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Abstract

The minimum energy broadcast problem is to assign a transmission range to each node

in an ad hoc wireless network to construct a spanning tree rooted at a given source node

such that any non-root node resides within the transmission range of its parent. The

objective is to minimize the total energy consumption, i.e., the sum of the δth powers

of a transmission range (δ ≥ 1). In this paper, we consider the case that δ = 2, and that

nodes are located on a 2-dimensional rectangular grid. We prove that the minimum

energy consumption for an n-node k× l-grid with n = kl and k ≤ l is at most n
π
+O( n

k0.68 )

and at least n
π
+Ω( n

k
)−O(k). Our bounds close the previously known gap of upper and

lower bounds for square grids. Moreover, our lower bound is n
3
− O(1) for 3 ≤ k ≤ 18,

which matches a naive upper bound within a constant term for k ≡ 0 (mod 3).

Keywords: energy minimization, broadcast, grid, ad hoc wireless network

1. Introduction

In ad hoc wireless networks, communication is established via a sequence of wire-

less connections between neighboring nodes. It is well known that a transmission

power at least γ ·dist(u, v)δ is necessary for a node u to directly transmit a data message

to a node v, where dist(u, v) is the distance between u and v, and γ ≥ 1 and δ ≥ 1

are the transmission-quality parameter and the distance-power gradient, respectively,

which depend on environment [1]. In what follows, we fix γ = 1 and assume that

nodes are located on the Euclidean plane.

It is important to save energy consumption in ad hoc wireless networks because

wireless nodes are often driven by batteries. The minimum energy broadcast problem,

i.e., the problem of transferring a data message to all nodes in an ad hoc network with

the minimum total energy consumption has extensively been studied. Formally, this

problem is to assign a transmission range ru ≥ 0 to each node u so that there exists a

spanning tree rooted at a given source node and satisfying dist(u, v) ≤ ru for any node

u and its child v, and that the cost
∑

u rδu is minimized.

∗Tel/Fax: +81 76 234 4837

Email address: mbayashi@t.kanazawa-u.ac.jp (Akira Matsubayashi)

Preprint submitted to Elsevier April 28, 2011



It is known that the minimum energy broadcast problem is NP-hard for any δ >

1 [2]. Approximation ratios for this problem have been proved in [3, 4, 5, 6]. The

best known algorithm achieving the approximation ratio of 4.2 for any δ ≥ 2 on the

Euclidean plane was presented in [7]. Calamoneri, Clementi, Ianni, Lauria, Monti, and

Silvestri [8] considered the case that δ = 2, and that n nodes are located on a square grid

with side length
√

n−1. They proved that the minimum cost is between n
π
−O(
√

n) and

1.01013 n
π
+O(

√
n). They also conjectured that a broadcast on the square grid based on

a circle packing called the Apollonian gasket would achieve a cost matching the lower

bound asymptotically.

In this paper, we demonstrate that a simple application of early results on the Apol-

lonian gasket answers the conjecture. Specifically, we prove that a broadcast on an

n-node square grid based on Apollonian gaskets achieves a cost of n
π
+O(n

S
2
+ǫ ), where

S is the Hausdorff dimension of an Apollonian gasket. Because it is well known that

S < 1.314534 [9], our upper bound matches the lower bound of [8] within an o(n)

term. We also generalize these results to rectangular grids. The upper bound on square

grids is extended to n
π
+ O(kS−2+ǫn) for any k × l-grid with n = kl and k ≤ l. Moreover,

we present a lower bound of n
π
+ Ω( n

k
) − O(k). Thus, we can obtain upper and lower

bounds matching within an o(n) term as long as k = ω(1). Although we do not know

a tight factor of n for all k = O(1), our lower bound is n
3
− O(1) for 3 ≤ k ≤ 18, which

matches a naive upper bound of n
3
+ O(k) for k ≡ 0 (mod 3).

Our upper bounds can be obtained by polynomial time algorithms, whose main

ideas are from [8]. Moreover, we prove our lower bounds using a refined technique of

the proof of [8], which is introduced in order to obtain better bounds for smaller k and

is the technically interesting contribution for rectangular grids.

The paper is organized as follows: In Section 2, we describe the definition of Apol-

lonian gaskets and some facts that we use in the following sections. In Section 3, we

prove our upper bound on square grids. Finally, we generalize upper and lower bounds

to rectangular grids in Section 4.

