropic
parameter q. The simulated system evolves as indicated by the
arrow with time t , from ε = −0.3. In (a), the initial temperature
is represented by the open circle. The ε-T curves of Emden solutions
with n = 9 and n = ∞ are indicated for the stellar polytrope [30]. The
horizontal line corresponds to the virial equilibrium state, i.e., α = 1.
In (b), q for t = 0, 0.5, 1, 2, . . . , 9, and 10 evolves from right to left.

both the virial equilibrium state and the stellar polytrope. The
deviation of α from 1 is consistent with the formation of the
core, since many core-particles are well within the softening
radius of the Plummer softened potential [34]. As shown in
Fig. 7(b), initially, i.e., at ε = −0.3, the normalized ratio of
velocity moments VM and Tsallis entropic parameter q are
approximately 1. Therefore, the initial velocity distribution
is approximately Gaussian, since the initial total energy ε0 of
−0.3 is slightly higher than the collapse energy εcoll of −0.339.
However, in an early stage, i.e., for −0.7 � ε < −0.3, VM and
q deviate from 1, while the virial ratio is approximately 1. In
other words, the velocity distribution is non-Gaussian, while
the system is in the approximate virial equilibrium state. It
should be noted that q is less than 1 and VM is larger than
1, unlike for the cold collapse process. This suggests that
many high-velocity particles with positive energy escape from
the sphere during the early evaporation process. Accordingly,
in principle, the velocity distribution in this stage deviates
from the Gaussian distribution, since the velocity distribution
considered here is computed from velocity of the particles
inside the sphere. However, for ε � −0.7, q and VM gradually
tend to be larger and smaller than 1, respectively, as for the
cold collapse process. After the early evaporation process,
the deviation of q and VM from 1 does not depend much
on the escape of the positive-energy particles. Therefore, in
this stage, the deviation from the Gaussian distribution is likely
related to the formation of the core.

We now further discuss the time evolutions of the properties
in the evaporation-collapse process. As shown in Fig. 6(a),

after the core starts to form, T increases rapidly, as for the
cold collapse process. However, the delay of the temperature
increase is not so clear, since in the evaporation-collapse
process, T depends not only on kinetic energy but also on
Ns . The growth of the core stops at t ≈ 20 and, finally,
Nc is approximately equal to Ns . On the other hand, the
virial ratio slowly decreases and gradually approaches a value
corresponding to a core-halo state for t � 15 [Fig. 6(b)]. Note
that the system has not yet approached the complete core-halo
state in the present simulation.

To examine the velocity distributions, we observe VM and q.
As shown in Figs. 6(c) and 7(b), the initial velocity distribution
is approximately Gaussian due to our initial setup [the initial
q(0) is not shown in Fig. 6(c), due to the logarithmic time
scale]. However, for 0 < t � 4, VM and q deviate from 1. In
this stage, q is less than 1 while VM is larger than 1, since
many high-velocity particles with positive energy escape from
the sphere, as mentioned previously. For 7 � t � 15, VM and
q further deviate from 1, because of a rapid growth of the
core. However, for t � 15, VM increases while q decreases,
and they gradually approach 1. Accordingly, the velocity
distribution evolves from a non-Gaussian distribution (q =
q1 �= 1) through a higher non-Gaussian distribution (q > q1;
i.e., the velocity distribution further deviates from Gaussian)
to an approximate Gaussian distribution (q ≈ 1), as for the
cold collapse process. This suggests that we can evaluate the
ages of stellar clusters from their velocity distributions. In fact,
Carvalho et al. have found that the q parameter in the Tsallis
distribution depends on the ages of open stellar clusters, using
observed radial velocities of the clusters [33].

Interestingly, for t � 25, although the velocity distribution
is approximately Gaussian, a negative specific heat occurs;
i.e., −ε increases with T , as shown in Fig. 6(a). Of course,
the thermodynamic properties considered here, i.e., ε and T ,
depend on Ns . Accordingly, the system in this stage may not
be suitable for discussing the thermodynamic properties, since
Ns is small, ∼20.

