
A method to control LED blinking for position
detection of devices on conductive clothes

著者 Isoyama Naoya, Terada Tsutomu, Akita Junichi,
Tsukamoto Masahiko

journal or
publication title

ACM International Conference Proceeding Series

volume 2011
page range 123-130
year 2011-01-01
URL http://hdl.handle.net/2297/30339

doi: 10.1145/2095697.2095721

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Kanazawa University Repository for Academic Resources

https://core.ac.uk/display/196707293?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

A Method to Control LED Blinking
for Position Detection of Devices on Conductive Clothes

Naoya ISOYAMA
Kobe University

Kobe, Japan
isoyama@stu.kobe-

u.ac.jp

Tsutomu TERADA
Kobe University
PRESTO, JST
Kobe, Japan

tsutomu@eedept.kobe-
u.ac.jp

Junichi AKITA
Kanazawa University

Kanazawa, Japan
akita@is.t.kanazawa-

u.ac.jp

Masahiko TSUKAMOTO
Kobe University

Kobe, Japan
tuka@kobe-u.ac.jp

ABSTRACT
Various wearable computing devices face problems with their power
supplies, communication channels, and placement. Conductive clothes
can resolve these problems, but it is still difficult to know the po-
sitions of devices on the conductive fabric. Therefore, we have
devised a method to detect the positions of such devices by using
a camera. To detect the positions our method blinks the LEDs on
the devices according to their ID. Additionally, we propose sev-
eral methods to shorten the time for detection. An experimental
evaluation confirmed that compared with conventional method our
methods reduce the time to detect the positions of the devices.

Categories and Subject Descriptors
B.4 [Input/Output And Data Communications]: Miscellaneous

General Terms
Algorithms

Keywords
position detection, conductive fabric, LED

1. INTRODUCTION
Users of wearable computing devices would like to be able to

install them simply by attaching them to their clothes because the
combination of necessary devices changes everyday according to a
user’s plans for the day. To provide an environment where users
can place and use devices freely on their body, one faces certain
problems restricting devices: power supply , networking ability,
and positions.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MoMM2011, 5-7 December, 2011, Ho Chi Minh City, Vietnam..
Copyright 2011 ACM 978-1-4503-0785-7/11/12 ...$10.00.

Clothes made of conductive fabric have been studied as a way
to solve the problems. Conductive clothes enable devices to be
installd freely because they supply electric power and a communi-
cation channel without the need for cables or other wiring. This pa-
per supposes a network system using conductive fabric calledTex-
tileNet[1]. Users can install adequate devices according to applica-
tions, and sufficient electric power for operation as well as commu-
nication channels can be supplied to the devices usingTextileNet.
However,TextileNetby itself cannot detect the positions of devices
because its conductive cloth acts as a uniform solid electrode, while
knowing the position of a device is important information for a sys-
tem to assign the functions to the devices automatically since there
is a strong relationship between the position and the function of
each device.

Therefore, we propose a method for detecting the positions of
worn devices by using a camera. Our method blinks LEDs on the
devices according to their ID so that the camera can detect their
positions efficiently. Our method shortens the time for detection by
adding several different blinking patterns.

The remainder of this paper is organized as follows. Section 2
explains the background of this research, and Section 3 details our
method. Section 4 describes the implementation, and Section 5
evaluates our method by comparing it with a conventional method.
Section 6 presents our conclusions and outlines future work.

2. RELATED WORK
In wearable computing environments, there are many applica-

tions using the actuators and sensors on clothes[2, 3]. The left of
Figure 1 shows an example in which many devices are installed on
a clothing, and the right of the figure shows an example of someone
wearing many LED devices[4]. Conductive clothes have attracted a
great deal of attention as a way to permit such a flexible placement
of wearable devices. Conductive clothes are made from conduc-
tive fabric or conductive thread, and a user can install devices such
as buttons, sliders, and LEDs on a wear, moreover operates them
with electric power supplied from the wear. These characteristics
of conductive fabrics solve the problems of wiring, communication,
flexible placement, and power supply.