2. Apollonian Gasket

Let T (a, b, c) be the range bounded by the curvilinear triangle of three mutually

tangent disks of curvatures (i.e., reciprocals of a radius) a, b, and c, where a, b, c ≥ 0,

and at most one of a, b, and c equals 0. The Apollonian gasket of T (a, b, c) is a set of

infinite disks {D1,D2, . . .} such that Di has the maximal radius of all the disks contained

in T (a, b, c) \⋃i−1
j=1 D j. D1 is said to be of level 1. Di with i ≥ 2 is said to be of level j if

it is tangent to a disk of level j− 1 but not to a disk of a higher level than j− 1. For any

disk D of level j ≥ 2, we call the unique disk of level j−1 tangent to D the parent of D.

The exponent of {Di} is defined as S := inf{t | ∑∞i=1 rt
i
< ∞} = sup{t | ∑∞i=1 rt

i
= ∞},

where ri is the radius of Di. It is well known that S does not depend on a, b, or c, and

that S is equal to the Hausdorff dimension of an Apollonian gasket [10]. Currently best

provable bounds on S were presented by Boyd:

Theorem A ([9]). 1.300197 < S < 1.314534.

We denote σ(a, b, c, t) :=
∑∞

i=1 rt
i
, which is finite for any t > S .
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3. Broadcast on Square Grids

In this section, we assume that n = m2 nodes are located on points with coordinates

(x, y) of integers 0 ≤ x, y < m.

Our algorithm to construct a broadcast on an m × m-grid is based on an idea men-

tioned in [8] of naturally generalizing an Apollonian gasket to a circle packing of the

square Q with side length m − 1 bounding the grid. Specifically, the algorithm, called

AGBS, is defined as follows:

1. Locate a maximal disk D1 of level 1 contained in Q.

2. For j ≥ 2, we have 4 · 3 j−2 ranges in Q \ (union of disks of lower level than j).

Locate a maximal disk of level j in each range if such a disk has radius at least 1.

Repeat this step until we have no range to locate a maximal disk of radius at

least 1.

3. Let D := {Di}i≥1 be the set of located disks. For each i ≥ 1, let ri be the radius

of Di. For each i ≥ 2, let ti be the tangency point of Di and the parent of Di.

4. For each i ≥ 1, move and enlarge Di so that it is centered at a nearest node ci to

the original center and has radius r′
i

:= ri + 1 + 3
√

2
2

.

5. Locate disks of radius 1 centered at grid points on the line segments from (x, y)

to (x′, y) and from (x′, y) to (x′, y′), where (x, y) and (x′, y′) are the coordinates

of a source node s and c1, respectively.

6. For each i ≥ 2, locate disks of radius 1 centered at grid points on the line seg-

ments from (x, y) to (x′, y) and from (x′, y) to (x′, y′), where (x, y) and (x′, y′) are

the coordinates of a nearest node t′
i

to ti and ci, respectively.

7. Assign each node v the maximum radius of a disk centered at v if such a disk

exists, 0 otherwise.

Figure 1 illustrates a broadcast constructed by AGBS.

Lemma 1. AGBS constructs a broadcast.

P. After Step 2, any range T bounded by a curvilinear triangle in Q \⋃i Di cannot

contain a disk of radius 1. If T = T (a, b, c) with a ≥ 0 and b, c > 0, then any point p

in T can be covered by a disk of radius less than 1 that is contained in T and tangent

to a disk D of curvature b or c. Thus, p is covered by D by increasing the radius of

D by 2 (Fig. 2(a)). If T is a curvilinear triangle with one curve of a disk D and two

line segments of Q, then T is covered by D by increasing the radius of D by 1 +
√

2

(Fig. 2(b)). Therefore, Q is covered by
⋃

i Di by increasing all the radii by 1 +
√

2.

Moreover, t′
i

is covered by the parent of Di after the increase of its radius because

dist(ti, t
′
i
) ≤

√
2

2
. Because the distance of ci and the original center of Di is at most

√
2

2
,

after Step 4, Q is covered by Dis centered at grid points. Steps 5 and 6 guarantee that

a data message from s is transferred to all the nodes covered by
⋃

i Di. Thus, AGBS

constructs a broadcast. �

Let C be the set of disks located in Steps 5 and 6. Then, the cost of AGBS is

cost =
∑

i r′
i
2 + |C|.
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Figure 1: A broadcast on a 40 × 40-grid constructed by AGBS: disks located after Step 2 (left) and the

completed broadcast (right).

p

1/b
1/c

1/a

<2
D

(a) T = T (a, b, c) with a ≥ 0 and b, c > 0.

q

<2
t

D

< 1 +
√

2

(b) T is bounded by D and

two line segments.

