
Distributed synchronization algorithm for
multi-agent system

著者 Ren Zhong, Yamamoto Shigeru
journal or
publication title

Proceedings of the SICE Annual Conference

number 6060203
page range 1513-1516
year 2011-01-01
URL http://hdl.handle.net/2297/29746

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Kanazawa University Repository for Academic Resources

https://core.ac.uk/display/196707215?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Distributed Synchronization Algorithm for Multi-agent System

Zhong Ren1 and Shigeru Yamamoto2

1Graduate School of Natural Science and Technology of Kanazawa University, Kanazawa, Japan

(Tel: +81-76-264-6332; E-mail: renzhong@moccos.ec.t.kanazawa-u.ac.jp)
2Faculty of Electrical and Computer Engineering of Kanazawa University, Kanazawa, Japan

(Tel: +81-76-234-4849; E-mail: shigeru@t.kanazawa-u.ac.jp)

Abstract: This paper provides a distributed algorithm to guarantee synchronization between agents for multi-agent sys-

tems. Motivated by vertex coloring from graph theory, we explore an approach based on tentative overlay as a condition

mapping from interrelation and interaction between each agent, which equipped with local sensing and wireless commu-

nication capabilities. The objective of the proposed algorithms is to achieve synchronization, that is, making the most

of cooperation of the agents in the multi-agent systems with network’s connectivity, while other than nearest neighbor

information, our approach assumes no knowledge of global network topology. We provide analysis and design results for

multi-agent networks in arbitrary dimensions topology. The novel correctness poof relies on proximity graphs and their

properties. In addition, simulations are provided that demonstrate the effectiveness of our theoretical results, for which

we show a distributed dynamic programming of multi-agent system.
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1. INTRODUCTION

In recent years, decentralized coordination of multi-

agent systems (MAS) has become an active area of re-

search. A MAS is a system composed of many lo-

cally interacting and dynamically evolving agents, and

the overall system will emerge some kinds of behaviors

which will not be shown in a single agent, such as, phase

transition, synchronization, clustering, pattern formation,

swarm intelligence, etc. In the study of the collective syn-

chronization, which is our target, is one of the behaviors.

The tools used in the synchronization analysis now are

matrix product and random geometric graphs.

In distributed computing by using wireless sensor net-

works, the smaller radius of communication makes the

throughput of the distributed computing worse if the im-

plemented distributed algorithm is itself slow. In general,

it does not depend on the size of the network, but on the

desired accuracy of the computation. On the other hand,

one implication is that exchanging information via peer-

to-peer network built on top of it will be extremely fast.

Based on the above considerations, we consider a prob-

lem to create a multi-agent network where each agent can

be touched by anyone else at the initial time. We present

an algorithm to maximize the cooperation among agents

which uses no knowledge of global network topology ex-

cept for nearest neighbor information. The algorithm try

to make nonadjacent agents be synchronized as possible

as them can.

We derive an algorithm to obtain the number of col-

ors by which synchronized agents are distinguished and

the connectivity of the network is characterized in terms

of relative positions and broadcast rangesR as communi-

cation capability. Moreover, nonadjacent agents are syn-

chronized with the same color. Our derivation is moti-

vated by the Welch-Powell algorithm [7] for vertex color-

ing in graph theory, which doesn’t always yield a minimal

coloring of G, and self-stabilizing algorithms in graphs

as [8] in distributed computing. A distributed algorithm

is said to be self-stabilizing if it can end up in a correct

result no matter what is given as its initial state. We

cast our problem into a vertex coloring problem which

means color assignment to each vertex of a graph such

that there is no edge connecting two identically colored

vertices. Particularly, our algorithm only works for each

agent with no knowledge of the whole system. We use

the same color to display synchronized agents. The pur-

pose is no two vertices sharing the same edge have the

same color. This paper will emphasize analysis and cor-

rectness of the synchronization algorithm which given in

our CCDC paper [1] in which the main part is the degree

balance algorithm.