As researches on systems using conductive fabrics,Networked
Vest[5] uses conductive fabric on both sides of the wear, and the
devices attached to the vest have DC-PLC (Power Line Communi-

Figure 1: Wearing devices

ElectrodeInsulatorElectrode
Power SupplyUnitPower PowerData

Comm.UnitPowerData
Comm.Unit

Figure 2: TextileNet system

cation) modems that provide DC power from a single power sup-
ply as well as modulated analog signal communication.Electronic
Textiles[6] uses a conductive thread with an insulator coating for
horizontal and vertical directions as well as insulator thread.Com-
munication–Wear[7] is a clothing concept that augments a mobile
phone by enabling expressive messages to be remotely exchanged
between people. It conveys the sense/ experience of touch, and
presence through sensations delivered by e–textiles. Mattmann has
developed a way for body postures to be recognized using strain
sensors in textiles[8]. In this study, we employTextileNet[1] on
which the user can freely install devices and easily arrange their
layout (the system structure and devices are shown in Figure 2).
There is an electrode of conductive fabric on both sides of the cloth-
ing, and we can install pin-shaped devices on the fabric. It is pos-
sible to supply electric power by connecting a battery to the fab-
ric and to have devices communicate among themselves by using
broadcast. Since the conductive cloth is a uniform solid electrode,
TextileNetcannot detect the positions of worn devices.

The position of a device on the conductive fabric is important in-
formation for the system because there is a strong relationship be-
tween the positions of I/O devices and the functions to be assigned
to them. This fact is discussed in [9], which proposes a method
to automatically allocate functions to devices on conductive fab-
ric, called Pin&Play. This method makes allocations in accordance
with user profiles, functions to be assigned, device types, and de-
vice positions.

There have been several methods to ascertain the positions of

Wear a conductive cloth
installing devices

PC

Web

camera

Camera

image

Devices

Detecting the position
by using simple
image processing

User

Conductive

cloth

Figure 3: System structure

many distributed devices. Helin detected the rough positions of
devices by dividing up a conductive board[10]. However, since
we envision the possibility of several devices being on the same
area of the cloth, it is difficult for us to apply this method to our
system. RSSI on wireless LANs could be used[11], but although
this method has enough robustness it is not low accurate. Shin-
oda proposed a method to measure the positions of devices on thin
sheets[12]. However, this method cannot be applied to our system
since our clothing supposes flexible conductive fabrics. Finally,
we propose a method for image processing method using a web
camera. This method does not require us to make changes to the
TextileNetsystem.

There are a member of methods for detecting the positions of
devices by using a camera, such as those using high–speed cam-
eras[13, 14]. These systems, however, need many costly cameras.
In contrast, our method requires only a cheap web camera.ID
Cam[15] detects positions with a camera by sending the ID infor-
mation of the devices based on lighting patterns in a time series.
This system can detect the positions regardless of the distance be-
tween the camera and the devices. However, it is not suited to wear-
able computing since it needs a relatively long time to synchronize
the beacon and camera.firefly[16] efficiently detects the position
of each LED by taking images of the LED lights. The system allo-
cates 8-bit local addresses to each lighting elements, and it turns on
the LEDs according to their ID in parallel. However, this method
is prone to misdetections because it cannot always distinguish the
positions of multiple devices when their LEDs are blinking at the
same time. Our method solves this problem through its integrative
use of parallel and serial blinking of LEDs.

3. PROPOSED METHOD
Our method detects the positions of devices worn on conduc-

tive clothes. In the TextileNet system, all devices have an LED
for checking operations. Our method uses this LED to detect the
device’s position by using simple image processing with a web
camera. We suppose that each device has its own ID and a user,
who wears conductive clothing with devices attached to it, stands
in front of a camera while the system detects the positions of the
devices from their blinking LEDs. Figure 3 illustrates the structure
of our system. As to the intended environment, we envision that
a user would decide on the applications to be used that day, and
install devices that would be suitable for the applications before
going out every day. The user would then stand in front of a mirror
equipped with a camera, and the system would detect the positions
of devices and automatically allocate functions to them.