Figure 2: Increasing radii so that every point of Q is covered by a disk.
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I1

I2

I3

T1

T2

Figure 3: I j and T j.

Lemma 2. |C| ≤ ∑

i(
√

2 ri + 2) + m.

P. Suppose i ≥ 2. Because dist(ti, t
′
i
) ≤

√
2

2
and the distance of ci and the original

center of Di is at most
√

2
2

, it follows that dist(t′
i
, ci) ≤ ri +

√
2. This means that the

number of disks located in Step 6 from t′
i

to ci is at most
√

2 ri + 2. The number of

disks located in Step 5 is obviously at most 2⌈(m − 1)/2⌉ ≤ m. �

Lemma 3. For any ǫ > 0, it follows that
∑

i ri = O(mS+ǫ).

P. Consider disks after Step 2. Let I1 := D1 and I2 be one of the four disks of

level 2. Then, for j ≥ 3, let I j be the disk tangent to I j−1 and to two line segments

of Q. For j ≥ 1, let T j be a range bounded by the curvilinear triangle of I j, I j+1,

and Q (Fig. 3), and let T j be the set of disks contained in T j. It follows that
∑

i ri ≤
4
∑

j(radius of I j) + 8
∑

j

∑

Di∈T j
ri. We can observe that for j ≥ 2, T j is similar to T j−1

with the shrink factor of 3 − 2
√

2. Moreover,
∑

j(radius of I j) ≤
√

2
2

m because the sum

is at most half of a diagonal of Q. Thus, we have

∑

i

ri ≤ 2
√

2 m +
8

1 − (3 − 2
√

2)

∑

Di∈T1

ri = 2
√

2 m + 4(
√

2 + 1)
∑

Di∈T1

ri. (1)

Because T1 = T (0, 2
m−1
,

2(3+
√

2)

m−1
) is similar to T (0, 2, 2(3+

√
2)) with the scale factor of

m − 1, and because every disk in T1 has radius at least 1, it follows that

∑

Di∈T1

ri ≤
∑

Di∈T1

rS+ǫ
i ≤ σ













0,
2

m − 1
,

2(3 +
√

2)

m − 1
, S + ǫ













< σ(0, 2, 2(3+
√

2), S + ǫ)mS+ǫ .

(2)
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Because σ(0, 2, 2(3+
√

2), S + ǫ) is a finite value1 independent of m, by (1) and (2), we

have the lemma. �

Theorem 1. For any ǫ > 0, AGBS has a cost of n
π
+ O(n

S
2
+ǫ ).

P. Because π
∑

i r2
i
≤ (m − 1)2 < m2, it follows from Lemmas 2 and 3 that cost =

∑

i r′
i
2
+ |C| = ∑

i r2
i
+ O(

∑

i ri) + m < m2

π
+ O(mS+ǫ) = n

π
+ O(n

S
2
+ǫ). �

By Lemmas 2 and 3, the running time of AGBS is n+O(|D|+|C|) = n+O(
∑

i ri+m) =

n + O(n
S
2
+ǫ ) = O(n).

4. Broadcast on Rectangular Grids

In this section, we assume that n = kl nodes (k ≤ l) are located on points with

coordinates (x, y) of integers 0 ≤ x < l and 0 ≤ y < k.

4.1. Upper Bounds

Our broadcast algorithm on rectangular grids is based on a simple application of

AGBS to maximal square grids contained in a given rectangular grid. Specifically, the

algorithm, called AGBR, is defined as follows:

1. Let k1 := k and l1 := l. For each i ≥ 1 with ki > 0, recursively define ki+1 :=

li mod ki, li+1 := ki, and l′
i

:= li − ki+1.

2. Let G1 be a k1× l1-grid and s be a source node. For each i ≥ 1 with ki > 0, repeat

(a) and (b).

(a) Divide Gi into a ki × l′
i
-grid G′

i
and a ki+1 × ki+1-grid Gi+1.

(b) Divide G′
i

into l′
i
/ki square grids, and apply AGBS on each square grid with

setting a nearest node to s as the source node.

3. For each square grid Q appeared in Step 2(b) and not containing s, the nearest

node to s is adjacent to a node v of another square grid Q′ closer to s. Locate a

disk of radius 1 centered at v, so that a broadcast message from s is transferred

to Q via Q′.

4. Assign each node v the maximum radius of a disk located centered at v if such a

disk exists, 0 otherwise.

Figure 4 illustrates a broadcast constructed by AGBR.

Theorem 2. For any ǫ > 0, AGBR has a cost of n
π
+ O(kS−2+ǫn).