2. DEFINITION AND PROBLEM

2.1 The Topology of Multi-agent Systems

A multi-agent system (MAS) is a system composed

of multiple interacting intelligent agents. Collective be-

havior of multi-agent systems is a significant point in the

study of complex systems. Traditional topological the-

ory is insufficient to describe a complex network such as

a multi-agent system. This is because current complex

networks emphasize the relationships between nodes and

traditional topological theory is unable to define the rela-

tionships between nodes and describe an overall view of

the network efficiently [2]. To our knowledge, this study

is the first one to use geometric random graphs as in [3] to

model the topology of multi-agent system. A example of

multi-agent system is a wireless sensor network (WSN).

WSN as in [4], [5] consists of spatially distributed au-

tonomous sensors as three types of nodes (normal sensor

nodes, aggregators, and a querier) to monitor physical or

environmental conditions. The sensor nodes are usually

scattered in a sensor field.
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2.2 Geometric Random Graphs

Definition 1 (Geometric Graphs [3]) A geometric graph

G(V, r) = (V,E,A) with radius r is a graph with node

set V of points in a metric space, edge set E and adjacent

matrix A.

Definition 2 (Geometric Random Graphs) Given a ge-

ometric graph G = (V,E,A), a geometric random graph

is a probability distribution over the set of all subgraphs

of G.

According to Definition 1 and 2, we consider a dy-

namic multi-agent system with n agents in the two-

dimensional space described by a weighted geometric

random graph G = (V,E,A), where a finite set of ver-

tices V = {v1, v2, ..., vn | v ∈ R
2}, a set of ordered edges

E ⊆ V × V , and an adjacency matrix A = [aij ] whose
entries aij = 1 if (vi, vj) ∈ E and aij = 0 otherwise.

Since we do not allow self-loops, for each i, aii = 0. The
ith agent is assigned to node vi. The edges eij ∈ E rep-

resents the communication link. The communication ca-

pabilities give agents a potential communication bound,

which is denoted by a circle centered on the agent i and

given radius ri. The radius represents communication ca-

pability of each agent. In this paper, we make an assump-

tion that each agent has equal communication capability

R, that is ri ≡ R.

The multi-agents are equipped with sensors whose res-

olution is decaying exponentially with the distance to the

object to observe. Hence, if the distance is less than or

equal to the fixed connection radius R, then the agents

are regarded as neighbors. When we define the pairwise

distance between vi and vj as dij = �vi − vj�, the set of
neighbors of

the agent i is denoted by

Ni = {vj ∈ V | 0 ≤ dij ≤ R}. (1)

We define a subgraph for agent i as a subgraph Gi of

G whose vertices and edges from neighbors of agent i

and the connected links. So, Gi can be seen in a circle

with the radius R and with its center at the agent i. For

example, in Fig. 1 is a graphGwith 20 agents is depicted.
The agent colored red is connected to neighbors that are

covered by a circle with the radius R (which is depicted

the red circle) in Fig. 1.

2.3 Connectivity

In our graph G = (V,E,A), where A is the adjacent

matrix, the Laplacian matrix of G, is denoted by L of

which the rows and columns are indexed by V . The graph

can be also represented using the Laplacian matrix:

L = D −A (2)

where D = diag(d1, d2, ..., dn) is a diagonal matrix

with elements di. Obviously, the network is in spectral

properties of complex networks with symmetric weights

A = AT . And then we know L is positive semi-definite

and symmetric, its eigenvalues are all nonnegative. Let

us denote the eigenvalues of A by

u0 ≥ u1 ≥ ... ≥ un−1 (3)
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Fig. 1 Multi-Agent System with 20 agents

and by ordering the eigenvalues in a increasing way, we

have the eigenvalues of L:

0 = λ1 ≤ λ2 ≤ ... ≤ λn (4)

Lemma 1 (Algebraic Connectivity[6]) Let λ1(G) ≤
λ2(G) ≤ ... ≤ λn(G) be the ordered eigenvalues of the

Laplacian matrix L(G). Then, λ1(G) = 0, with corre-

sponding eigenvector 1. Furthermore, λ2(G) > 0 if and

only if graph G is connected and hence λ2(G) is called
the algebraic connectivity of G.