In the present study, we determine the Tsallis entropic
parameter q(t), minimizing the function χ2. To examine the
difference from a q-Gaussian distribution, we observe the
normalized goodness of the fit χ2 defined by Eq. (10). This
parameter indicates that the greater χ2, the worse the fit. As
shown in Fig. 6(d), χ2 is large especially for 15 � t � 25.
Therefore, after q starts to decrease (or when a growth of
the core begins to slow down), the q-Gaussian distribution
is not well fitted with the simulated velocity distribution.
This is because Ns tends to be small but also because the
simulated velocity distribution has an apparent cusp profile
in the low-velocity regions (such a cusp velocity profile has
been observed in a collapse process; e.g., see Ref. [32]).
For t � 25, χ2 is slightly large due to statistical errors of
high-velocity particles, since Ns is small. However, we did
not observe the apparent cusp profile for t � 25. We have
confirmed that the q-Gaussian distribution is well fitted with
the simulated velocity distribution, except for 15 � t � 25.
In the cold collapse process, the q-Gaussian distribution is
well fitted with the simulated velocity distributions, since the
cusp profile does not clearly appear and Ns is fixed. It should
be noted that the q-Gaussian distribution discussed here is
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FIG. 8. (Color online) Dependence of the normalized ratio of
velocity moments VM on the Tsallis entropic parameter q. Top:
Normalized goodness of fit χ 2. Bottom: Normalized ratio of velocity
moments VM. VM is averaged over the same time interval for fsim(v)
to determine q. The solid line represents V ′

Mex(q) defined by Eq. (18)
based on one-dimensional velocity distributions (while the simulated
VM is computed from the speed of the particles inside the sphere).
Note that the pink diamonds (the closed diamonds) represent the cold
collapse process of the system with N = 250 particles discussed in
the Appendix.

selected as a possible model, to examine whether the simulated
velocity distribution is Gaussian. [As mentioned above, the
q-Gaussian distribution is not well fitted with the simulated
velocity distribution when a higher non-Gaussian distribution
appears. However, we can confirm that the simulated velocity
distribution further deviates from Gaussian in this stage, since
VM further deviates from 1, as shown in Fig. 6(c).]

From Figs. 3(c) and 6(c), we expect that the correlation
between VM and q for the evaporation-collapse process agrees
well with that for the cold collapse process. Therefore, to
examine this correlation more closely, we plot the relationship
between q and VM, using all the results discussed in this paper.
As shown in Fig. 8, the relationship between q and VM is on
a common curve. This indicates a good correlation between
q and VM. We found that both q and VM are suitable for
observing the long-term evolution of velocity distributions.
The good correlation suggests that the q-Gaussian distribution
is well fitted with the simulated velocity distribution in the
present collapse process. We can confirm this from Fig. 8,
since χ2 is sufficiently small except for several results of the
evaporation-collapse process. Of course, we should not deny
a phenomenological aspect of our study, since q is obtained
from fitting with the simulated velocity distribution. However,
our simulation results can help to understand nonequilibrium
phenomena appearing in self-gravitating N -body systems.

In our simulations, q is computed from the velocity
distribution, while VM is computed from the speed of the
particles inside the sphere, as described in Sec. II C. However,
if an alternative normalized ratio of velocity moments V ′

M was

computed from the one-dimensional velocity of the particles
inside the sphere, we would directly compare between the
simulated relation of V ′

M to q and an exact relation of V ′
Mex

to q. For example, from Eqs. (6) and (7), the q-Gaussian
distribution function is rewritten as

fq(v) = A[1 + B(q − 1)v2]1/(1−q). (15)

The mean value of squares of the velocity 〈v2〉 can be
calculated as

〈v2〉 =
∫

v2fq(v)dv∫
fq(v)dv

, (16)

where
∫

v2fq(v)dv is divided by
∫

fq(v)dv (=1), according
to a definition of the generalized nth moment [4]. Similarly,
〈v4〉 is given as

〈v4〉 =
∫

v4fq(v)dv∫
fq(v)dv

. (17)

Therefore, substituting Eq. (15) into Eqs. (16) and (17), by
making the change of variables, i.e., u = [B(q − 1)]1/2v, the
exact relation V ′