Table 1: Example of Parallel blinking
Decimal Binary 1st 2nd 3rd 4th

1 0001 - - - ON
2 0010 - - ON -
3 0011 - - ON ON
4 0100 - ON - -
8 1000 ON - - -
15 1111 ON ON ON ON

1st: Turn on LEDs
first bit value ‘1’

2nd: Turn on LEDs
second bit value ‘1’

・・・・Detection result

ID=1

ID=1

ID=3 ‘ID=1’ and ‘ID=3’

are close together

ID=3ID=3

ID=3

・・・・ Parallel blinking

・・・・Position of devices

Misrecognize
two lights as one light

Detect only ‘ID=3’
Because of mistake in 1st step

: Device

: Light from LED

Figure 4: Example of misdetection

3.1 Blinking Algorithm
The simplest method of detecting positions with a camera turns

on LEDs corresponding to the IDs one by one. Because TextileNet
cannot know in advance of the existence of installed devices, this
method must turn on all possible IDs. Therefore, it cannot be used
efficiently if there are many devices since it would take a lot of
time to detect all of them. On the other hand, there is a method that
turns on LEDs in parallel according to IDs. It takes only a little
time, but it has a certain probability of misdetection. Therefore,
we propose a new algorithm, two-phase LED blinking, to detect
position efficiently and accurately.

Phase 1.Parallel blinking: Detect the positions of LEDs by turn-
ing on all LED in parallel.

Phase 2.Sequential blinking: Sequentially turn on LEDs for IDs
that have been not decided onParallel blinking.

Parallel blinking detects positions in parallel by switching mul-
tiple LEDs on and off based on the devices’ IDs. On theN ’th
blink, the system turns on the LEDs whose theN th bit of ID is 1.
For example, when the ID is 4 bits long, a device whose ID is 1
blinks only at the 4th blink period, a device whose ID is 3 blinks
in the 4th and 3rd blink periods as shown in Table 1. In this phase,
when ID is expressed asN bits, the system can detect the positions
of devices inN blink period, thereby dramatically reduceing the
detection time. However, this method is still prone to misdetec-
tions when devices are placed close to each. For example, Figure
4 shows closely placed devices whose IDs are 1 and 3. By paral-
lel blinking, blinks from the two LEDs could be misrecognized as
being from one LED. In the example, the system detects only one
device whose ID is 3. In addition, the system must have a posi-
tional margin (we call this margin theMisdetection radius) for the
LED to be detected since the user may move during the detection
phases. Thus detections within theMisdetection radiusare treated
as being from the same LED. TheMisdetection radiusmay be the
cause of a number of misdetections, as shown in Figure 4.

Parallel blinking

Step 0. Calculate the Candidate IDs

Step 2.Turn on ID that may be

contained in only a certain ID

Step 3. Turn on an undetermined ID

There are IDs that

have not been

determined yet

START

END

Yes

Yes

Yes

No

No

No

There are Detected ID are

exclusively decided .

Step 1. Determine ID that are exclusively decided.

There is an ID may be contained

in only a certain Detected ID

Figure 5: Flow of Sequential blinking

The Sequential blinking phase solves this problem by checking
for detection errors with additional blinks after the Parallel blinking
phase. In the following explanation, we suppose that theDetected
ID refers to IDs that have been detected with Parallel blinking, and
the Candidate IDmeans IDs that may be attributed to certain ID.
For example, theCandidate IDsof a detected device whose ID is 3
are 1, 2, and 3. The procedure of Sequential blinking is as follows:

Step 0 Calculate the Candidate IDs for each Detected ID.

Step 1 Determine Detected IDs that are exclusively decided.

Step 2 If there is an ID that may be contained in only a certain
Detected ID, turn on it and return toStep 1.

Step 3 If there are IDs that have not been determined yet, turn on
one of them and return toStep 1.

Figure 5 and 6 show the flow of Sequential blinking and the
pseudo code for it. In the following, we will explain the procedure
for each step using the example in Figure 7, which shows a situa-
tion in which a user installed devices for operating a music player
application. In this example, each device has a 4-bit ID, as shown
on the right of Figure 7. The IDs detected by Parallel blinking and
including errors are 1, 3, 5, 11, 14, and 14, while the correct IDs
are 1, 2, 3, 5, 6, 9, 10, 12, and 14.

Step 0: Calculate the Candidate IDs

Our method makes a list of the Candidate IDs for each Detected
ID. Table 2 shows Candidate IDs for each Detected ID in the exam-
ple. If an ID is determined, the ID is removed from all Candidate
IDs.