Letting Cn be the set of all connected graphs include

n agents, the graph which is connected is expressed as

G ∈ Cn. Then, we make the assumption

Assumption 1 (G′ Connectivity) Let λ2(G) > 0 for

all the time, so the ∀G ∈ Cn.

This assumption is presented for topology connectivity.

λ2(G) > 0 guarantee the given graph G connected for-

ever.

2.4 System Design and Problem

We denote a matrix C = (cij) ∈ R
n×n, where

cij = 1 if vertex i and j synchronized with the same

color whereas cij = 0.
Proposition 1: Given graph G = (V,E,A) with

|G| = n, a vector k(G)-coloring of G is a row vector

cj ∈ R
n which is the j-th row of the matrix Ci corre-

sponding to each vertex i ∈ V , such that for any two ad-

jacent vertices i and v the inner product of their vectors

satisfies

cTi cv =

�

0
1

(5)

and for the maximum number of synchronized agents, it

satisfies

min k(G) (6)

where k(G) is all G for the same number of vertices n.

The definition of an orthonormal representation [10]

[11] requires that the given dot products be equal to zero,

a weaker requirement than the one above.

- 1514 -



3. A SELF-ORGANIZING ALGORITHM
FORMULTI-AGENTS SYSTEMS

We describe Σ as a discrete-time system:

X(h+ 1) = X(h) + u(h) (7)

C(h+ 1) = X(h) ∧X(h)T (8)

where h = 1, . . . , n denotes the discrete-time and X is

a translation matrix of the output C which is a synchro-

nization matrix as above mentioned, and u(h) is a control
matrix. Our objective is to find u to get final C(n). The
conjunction in Boolean algebra is denoted by ∧.
Assumption 2 (Initial Assumption) We assume that

all the agents are nonsynchronous, equally, C(1) = I

where I is the identity matrix. Moreover, X(1) = I .

3.1 Theoretical Algorithm Design

We consider an iterative algorithm which provides the

final state C(n) for a given initial C(1). At first, we de-
note a reserve possible matrix C ′ ∈ R

n×n as

C ′ = A+ I (9)

where A is the adjacent matrix of the graph G and A+ I

means its elements are produced by the negation for A+
I as in Boolean algebra. Moreover, we wish to present

a distributed algorithm, we denote a distributed matrix

B(h) and Bb as

B(h) = (C ′P (h)) ∧ I = diag(C ′

·i) (10)

Bb = B(h)X(h)A·h. (11)

where P (h) = ehe
T
h ∈ R

n×n and eh is the h-th column

vector of the identity matrix with size n. For a distributed

computing, we design the same rule for every agent i at

the same step h

X·i(h+ 1) = X·i(h) + (C ′

·i ∧Bb). (12)

Then, the state X(h) is updated by distributed decision

of synchronization as

X(h+ 1) = X(h) + (C ′ ∧Bb). (13)

The above equations can be summarized as

X(h+ 1) = X(h) + (C ′ ∧ diag(C ′

·i)X(h)A·h). (14)

Hence, u(h) in (7) is given as

u(h) = C ′ ∧ diag(C ′

·i)X(h)A·h. (15)

Note that this algorithm cannot get the smallest synchro-

nization parameter k(G) for the same scale n of the graph

G. As we always know, vertex coloring problem is a non-

deterministic polynomial problem and we are hard to fig-

ure out an excellent result. However, our notion and algo-

rithm will improve operation rate cause of its distribution

properties indubitably.

3.2 Vereinfacht Implementation Algorithm

Let different color be denoted by different RGB color

number. We give a distributed algorithm which is Algo-

rithm 1 involved in the initial color vi and a set si for each

agent i.