Mex(q) (for q > 1) is evaluated as

V ′
Mex(q) = v′

m

v′
mMB

= 〈v2〉2/〈v4〉
v′

mMB

= M2
2

/
M4/M0

v′
mMB

, (18)

where

Mn =
∫ ∞

0

un

(1 + u2)1/(q−1)
du. (19)

v′
mMB is the specific value of 1/3, for the Maxwell-Boltzmann

velocity distribution. Of course, V ′
Mex(q) is different from VM,

since V ′
Mex(q) is calculated from the velocity (while VM is

computed from the speed) [62]. However, we have checked
that a time-averaged VM considered here approximately agrees
with a time-averaged V ′

M, as mentioned previously. Therefore,
we attempt to compare between the exact relation V ′

Mex(q)
and the simulated relation of VM to q. For this purpose,
V ′

Mex(q) defined by Eq. (18) is plotted as the solid line, as
shown in Fig. 8. For q � 1.1, the simulated relation of VM to
q likely agrees well with V ′

Mex(q). In contrast, for q � 1.1,
the simulation results gradually deviate from V ′

Mex(q). The
deviation may suggest that, the greater q, the worse the fit.
In other words, the velocity distribution may vary from a
q-Gaussian distribution to other non-Gaussian distributions,
for q � 1.1. However, as shown in Fig. 8, the simulated VM

and the exact relation V ′
Mex(q) decrease with increasing q.

Accordingly, our simulation results are consistent with the
exact relation.

We have so far focused on velocity distributions in the
collapse process. Finally, we examine the energy distributions
and the density-velocity correlations in the collapse process. To
this end, the energy distribution function f (Ei) in the sphere is
defined as f (Ei) = N (Ei)/Ns . Note that N (Ei) is calculated
from the number of particles with energy Ei between Ei − dEi

and Ei + dEi [1,63,64], where Ei is the total energy of the ith
particle in the sphere, as given by Eq. (5). f (Ei) is averaged
over 30 simulations and over �t = 0.1–2, as for the velocity
distribution functions f (v). In this study, we examine f (Ei)
based on the non-rescaled energy Ei , since f (Ei) is suitable
for discussing our simulation results.
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FIG. 9. (Color online) Temporal energy distribution functions
f (Ei). (a) Cold collapse process with ε = −1.0 for t = 1, 4, and
400 (the final time). (b) Evaporation-collapse process for t = 1, 10,
and 40 (the final time).

As a typical result, we observe temporal energy dis-
tributions of the cold collapse process for ε = −1.0. As
shown in Fig. 9(a), most of the particles are close to
Ei ∼ 0, in quasiequilibrium states (t = 1). However, high-
negative-energy particles gradually appear during growth of
the core, e.g., from t = 4 to t = 400. The high-negative-energy
particles correspond to the core particles. In our cold collapse
process, positive-energy particles exist in the sphere, since
the particles cannot escape from the sphere due to adiabatic
walls. Therefore, in the dynamical evolution of the system, the
positive-energy particles gradually increase, while the core
particles gradually tend to have higher negative energy. In
contrast, in the evaporation-collapse process, positive-energy
particles can escape from the sphere because of semipermeable
reflecting walls. Accordingly, in principle, only negative-
energy particles exist in the sphere, as shown in Fig. 9(b).
The energy distribution for t = 1 is consistent with the results
discussed in Refs. [63,64]. However, after the core starts to
form, high-negative-energy particles gradually appear, e.g.,
from t = 10 to t = 40, as for the cold collapse process. This
indicates that the growth of the core in each collapse process is
consistent. However, at the final time, the energy distributions
are clearly different from each other, although the velocity
distributions of the two collapse processes are Gaussian-like.

The energy distributions discussed in Fig. 9 are related
to density-velocity correlations. Therefore, we observe an
overview of the density-velocity correlation, through a shell-
averaged density and a shell-averaged velocity speed [29]. To
calculate the shell-averaged values, we consider the following
imaginary shells, according to Ref. [29]. In the spherical

container of radius R = 1, the container is divided into 10
spherical shells in the radial direction r . The distance between
the inner and outer shells is set to be �r = 0.1. The origin
of r is set to be the center of gravity. That is, to calculate the
shell-averaged values, we consider the imaginary spherical
shells which are fixed at the center of gravity. The radius
�r = 0.1 of the innermost shell is 10 times larger than the
prescribed radius rc = 0.01 (i.e., the criteria of the core)
which should be larger than the core radius. Therefore, the
shell-averaged density of the core-region should be at least 103

times smaller than the exact core density. (The shell-averaged
density of the core region is significantly smaller than the exact
core density, when the core forms. However, we can observe
an overview of the density-velocity correlation, through the
shell-averaged values.) In the evaporation-collapse process,
we calculate the center of gravity using the particles inside the
real spherical container with semipermeable reflecting walls.
Note that the shell-averaged velocity considered here is the
shell-averaged velocity speed V [29].