Step 1: Determine Detected IDs that are exclusively decided

Our method turns on LEDs of devices that have the possibility
of being misdetected. For efficient detection of these LEDs, our
method employs a procedure to determine IDs without re-blinking.
Concretely, for eachn(1, 2, .., bit length of ID), if there is no
Candidate ID whosenth bit is 1 when thenth bit in its Detected

Algorithm Sequential blinkingBlinking_Times = Device_Bit_Length;Dictionary Candidate_Group; // List of Candidate IDList Bit_List[]; // Numbers of each BitStep0Candidate_Group.Add(Candidate-ID);Step1for i = 1 to Candidate_Group[i].Count{for j = 1 to Bit_List[j].Count{if (Bit_List[j].Contain(Candidate_Group[i]))contain_times++;}if (contain_times == 1){Delete(Candidate_Group[i][k], Candidate_Group);Step2if (Candidate_Group.Contain(Candidate_Group[i][j])){contain_times++;}if (contain_times == 1)Temp_Step2_Blinking_List.Add(Candidate_Group[i][j]);Candidate_Group[i].minimun(Temp_Step2_Blinking_List);Step2_Blinking_List.Add(Candidate_Group[i][j]);Delete(Candidate_Group[i][j], Candidate_Group);}}if(Step2_Blinking_List.Count > 0){Turn_On(Step2_Blinking_List);Blinking_Times++;to Step1;}else{to Step3;} Step3if(Candidate_Group.Count > 0){Turn_On(Candidate_Group[i][j]);Blinking_Times++;to Step1;Delete(Candidate_Group[i][j], Candidate_Group);}else{return(0);}
Figure 6: Pseudo code for Sequential blinking

ID is 1, the Detected ID can be deleted from Candidate IDs of all
Detected IDs. This is because this case means there is no other
blink without the Detected ID in thenth blink. This procedure is
executed again until no ID can be determined.

In the example, the LED whose ID is 1 is determined first. Then,
the LED whose ID is 3 is determined because the LED whose ID
is 1 has already been determined. In the same way, the LED whose
ID is 5 is determined (see also Table 3).

Step 2: Turn on Candidate IDs that may be contained in only
a certain ID

Our method turns on multiple LEDs simultaneously according
to the following procedure.

For each Candidate ID, our method counts the number of De-
tected IDs that have the ID as the Candidate ID. Then, for each
Detected ID, if it has Candidate IDs whose count is 1, our method
chooses one of the Candidate IDs as the blinking ID. All blinking
IDs can be turned on in the same time since there is no possibility
they are at the same place. If there is a blinking ID, the method
goes back to Step 1.

In the example, the blinking ID candidates are 6, 9, 11, 12, and
14. IDs of 6, 12, and 14 have the same Detected ID 14, and IDs of
9 and 11 have the same Detected ID 11. Therefore, LEDs whose
IDs are 6 and 9 can be turned on simultaneously, and both of them
are determined. After returning to Step 1, this step turns on LEDs

Display

Stop Lamp

Start Lamp
Previous

Next

Stop

Start
Volume Up

Volume down

Number : Installed ID: Device

Number : Detected ID

・・・・Positions of devices ・・・・IDs of Devices

1

3 5
6 10

2 9

14

12

11

14

14

1

3 5

Figure 7: Example of device layout and detection result

Table 2: State after Step 0
Detected Candidate Fixed

1 1
3 1, 2, 3
5 1, 4, 5
11 1, 2, 3, 8, 9, 10, 11
14 2, 4, 6, 8, 10, 12, 14
14 2, 4, 6, 8, 10, 12, 14

whoseIDs are 11 and 12, and the system knows the position of
LED whose ID is 12 and the fact there is no LED whose ID is 11
(see Table 4).

Step 3: Turning on an unfixed ID

The remaining LEDs must be turned on one by one. As such,
the system turns on one of the undetermined ID and returns to Step
1. In the example, it turns on the LEDs whose IDs are 2, 4, 8,
and 10 in order. After turning on the LED whose ID is 10, Step
1 determines the LED whose ID is 14, as shown in Table 5. To
complete the detection, our method takes only 10 blinks, whereas
15 blinks are required if IDs were determined one by one.