First, we define a vector Vi with n binary numbers

as estimated queue using 0 or 1. We denote by 0 that

the agent i is desynchronized by agent j, where j ∈
{ l | Vi(l) = 1} and value 1 of the vector Vi means

colored agents. On the other hand, we denote by 1 that

the agent i is synchronized with the agent j. Let agent

i’s neighbor set Ni also translate into this 0,1 Boolean

logical vector N∗

i , i.e., n = 4, i = 1, Ni = {2, 3} so

N∗

i = [0, 1, 1, 0]. Then, we present our algorithm follow-

ing the function

Vi = N∗

i . (16)

Then, we put agent i itself into set si. When it contains

1 in Vi, we get j := argmin{l|Vi(l) = 1} as a syn-

chronous agent for agent i. The major view and methods

of the algorithm design adopted in constructing synchro-

nization sequence si through an alternative set Vi. Fur-

thermore, i and j should be synchronized as:

Vi = Vi ∧ Vj , Vj = Vi. (17)

In this moment, agent i and agent j have the same color

vi = vj . And then, we put agent i, j into the set si, sj
separately for agent i and agent j.

Algorithm 1: ADistributed Algorithm for Agent i.

Input:

Subgraph Gi = (Vi, Ei, Ai) getting from all

i ∈ {1, 2, . . . , n}.
Output:

The color vi and a synchronized set si of agent i.

First, we should give initial vi with different color

and si = φ for all agent i.

1. si = {i}, Vi = N∗

i .

2. Vi(si) = 0.
3. if ∨Vi(n) �= 0

j ∈ { l | Vi(l) = 1}.
end if;

4. if Vj(si) = 0.
Vi = Vi ∧ Vj , Vj = Vi, vi = vj .

end if;

5. si ← j, sj ← i

To analyze our algorithm, we give a theorem as follow:

Theorem 1 (Brooks’ Theorem[9]) For any connected

undirected graph G with maximum vertex degree ∆(G),
the chromatic number of G which is the smallest num-

ber of colors µ(G) needed to color the vertices of G is at

most ∆, that is, µ(G) ≤ ∆(G) unless G is a complete or

an odd cycle (a cycle with an odd number of vertices).

For example, if a graph using 10 colors to synchroniza-
tion finally, the chromatic number equal to 10. Bounds

on the chromatic number is mentioned by Theorem 1 as

above. It is proved for graph theory and tell us our algo-

rithm is certainly convergent.
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4. SIMULATION AND ANALYSIS

In this section, we provide some simulation results by

our method. We applied Algorithm 1 to 10 agents in Fig.

2. The 10 agents with R = 0.35 are initially desynchro-

nized and marked with the different 10 colors as shown

in Fig. 2(a). By Algorithm 1, some of the 10 agents are

synchronized which are illustrated with the same color as

shown in Fig. 2(b) where the agents 1, 2, 10 are synchro-

nized with color blue, the agents 3, 9 are pink, and the

agents 5, 6, 8 are green. Meanwhile, Algorithm 1 guar-

antees neighbors asynchronism for all agents.

The algorithm has its superiority and inferiority. At

first, there is always local results of algorithm, so it cor-

respond with multi-agent system topology. The other is

the algorithmic complexity is lower than global search-

ing vertex coloring algorithm. And it can get local results

quickly. However, the disadvantage is k(G) is not the

smallest one, even worse bigger.

5. CONCLUSION

We provides a distributed algorithm to guarantee syn-

chronization between agents for multi-agent systems.

Motivated by vertex coloring from graph theory, we ex-

plore an approach based on tentative overlay as a con-

dition mapping from interrelation and interaction be-

tween each agent, which equipped with local sensing and

wireless communication capabilities. While other than

nearest neighbor information, our approach assumes no

knowledge of global network topology. We provide anal-

ysis and design results for multi-agent networks in arbi-

trary dimensions topology. At last, simulations are pro-

vided that demonstrate the effectiveness of our theoretical

results. For the future, we would like to combine our re-

search into the dynamic system with connection changing

or position moving.
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