P. Let C be the set of disks located in Step 3. Then, by Theorem 1, the cost of

AGBR is

cost ≤
∑

i≥1













k2
i

π
+ O(kt

i)













l′
i

ki

+ |C| = n

π
+ O

















∑

i≥1

kt−1
i l′i

















+ |C|, (3)

1In fact, we can guarantee σ(0, 2, 2(3 +
√

2), S + ǫ) to be reasonably small if we are allowed to have a

certain ǫ. For example, we can estimate σ(0, 2, 2(3 +
√

2), 1.4) ≤ 0.97 using the recurrence presented in [9].
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Figure 4: A broadcast on a 40 × 100-grid constructed by AGBR.

where t := S + ǫ. We can observe that ki ≤ l′
i

for any i ≥ 1, and that l′
i
= li − ki+1 =

ki−1 − ki+1 ≤ ki−1 for any i ≥ 2. Therefore, it follows that for i ≥ 3,

kt−1
i l′i ≤ kt−1

i ki−1 ≤ kt−1
i (ki−2 − ki) ≤

(t − 1)t−1

tt
kt

i−2 ≤
(t − 1)t−1

tt
kt−1

i−2 l′i−2. (4)

Here, we have used the fact that xα(β − x) with α, β > 0 is maximized at x =
αβ

1+α
. It

follows from (4) that

∑

i≥1

kt−1
i l′i =

∑

i≥1

(kt−1
2i−1l′2i−1 + kt−1

2i l′2i)

= O(kt−1
1 l′1 + kt−1

2 l′2) = O(kt−1l) = O(kt−2n).

(5)

Moreover,

|C| ≤
∑

i≥1

l′
i

ki

≤
∑

i≥1

l′i ≤ l + k ≤ 2l =
2n

k
. (6)

By (3), (5), and (6), we have the theorem. �

Because the running time of AGBS is O(n), the running time of AGBR is n +
∑

i≥1 O(k2
i
) + |C| = O(n).

Theorem 2 is not useful to bound a factor of n for the case k = O(1). The following

theorem is simple but provides an explicit factor of n for any k ≥ 3.

Theorem 3. For a k × l-grid with n = kl and k ≥ 3, the minimum cost is at most
n
3
+ 2

3
k − 1 if k mod 3 = 0, (1 + 1

k
) n

3
+ 2

3
k − 1

3
otherwise.

P. It can easily be verified that the following algorithm constructs a desired broad-

cast:

1. Locate a disk of radius 1 centered at every (x, y) with 0 ≤ x ≤ l−2, 0 ≤ y ≤ k−2,

and y mod 3 = 1.

7
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Figure 5: A broadcast on a 8 × 13-grid based on Theorem 3.

2. Locate a disk of radius 1 centered at every (l − 1, y) with 1 ≤ y ≤ k − 2.

3. If k mod 3 ≥ 1, then locate a disk of radius 1 centered at every (x, k − 1− i) with

1 ≤ x ≤ l − 2, x mod 3 = 1, and 0 ≤ i ≤ k mod 3.

4. Locate a disk of radius 1 centered at a source node.

5. Assign each node v the transmission range of 1 if there exists a disk centered

at v, 0 otherwise.

�

Figure 5 illustrates a broadcast of Theorem 3. The running time of the algorithm of

Theorem 3 is obviously O(n).

4.2. Lower Bounds

Proof Sketch. Let R := {1,
√

2, 2,
√

5, 2
√

2, 3,
√

10, . . .} be the set of radii of disks

centered at a node and having at least one node on the boundary. Suppose that D :=

{D1,D2, . . .} is a broadcast on a k × l-grid with the minimum cost denoted by cost, and

that D1 is centered at a source node s. It should be noted that any Di has a radius ri ∈ R.

The proof of the lower bound for square grids in [8] is as follows: For any Di ∈ D
not covering s, there exists a sequence Hi of disks activating Di, i.e., transferring

a data message from the outside of Di to the center ci of Di. We can observe that

n ≤ ∑

i N(ri) −
∑

Di=s
M(ri), where N(ri) and M(ri) are the numbers of nodes in Di and

Di ∩
⋃

A∈Hi
A, respectively. Moreover, the following inequalities are proved in [8]:

N(r) < πr2 + 2
√

2 r − 5 for any r ∈ R with r >
√

10, (7)
∑

Di∋s
ri = O(rmax), and (8)

M(r) ≥ 2
√

2 r − 5 for any r ∈ R.