3.2 Enhancement of Method by using Parity
Our method takes fewer blinks to detect the positions of LEDs

through its integrative use of parallel and sequential blinking. There
is another way to reduce the blinks by using additional parity-like
bits. It works because sequential blinking takes longer than paral-
lel blinking. This enhancement enlarges the time period of parallel
blinking but shortens that of sequential blinking.

We call the method described in Section 3.1 theBasic method.
Here, we describe three enhanced methods: theReverse method,
Partition method, andPair method.

Reverse method

The Reverse method adds bits that are the reverse in value of
those of the original ID, which means that the length of the en-
coded ID is twice as long as that of the original ID. During parallel
blinking, the method turns on LEDs on the basis of the encoded ID.
For example, if the ID is 0010 (= 2), the encoded ID is 00101101,
which has additional 4 bits of parity.

During parallel blinking, there is a characteristic that the detec-
tion of 0 means all Candidate IDs have 0 in that bit, while the de-
tection of 1 means at least one of the Candidate IDs has 1 in that
bit. The Reverse method increases the chance of detecting 0 and
thereby dramatically decreases the Candidate IDs. In addition, if

Table 3: State after Step 1
Detected Candidate Fixed

1 1
3 2 3
5 4 5
11 2, 8, 9, 10, 11
14 2, 4, 6, 8, 10, 12, 14
14 2, 4, 6, 8, 10, 12, 14

Table 4: State after Step 2
Detected Candidate Fixed

1 1
3 2 3
5 4 5
11 2, 8, 10 9
14 2, 4, 8, 10, 14 6
14 2, 4, 8, 10, 14 12

Table 5: Results of procedure
Detected Candidate Fixed

1 1
3 3
5 5
11 2, 9
14 6, 10
14 12,14

Table 6: Example of lighting pattern in the Reverse method

ID Binary Reverse 1st 2nd 3rd 4th 5th 6th 7th 8th

Position 9 1001 0110 ON - - ON - ON ON -
10 1010 0101 ON - ON - - ON - ON

Detected 11 1011 0111 ON - ON ON - ON ON ON
Candidate ∗0∗∗ 1∗∗∗ Fixed Fixed

Table 7: Example of lighting pattern in the Partition method (1 bit)
ID Binary Reverse 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th

Position

2 0010 1101 - ON - ON - ON - - - - - -
3 0011 1100 - ON ON ON - - - - - - - -
10 1010 0101 - - - - - - - ON - ON - ON
14 1110 0001 - - - - - - ON ON - - - ON

Detected(MSB ‘0’) 3 011 101 - ON ON ON - ON - - - - - -
Detected(MSB ‘1’) 14 110 101 - - - - - - ON ON - ON - ON

Table 8: Example of lighting pattern in the Partition method (2 bit)
ID Binary 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th 16th
2 0010 ON - - ON - - - - - - - - - - - -
3 0011 ON ON - - - - - - - - - - - - - -
10 1010 - - - - - - - - ON - - ON - - - -
14 1110 - - - - - - - - - - - - ON - - ON

00 3 11 ON ON - ON - - - - - - - - - - - -
01 - 00 - - - - - - - - - - - - - - - -
10 10 10 - - - - - - - - ON - - ON - - - -
11 14 10 - - - - - - - - - - - - ON - - ON

theDetected ID is not consistent with its reverse part, our method
knows that it has misdetected.

Table 6 shows an example of a misdetection happening because
there are two LEDs whose IDs are 9 and 10 within the Misdetec-
tion radius. The 2nd and 5th bits did not blink in this case, so the
Candidate IDs are 10∗∗(i.e. 8, 9, 10, or 11), instead of∗0∗∗ (i.e.
1, 2, 3, 8, 9, 10, or 11) in the Basic method.

Partition method

The Partition method divides LEDs into two or more groups and
parallel blinking is performed per group to decrease the chance of
misdetection. For example, our method decides to divide LEDs
into two groups as to whether the 1st bit of the ID is 1 or not. Then,
it uses the Reverse method to detect each unit’s position. Table
7 shows an example where LEDs whose IDs are 2, 3, 10, and 14
are within the Misdetection radius. Our method blinks IDs whose
1st bit is 0, and then blinks the other IDs. Since the 1st bit for
all IDs do not have to be blinked, it takes 12 blinkings for parallel
blinking, and in total 12 blinks are required to detect all IDs. The
Basic method needs 19 blinkings in this case.