The temporal density-velocity correlations are shown in
Fig. 10. We first observe the density-velocity correlations of
the cold collapse process for ε = −1.0. As shown in Fig. 10(a),
the velocity increases with density in quasiequilibrium states
(t = 1) and early collapse processes (t = 4). The velocity
increases as time progresses, since the core gradually forms
(i.e., the density increases). This is consistent with the fact that
high-negative-energy particles gradually appear, as discussed
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FIG. 10. (Color online) Dependence of the shell-averaged veloc-
ity speed on the shell-averaged density. (a) Cold collapse process
with ε = −1.0 for t = 1, 4, and 400 (the final time). (b) Evaporation-
collapse process for t = 1, 10, and 40 (the final time). The shell-
averaged density of the core region should be at least 103 times
smaller than the exact core density, when the core forms.
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in Fig. 9(a). However, the density-velocity correlation is not
clear at the final time (t = 400), although the velocity likely
increases with density [Fig. 10(a)]. This is because we observe
the shell-averaged values based on the center of gravity, when
the position of the high-density parts fluctuates strongly [34].
In other words, the center of gravity is different from the
position of the high-density parts, since many positive-energy
particles exist in the sphere due to adiabatic walls for the cold
collapse process [Fig. 9(a)].

In the evaporation-collapse process [Fig. 10(b)], the veloc-
ity increases with density, as for the cold collapse process.
We found that high-density and high-velocity plots (ρ ∼ 104)
gradually appear, e.g., from t = 10 to t = 40, since the core
starts to form. Of course, the shell-averaged density in this
figure is significantly lower than the exact core density.
However, the velocity in higher-density regions is higher
than the velocity in lower-density regions. This suggests that
the density-velocity correlation is clearly demonstrated in
the evaporation-collapse process. In particular, the velocity
gradient for t = 10 is likely higher than the gradient for
t = 1; i.e., the velocity gradient increases as time progresses.
In the present study, the kinetic energy corresponds to
temperature and, therefore, the increase of the velocity gradient
is likely related to a gravothermal instability derived from
negative specific heat. An alternative simple interpretation
is that positive-energy particles with high velocity in outer
low-density regions escape from the sphere, through the
evaporation-collapse process.

As shown in Fig. 10(b), a high-density and high-velocity
plot (ρ ∼ 104) clearly appears at the final time (t = 40). The
high-density and high-velocity plot corresponds to the high-
negative-energy particles discussed in Fig. 9(b). In contrast,
at the final time (t = 40), the low-density and low-velocity
plots (ρ < 101) in Fig. 10(b) likely correspond to particles
in halo regions close to Ei ∼ 0 in Fig. 9(b). We found that
the density-velocity correlation is consistent with the energy
distribution, through this overview based on the shell-averaged
values.

IV. CONCLUSIONS

To clarify the velocity distributions and thermodynamic
properties in self-gravitating N -body systems, we have numer-
ically examined long-term evolution of those systems, from
an early relaxation to a collapse. In the present study, we have
considered two collapse processes: (1) a cold collapse process
under a restriction of constant mass and energy and (2) an
evaporation-collapse process with mass and energy loss. To
examine the two processes, we have employed typical small
N -body systems of 125–250 particles, through the Plummer
softened potential.

It is shown that the q-Gaussian distributions based on the
Tsallis entropy are well fitted with most simulated velocity
distributions, except for several results of the evaporation-
collapse process, especially except for q � 1.1. We found a
good correlation between the Tsallis entropic parameter q and
the normalized ratio of velocity moments VM. Moreover, the
simulated relation of VM to q is consistent with the exact
relation V ′