Here, rmax := maxi{ri}, which is O(
√

n) on a square grid. Thus, we have n ≤ ∑

Di∋s N(ri)+
∑

Di=s
(N(ri) − M(ri)) = π

∑

i r2
i
+ O(

√
n) = π · cost + O(

√
n). To obtain a lower bound

of n
α

with α < π by this proof, we need to improve bounds of N(r) and/or M(r) so that

N(r) − M(r) ≤ αr2. However, there is no effective room for such improvement. Our

key idea is to estimate the overlap of Di and Hi by the cost instead of by M(ri). If

dist(v, ci) ≥ ai for every node v covered by the first disk D̃i inHi, then the total cost of

disks in Hi \ {D̃i} is at least ai. Therefore, if we can chooseZ ⊂ D such that Di ∈ Z

8



impliesHi ∩Z = {D̃i}, and that any A < Z activates a unique disk ofZ, then we have

n ≤ ∑

Di∋s N(ri) +
∑

s<Di∈Z(N(ri) − L(ai, ri)) and cost ≥ ∑

Di∋s r2
i
+

∑

s<Di∈Z(r2
i
+ ai),

where L(ai, ri) is the number of nodes covered by Di ∩ D̃i. From these inequalities,

we can obtain sufficient conditions N(ri) ≤ αr2
i
+ βri and N(ri) − L(ai, ri) ≤ α(r2

i
+ ai)

for the lower bound of n
α
− O(

β

α
rmax). Because L(ai, ri) + αai is minimized at ai ≃ ri,

by (7) and rmax = O(k), we can prove that the sufficient conditions are satisfied with

α = π −Ω(k−1) and β = O(1).

Now we describe our formal proof. Suppose that G is the directed graph with

the node set D and edge set {(D,D′) | D covers the center of D′}. Because D is a

broadcast, there exists a path from D1 to every D ∈ D \ {D1} in G. Therefore, there

exists a spanning tree T := (D,E) of G such that D1 is the root of T , and that D is

the parent of D′ for each (D,D′) ∈ E. For each D ∈ D, let D̃T be the nearest ancestor

to D that covers a node not covered by D if such an ancestor exists, D1 otherwise. It

should be noted that ifAT
i

is the set of disks between D̃T
i

and Di on T (excluding both

D̃T
i

and Di), then every node covered by A ∈ AT
i

is covered also by Di. Therefore,

D̃T
i

covers also a node in Di. Let ZT be the set of disks D ∈ D such that there exists

a sequence of disks Z1, . . . , Zh ∈ D (h ≥ 1), where Z1 = D, Z j = Z̃T
j+1

for 1 ≤ j < h,

and Zh is a leaf of T . It should be noted that D1 and all the leaves of T are contained

inZT .

Lemma 4.
⋃

i Di = D1 ∪
⋃

D∈ZT \{D1}(D \ D̃T ).

P. For any disk D′ < ZT , there exists D ∈ ZT covering every node covered

by D′. Therefore, it follows that
⋃

i Di =
⋃

D∈ZT D. Moreover, by the definition ofZT ,

D ∈ ZT \ {D1} implies that D̃T ∈ ZT , and that there is no sequence Z1, . . . , Zh = D

such that Z j = Z̃T
j+1

for 1 ≤ j < h and Zh = Z̃T
1

. Therefore, for each node v ∈ D ∩ D̃T ,

there exists an ancestor A ∈ ZT of D such that v ∈ A \ ÃT , or v ∈ D1. Thus, the lemma

holds. �

Lemma 5. For any spanning tree T associated with D and rooted at D1, and for any

leaves Yp and Zq of T , let ZT (Yp) := {Y1, . . . , Yp} and ZT (Zq) := {Z1, . . . , Zq}, where

Y1 = Z1 = D1, Y j = ỸT
j+1

for 1 ≤ j < p, and Z j = Z̃T
j+1

for 1 ≤ j < q. Then, there exists

T satisfying the following conditions for any pair of leaves Yp and Zq of T :

1. The nearest common ancestor A to Yp and Zq in T is contained in ZT (Yp) ∩
ZT (Zq).

2. There exists 1 ≤ a ≤ min{p, q} such that Y j = Z j for 1 ≤ j < a, and that

Ya = Za = A.

P. It should be noted that Condition 2 is implied by Condition 1 because Y1, . . . , Ya−1

(Z1, . . . , Za−1, resp.) are uniquely determined by Ya (Za, resp.) and T . Therefore, we

prove that we can obtain T satisfying Condition 1 for any pair of leaves Yp and Zq

of T .