On the other hand, when there are four groups, the method di-
vides LEDs according to the patterns of the 1st bit and 2nd bit; 00,
01, 10, and 11. Table 8 shows an example of this case.

Pair method

The Pair method divides an ID in steps of 2 bits, and adds en-
coded bits according to the patterns of the pair; 00, 01, 10, and
11, after performing the basic method. Table 9 shows an example
where LEDs whose IDs are 9 and 10 are nearby each other. This
method detects all IDs that have 10** in the 5th, 7th, 9th, and 11th
blinks, and detects all IDs that have either **01 or **10. In this
case it can detect two LEDs whose IDs are 9 and 10 directly with-
out turning on any LED again.

4. IMPLEMENTATION
We implemented a prototype system incorporating our method.

The prototype consisted of a camera, multiple devices, and con-
ductive cloth (TextileNet). Figure 8 shows the use of the prototype.
We used a Lenovo ThinkPad X200 computer (CPU 2.4 GHz, RAM
3.0 GB), with the Windows 7 operating system, Microsoft Visual
C++.NET 2005 and OpenCV[17] to implement our method and the
application. We used a Logicool Qcam Orbit AF web camera to
capture images. The prototype recognized body parts by web cam-
era, turned on LEDs installed on TextileNet’s conductive fabric via
Bluetooth, and detected the position of the LEDs automatically. We
confirmed that the method accurately detected functions. The pro-
totype turns on LEDs two times per second because the web camera

Table 9: Example of lighting pattern in the Pair method

ID Binary
00 01 10 11

1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th

Position
9 1001 ON - - ON - - - ON ON - - -
10 1010 ON - ON - - - - - ON ON - -

Detected 11 1011 ON - ON ON - - - ON ON ON - -

Web Camera
LED Device

ConductiveFabric
Figure 8: Snapshot of user wearing prototypeLED

CommunicationDevice
Web Camera

Figure 9: Snapshot of user wearing LEDs

needed a period of time to detect light.
In addition, we implemented an application for controlling a lot

of LEDs on the cloth flexibly and intuitively. Figure 9 and 10 show
snapshots of using the prototype. The number of worn devices was
100, and each device had 7-bit IDs. Since our method automatically
detects the positions of all LEDs, we can control the LED states by
drawing a circle to decide the area in which to turn on the LEDs.

5. EVALUATION
We implemented a simulator in which we could set the number

of devices, detection methods, size of the misdetection radius, ID
length, and resolution of the camera. We evaluated our methods
from the viewpoint of blinking time of LEDs, which represents the
time to complete the detection. This is because the user of our sys-
tem stands still in front of the camera, and people cannot stand still
for a long time. The comparative method, called theConventional
methodturned on LEDs one by one. Table 10 shows the parameters
of the evaluation.

Mouse LocusDetected ID

Figure 10: Snapshots of using the application

Table 10: Parameters for evaluation
Numberof devices 0∼250

Resolutionof camera 640×480[pixel]
Misdetectionradius 10,20 [pixel]

Bit length of ID 7∼12 [bit]
Trial times 1000

5.1 Effect of Varying Bit Length
If there are a lot of different devices, the bit lengths for iden-

tifying the devices would be long. Since all devices should have
own IDs, the length of the ID is determined by the application
model, and the length has a significant effect on the performance
of position detection. Therefore, we evaluated the blinking times
by varying the ID length. Figure 11 shows the result. When there
were a few misdetections because few devices were placed on the
conductive fabric, the Reverse method performed best since it had
fewer parallel blinkings. When Misdetection radius was large, the
ID length long, or the number of devices large, the Pair method was
the best since it could reduces sequential blinking by adding bits in
parallel blinking procedure.

In most cases, the enhanced methods were far superior to the
Conventional method and Basic method. Moreover, the enhanced
methods that had several types of parity checking had much higher
performance compared with the Basic method. These results con-
firmed the effectiveness of the proposed method and the enhance-
ments.