Mex(q). That is, q and VM are suitable for observing
the evolution of velocity distributions. In a quasiequilibrium

state or an early relaxation process, the velocity distribution
is non-Gaussian, when the total energy is lower than the
collapse energy. Even if the initial velocity distribution is
Gaussian, the velocity distribution rapidly deviates from a
Gaussian distribution since the total energy decreases in
the evaporation-collapse process. In dynamical evolutions of
the system, the velocity distribution further deviates from
the Gaussian distribution, especially in an early collapse
process, i.e., when the core forms rapidly. However, after
the core forms sufficiently, the velocity distribution gradually
approaches an approximate Gaussian distribution. In this
stage, the temperature for the cold collapse process increases
rapidly, as if it obeyed a power law. We also found that
a negative specific heat occurs in the evaporation-collapse
process, even if the velocity distribution is Gaussian-like. In
the evaporation-collapse process, the negative specific heat
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FIG. 11. (Color online) Time evolutions of the properties of the
cold collapse process for ε = −1.0 with N = 125 and N = 250.
(a) Temperature T and number Nc of core particles. (b) Virial ratio
α. (c) Normalized ratio of velocity moments VM and Tsallis entropic
parameter q. The results for N = 125 are plotted from Fig. 3. See the
caption of Fig. 3.
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may be related to an increase of the velocity gradient observed
in density-velocity correlations.

In our collapse processes, it is clearly shown that the
velocity distribution evolves from a non-Gaussian distribution
(q = q1 > 1 or �=1) through a higher non-Gaussian distribu-
tion (q > q1) to an approximate Gaussian distribution (q ≈ 1).
This suggests that observations of the velocity distribution
should help to evaluate the ages of stellar clusters. Through
the virial ratio, we usually expect that the system should mono-
tonically evolve from a quasiequilibrium state in a collisionless
stage to a core-halo state in a collisional stage. However,
while the virial ratio decreases monotonically, the velocity
distribution undergoes higher non-Gaussian distributions es-
pecially when the core forms rapidly in an early collapse
process. The velocity distribution evolves dramatically in long-
term evolutions of gravity-dominated systems, although the
velocity distribution should finally approach a Gaussian-like
distribution. The present study has revealed the evolution of
self-gravitating N -body systems and can link quasiequilibrium
and core-halo states (or between collisionless and colli-
sional stages) appearing in long-range attractive interacting
systems.

APPENDIX: EFFECT OF THE SIZE OF THE SYSTEM

In our cold collapse simulation, N = 125. However, time-
evolutions of N -body systems depend on N , i.e., the size
of the system [34]. Therefore, we examine the effect of the
size of the system in this appendix. As a typical example,
we observe a cold collapse process for ε = −1.0, using the
system of N = 250 particles. The initial conditions are set to
be the same as the conditions for N = 125, to simulate the cold

collapse process. The results for N = 250 are averaged over
10 simulations and, therefore, its statistical fluctuations should
be slightly larger than the fluctuations for N = 125 with 30
simulations.

Time evolutions of the number Nc of core particles and
temperature T are shown in Fig. 11(a). We found that the time
evolutions for N = 250 are similar to the evolutions for N =
125. However, initially (t � 0.03), T for N = 250 increases
earlier than T for N = 125. This is because, in our units, the
crossing time τc ≈ 0.1 for N = 250 is shorter than τc ≈ 0.2
for N = 125. In principle, Nc for N = 250 should be larger
than Nc for N = 125, due to the large number N of particles.
However, for t ≈ 1–3, the difference of Nc between N = 250
and N = 125 is small, since the system of 125 particles starts
to form the core earlier than the system of 250 particles. After
the rapid increase of Nc, Nc increases approximately logarith-
mically with time. In particular, the start times of logarithmic
increase of Nc for N = 125 and N = 250 are approximately
7 and 8, respectively. Therefore, as expected, the start time
for N = 250 is slightly later than the start time for N = 125,
since the relaxation time τr ≈ 0.6 for N = 250 is longer than
τr ≈ 0.5 for N = 125. Similarly, the virial ratio α for N = 250
gradually approaches a specific value more slowly, as shown in
Fig. 11(b).

Finally, we observe time evolutions of the normalized ratio
of velocity moments VM and the Tsallis entropic parameter q.
As shown in Fig. 11(c), VM and q for N = 250 are consistent
with those for N = 125, as for the other properties discussed
above. Except for the initial stage (t � 0.1), the time evolutions
for N = 250 are likely later than the evolutions for N = 125,
although the delay is not so clear. The delays observed in the
system of 250 particles are expected to be related to the effect
of the size of the system.
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