Fix Yp and Zq, and assume A < ZT (Yp) and A ∈ AT
i

for some Di ∈ ZT (Yp). Let

(A,D) ∈ E such that D is on the path between A and Zq in T . Because every node

covered by A is covered also by Di, we can obtain another spanning tree T ′ = (D,E′)

9



Di

ATi

D

Yp Zq

AT ′i

D

Yp Zq

AA < ZT (Yp)

T T ′

Di

(a)

AT ′h

AT ′j

D′

Yp Zq

AT ′′h

Yp Zq

Di

Dh

D j
D′

AT ′′j

Di

D j

Dh

T ′ T ′′

(b)

Figure 6: Modifications of T . If Di ∈ ZT
′
(Zq) in (a), then the modification for Yp and Zq is finished.

Otherwise, we modify T ′ as shown in (b).

from T by replacing (A,D) with (Di,D), so that Di becomes the nearest common an-

cestor to Yp and Zq in T ′ (Fig. 6 (a)). If Yp is not a leaf of T ′, or if Di ∈ ZT
′
(Zq), then

T ′ satisfies Condition 1 with respect to Yp and Zq fixed here.

Otherwise, assume Di < ZT
′
(Zq) and Di ∈ AT

′

j
for some D j ∈ ZT

′
(Zq). Let

(Di,D
′) ∈ E′ such that D′ is on the path between Di and Yp in T ′. Because every node

covered by Di is covered also by D j, we can obtain another spanning tree T ′′ from T ′
by replacing (Di,D

′) by (D j,D
′), so that D j becomes the nearest common ancestor to

Yp and Zq in T ′′ (Fig. 6 (b)). Let Dh ∈ ZT
′
(Yp) with D̃T

′

h
= Di. It should be noted that

Dh ∈ ZT
′′
(Yp), and that if Zq is a leaf of T ′′, then D j ∈ ZT

′′
(Zq). Moreover, D̃T

′′

h
= D j

holds. This is because any disk from D′ to Dh on T ′ is contained in AT ′
h

, and hence,

inAT ′′
h

, and because every node covered by Di is covered by D j, which means that D j

covers a node not covered by Dh. Thus, D j ∈ ZT
′′
(Yp)∪ZT ′′ (Zq) if Zq is a leaf of T ′′.

By repeating the above argument until every pair of leaves satisfies Condition 1, we

will obtain a desired spanning tree. This process will be finished in finite steps because

replacing edges in the process increases
∑

D∈D(distance between D1 and D in T ), which

is at most |D|(|D| − 1)/2 ≤ n(n − 1)/2. �

In what follows, we fix a spanning tree T = (D,E) satisfying the conditions of

Lemma 5 and omit the superscript T from each symbol.

Definition 1. For any r ≥ 1 and an integer a ≥ 0, let L(a, r) be the minimum number

of grid points of an infinitely large grid that is covered by two disks D of radius r and

D̃ satisfying the following conditions:

1. D and D̃ are centered at grid points.

2. D̃ covers a grid point not covered by D, and a grid point of coordinates (x, y)

such that D covers (x, y), (x, y ± 1), and (x ± 1, y).

3. The shortest Manhattan distance between a node in D ∩ D̃ and the center of D

is a.

10



Let N(r) be the number of grid points of an infinitely large grid that is covered by a

disk of radius r centered at a grid point. We define X(a, r) :=
N(r)−L(a,r)

r2+a
, which can be

used to estimate a lower bound of cost as follows:

Lemma 6. If N(r) ≤ αr2 + βr and X(a, r) ≤ α for any r ∈ R with r ≤ rmax and any

a ≥ 0, then cost ≥ n
α
− O(

β

α
rmax).

P. Let Di ∈ Z \ {D1}. We first claim that Ai ∩ (A j ∪ {D j, D̃ j}) = ∅ for any

D j ∈ Z \ {Di}. Let Yi and Y j be leaves of T such that Di ∈ Z(Yi) and D j ∈ Z(Y j),

respectively. If Di is an ancestor or a descendant of D j in T , then Di ∈ Z(Y j) and

D j ∈ Z(Yi) by Condition 2 of Lemma 5 if Yi , Y j, simply by the definition of Z
otherwise. This means that Ai ∩ (A j ∪ {D j, D̃ j}) = ∅. If Di is neither an ancestor nor

a descendant of D j in T , then the nearest common ancestor A to Yi and Y j is also the

nearest common ancestor to Di and D j. Because A ∈ Z(Yi) ∩Z(Y j) by Condition 1 of

Lemma 5, it follows thatAi ∩ (A j ∪ {D j, D̃ j}) = ∅.
Let ai be the shortest Manhattan distance between a node in Di ∩ D̃i and the center

of Di. Because Ai ∩ (A j ∪ {D j, D̃ j}) = ∅ for any D j ∈ Z \ {Di}, Ai plays only

a role of transferring a data message from D̃i to Di, which requires a cost at least

the cost of ai disks of radius 1. Thus, we have cost ≥ ∑

Di∋s r2
i
+

∑

s<Di∈Z(r2
i
+ ai).