5.2 Effect of Varying Number of Devices
The number of installed devices increases with the number of

applications to be used. Therefore, we evaluated the blinking times
while varying the number of worn devices. Figure 12 shows the
results of the evaluation. If a user can stand still for one minute, the
limit of blinking times is 120 in our setting. If the length of the ID
is 8 bits and the Misdetection radius is 10 pixels, every method can
detect more than 250 IDs within one minute. If the Misdetection
radius is 20 pixels, the Partition method can detect all IDs within
one minute. On the other hand, If the length of the ID is 12 bits,

0

10

20

30

40

50

60

7 8 9 10 11 12

Bit length [bits]

Misdetection radius: 20 pixels

0

10

20

30

40

50

60

7 8 9 10 11 12

N
u

m
b

e
r
 o

f
b

li
n

k
s

Bit length [bits]

Misdetection radius: 10 pixels

Number of devices: 10

0

30

60

90

120

150

7 8 9 10 11 12

N
u

m
b

e
r
 o

f
b

li
n

k
s

Bit length [bits]

Misdetection radius: 10 pixels

0

60

120

180

240

300

7 8 9 10 11 12

Bit length [bits]

Misdetection radius: 20 pixels

Number of devices: 50

0

100

200

300

400

500

7 8 9 10 11 12

N
u

m
b

e
r
 o

f
b

li
n

k
s

Bit length [bits]

Misdetection radius: 10 pixels

0

200

400

600

800

1000

7 8 9 10 11 12

Bit length [bits]

Misdetection radius: 20 pixels

Number of devices: 100

Basic method Reverse method

Partition method (1 bit) Partition method (2 bit)

Pair method Traditional method

Figure 11: Effect of varying bit length

and the number of devices to be detected is small, the Pair method
can detect 40 IDs within one minute.

In additon, when the ID length is 8 bits, the number of blinks
converges to a certain number. This is because too many Candidate
IDs destroys the advantageous effect of parallel blinking.

5.3 Effect on Misdetection radius
Depending on the brightness of the environment where the sys-

tem detects the positions of the devices, the precision of a camera,
and so on, the system may need to change the Misdetection radius.
Therefore, we evaluated the blinking times while varying the Mis-
detection radius. Figure 13 shows the results. When the ID length
is 8 bits and number of devices is 50, the Partition method (2 bit)
can detect all devices within one minute if Misdetection radius is
less than 70 pixels. It decreases to 40 pixels when the number of
devices is 100. On the other hand, when the ID length is 12 bits
and number of devices is 50, the radius decreases to 10 pixels.

6. CONCLUSIONS
In this paper, we proposed a method for detecting the positions

of devices on a conductive cloth by using a camera. Our method
blinks the LEDs on the devices according to their IDs and detects
their positions. We developed several detection algorithms for re-
ducing the total number of blinks required. Evaluation, confirmed
that our methods are more efficient than a conventional serial blink-
ing method.

In the future, we will consider a method that can cope effectively
with errors in which LEDs do not turn on in spite of having received
a signal to turn on.

7. REFERENCES
[1] T. Murakami, J. Akita, and M. Toda: Power Line

Communication Transceiver on Conductive Wear for Wearable

Computing,International Transactions on Systems Science and
Applications, Vol. 4, No. 3, pp. 287–291, 2008.

[2] R. Ueoka, H. Kobayashi, and M. Hirose: SoundTag: RFID
Based Wearable Computer Play Tool for Children,
Transactions on Edutainment III, Vol. 5940, pp. 36–47, 2009.

[3] L. Buechley, M. Eisenberg, J. Catchen, and A. Crockett: The
LilyPad Arduino: using computational textiles to investigate
engagement, aesthetics, and diversity in computer science
education,Proc. of the 26th International Conference on
Human Factors in Computing Systems (CHI 2008), pp.
423–432, 2008.

[4] Lighting Choreographer, http://www.dr-
popeye.com/Site/Wearable_LED_Performance.html.

[5] E. Wade and H. Asada: Conductive Fabric Garment for a
Cable–Free Body Area Network,Proc. of the 5th International
Conference on Pervasive Computing (Pervasive 2007), Vol. 6,
No. 1, pp. 52–58, 2007.

[6] N. B. Bharatula, P. Lukowicz, and G. Tröster:
Functionality–power–packaging considerations in context
aware wearable systems,Personal and Ubiquitous Computing,
Vol. 12, No. 2, pp. 123–141, 2008.

[7] S. Baurley, P. Brock, E. Geelhoed, and A. Moore:
Communication–Wear: User Feedback as Part of a Co–Design
Process,Proc. of the 2nd Haptic and Audio Interaction Design
(HAID 2007), Vol. 4813, pp. 56–68, 2007.

[8] C. Mattmann, F. Clemens, and G. Tröster: Sensor for
measuring strain in textile:Sensors, vol. 8, no. 6, pp.
3719–3732, 2008.

[9] K. Matsui, T. Terada, and S. Nishio: User Preference Learning
System for Tangible User Interfaces,Proc. of the 3rd
International Conference on Complex, Intelligent, and Software
Intensive Systems (CISIS 2009), pp. 766–771, 2009.

[10] F. Helin, T. Hoglund, R. Zackaroff, M. Hakansson, S.

0

50

100

150

200

250

0 50 100 150 200 250

N
u

m
b

e
r
 o

f
 b

li
n

k
s

Number of devices

Misdetection radius: 10 pixels

0

50

100

150

200

250

0 50 100 150 200 250

Number of devices

Misdetection radius: 20 pixels

Bit length: 8 bits

0

200

400

600

800

1000

1200

0 50 100 150 200 250

N
u

m
b

e
r
 o

f
b

li
n

k
s

Number of devices

Misdetection radius: 10 pixels

0

400

800

1200

1600

2000

2400

0 50 100 150 200 250

Number of devices

Misdetection radius: 20 pixels

Bit length: 12 bits

Figure 12: Effect of varying number of devices

0
40
80

120
160
200
240
280

0 20 40 60 80 100

N
u

m
b

e
r
 o

f
b

li
n

k
s

Misdetection radius [pixel]

Number of devices: 50

0
40
80

120
160
200
240
280

0 20 40 60 80 100

Misdetection radius [pixel]

Number of devices: 100

Bit length: 8 bits

0
600

1200
1800
2400
3000
3600
4200

0 20 40 60 80 100

N
u

m
b

e
r
 o

f
b

li
n

k
s

Misdetection radius [pixel]

Number of devices: 50

0
600

1200
1800
2400
3000
3600
4200

0 20 40 60 80 100

Misdetection radius [pixel]

Number of devices: 100

Bit length: 12 bits

Figure 13: Effect of varying Misdetection radius

Ljungblad, and L. E. Holmquist: Supporting Collaborative
Scheduling with Interactive Pushpins and Networking Surfaces,
Proc. of the 6th International Conference on Ubiquitous
Computing (UbiComp 2004), demo, 2004.

[11] T. Roos, P. Myllymaki, H. Tirri, P. Miskangas, and J.
Sievanen: A Probabilistic Approach to WLAN User Location
Estimation,International Journal of Wireless Information
Networks (IJWIN), Vol. 9, No. 3, pp. 155–164, 2002.

[12] K. Nakatsuma and H. Shinoda: High Accuracy Position and
Orientation Detection in Two‐Dimensional Communication
Network.Proc. of the 28th International Conference on Human
Factors in Computing Systems (CHI 2010), pp. 2297–2306,
2010.

[13] PhoeniX Technologies: The Visualeyes System,
http://ptiphoenix.com/.

[14] PhageSpace, Inc.: Phase Space motion digitizer,
http://www.phasespace.com/.

[15] N. Matsushita, D. Hihara, T. Ushiro, S.Yoshimura, J.
Rekimoto, and Y. Yamamoto: ID CAM: a smart camera for
scene capturing and ID recognition,Proc. of the 2nd
International Symposium on Mixed and Augmented Reality
(ISMAR 2003), pp. 227–236, 2003.

[16] A. Chandler, J. Finney, C. Lewis, and A. Dix: Toward
Emergent Technology for Blended Public Displays,Proc. of the
11th International Conference on Ubiquitous Computing
(UbiComp 2009), pp. 101–104, 2009.

[17] OpenCV. http://opencv.jp/.