Moreover, if D is a disk with (D̃i,D) ∈ E and D ∈ Ai ∪ {Di}, then the center (x, y)

of D is covered by D̃i, and (x, y), (x, y ± 1), and (x ± 1, y) are covered by Di. Thus,

(# nodes in Di) − (# nodes in Di ∩ D̃i) is at most X(ai, ri) · (r2
i
+ ai) if s < Di. It should

be noted that this holds even if Di covers fewer than N(ri) nodes due to its location close

to the boundary of the underlying k × l-grid. Thus, it follows from (8) and Lemma 4

that

n ≤ N(r1) +
∑

Di∈Z\{D1}

(

(# nodes in Di) − (# nodes in Di ∩ D̃i)
)

≤
∑

Di∋s
N(ri) +

∑

s<Di∈Z

(

(# nodes in Di) − (# nodes in Di ∩ D̃i)
)

≤
∑

Di∋s
(αr2

i + βri) +
∑

s<Di∈Z
X(ai, ri) · (r2

i + ai) ≤ α · cost + O(βrmax),

by which we obtain the lemma. �

We bound X(a, r) and rmax from above by the following lemmas. We can easily

verify the following lemma by (7) and simple calculation.

Lemma 7. For any r ∈ R\{1}, it follows that N(r) < π(r2+r−c), where c :=
√

2− 2
π
≈

0.778.

For any r > 0, let N′(r) be the minimum number of nodes of an infinitely large grid

that is covered by a disk of radius r centered at any point (i.e., not necessarily a grid

point) on the Euclidean plane.

Lemma 8. For any r ≥
√

2
2

, it follows that N′(r) ≥ π(r −
√

2
2

)2.
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P. Let D be a disk of radius r and centered at a point v. If we locate a square

of side length 1 centered at each grid point covered by D, then N′(r) equals the area

of the range U covered by these squares. Let p be a point not contained in U. Then,

there exists a grid point q not contained in U such that p is covered by a square of side

length 1 centered at q. Thus, we have dist(p, v) ≥ dist(q, v) − dist(p, q) > r −
√

2
2

. This

means that U contains the disk of radius r −
√

2
2

centered at v. Thus, the lemma holds.

�

Lemma 9. For any r ≥ 1, X(a, r) is maximized in the case that a ≤ ⌊r⌋ − 1.

P. Suppose that disks D and D̃ satisfies the conditions of Definition 1. Then, D̃

covers a grid point of coordinates (x, y) such that D covers (x, y), (x, y±1), and (x±1, y).

We may assume without loss of generality that y ≤ x and that D is centered at (w, z) with

w ≤ x and z ≤ y. Because (x+ 1, y) is covered by D and (x−w)+ (y− z) ≥ a, if a ≥ ⌊r⌋,
then y > z. Hence, eight points (x+ p, y+q) with (p, q) ∈ {−1, 0, 1}× {−1, 0, 1} \ {(1, 1)}
are covered by D. Thus, at any grid point D̃ is centered, at least three of the eight points

are covered by D ∩ D̃. This yields X(a, r) ≤ N(r)−3

r2+⌊r⌋ for any a ≥ ⌊r⌋.
On the other hand, if D̃ has radius 1 and is centered at (w+ ⌊r⌋, z), then at most four

points (w+ ⌊r⌋−1, z), (w+ ⌊r⌋, z), and (w+ ⌊r⌋, z±1) are covered by D∩ D̃. This means

that X(⌊r⌋ − 1, r) ≥ N(r)−4

r2+⌊r⌋−1
≥ N(r)−3

r2+⌊r⌋ . The last inequality holds because we can easily

observe that N(r) ≥ r2 + ⌊r⌋ + 3 for any r ≥ 1. �

Lemma 10. For any r ∈ R \ {1} and any a ≥ 0, it follows that X(a, r) <
N(r)

r2+r−c
.

P. By Lemma 9, we may assume a ≤ ⌊r⌋ − 1. By Lemma 7, we can observe that

for any r ∈ R \ {1}, N(r)−L(a,r)

r2+a
<

N(r)

r2+r−c
holds if L(a, r) ≥ π(b − c), where b := r − a.

For any pair of disks D and D̃ satisfying the conditions of Definition 1, a disk of

radius b/2 is contained in D∩ D̃. Therefore, it follows from Lemma 8 that for b ≥
√

2,

L(a, r) ≥ π
4
(b −

√
2)2, which is larger than π(b − c) for any b ≥ 6.

Assume 1 ≤ b < 6. Let λ(b) := L(0, b′), where b′ ∈ R is the largest value with

b′ ≤ b. By the definition of L(a, r), we can observe that L(a, r) ≥ L(a − i, r − i) for any

integer i with 0 ≤ i ≤ a, and that L(0, r) ≥ L(0, r′) for any 1 ≤ r′ ≤ r. Therefore, λ(b) is

a lower bound of L(a, r) and a non-decreasing function, and hence, we have the lemma

if λ(b) ≥ π(b − c) for 1 ≤ b < 6. This can be verified by evaluating L(0, b) for each

b ∈ R with b ≤ 4 and observing L(0, 4) = 17 > π(6 − c) ≈ 16.4 as shown in Fig. 7. �

Lemma 11. For any r ∈ R with r ≤
√

202 and any a ≥ 0, it follows that X(a, r) ≤ 3.

P. We can verify by numerical computation that
N(r)

r2+r−c
< 3 for any r ∈ R \

{1,
√

2,
√

5} with r ≤
√

202. Thus, by Lemma 10, we have the lemma for such r.

For r ∈ {1,
√

2,
√

5}, we can verify
N(r)−L(a,r)

r2+a
≤ 3 by evaluating L(a, r) for every pos-

sible combination of a and r, i.e., N(1) = 5, N(
√

2) = 9, N(
√

5) = 21, L(0, 1) = 2,

L(0,
√

2) = 4, L(0,
√

5) = 7, and L(1,
√

5) = 4. �

Lemma 12. For any k ≥ 3, it follows that rmax ≤ 2
3
k + 13

6
.
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Figure 7: Plots of λ(b) and π(b − c).

P. On a k × l-grid, a disk D of radius rmax centered at a node v covers at most

(2rmax + 1)k nodes of a k × (2rmax + 1)-grid. By Theorem 3, there exists a broadcast on

the k× (2rmax+1)-grid with a cost at most
(2rmax+1)k

3
+

2rmax+1

3
+ 2

3
k− 1

3
= 2

3
(k+1)rmax+k.

This cost is at least r2
max, for otherwise, we can obtain a broadcast on the k× l-grid with

a cost less than cost by replacing D with the broadcast of Theorem 3. Thus, we have

rmax ≤
k + 1

3
+

√

(

k + 1

3

)2

+ k <
2

3
k +

13

6
.

�

Theorem 4. cost ≥ n
π
+ Ω( n

k
) − O(k). In particular, cost ≥ n

3
− O(1) if 3 ≤ k ≤ 18.

P. By Lemmas 6 and 10–12, it suffices to prove the following claims:

1. There exist α with α−1 = π−1 +Ω(k−1) and β = O(1) such that for any r ∈ R with√
10 < r ≤ rmax, N(r) ≤ αr2 + βr and X(a, r) ≤ α.

2. There exists β = O(1) such that for any r ∈ R with r ≤
√

202, N(r) ≤ 3r2 + βr.

3. rmax ≤
√

202 if k ≤ 18.

The second claim is immediate because r = O(1). Moreover, the third claim can be

verified simply by applying Lemma 12. As for the first claim, it follows from (7) and

Lemma 10 that for r ∈ R with
√

10 < r ≤ rmax,

X(a, r) ≤ πr
2 + 2

√
2 r − 5

r2 + r − c
= π − (π − 2

√
2)r + (5 − πc)

r2 + r − c

< π − π − 2
√

2

r
≤ π − π − 2

√
2

rmax

.

(9)

If we set α := π − π−2
√

2
rmax

and β := π, then it follows that

N(r) − (αr2 + βr) ≤ πr2 + 2
√

2 r − 5 − (αr2 + βr)

<
π − 2

√
2

rmax

r2 − (π − 2
√

2)r ≤ 0.
(10)
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Moreover, it follows from Lemma 12 that

α−1 = π−1













1 +
π − 2

√
2

πrmax − π + 2
√

2













= π−1 + Ω(k−1). (11)

By (9)–(11), we have the first claim. �
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