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Abstract 

 This study was conducted to investigate the effect of external iron status and arsenic 

species on chelant-enhanced iron bioavailability and arsenic uptake. Rice seedlings (Oryza 

sativa L.) were used as model plant, and were grown in artificially contaminated sandy soils 

irrigated with Murashige and Skoog (MS) culture solution. Arsenate uptake in roots shoots of 

rice seedlings were affected significantly (p > 0.05) while dimethylarsinic acid (DMAA) was 

not by the additional iron and chelating ligand treatments. Regardless of iron concentrations 

in the soil solution, HIDS increased arsenic uptake for roots more than EDTA and EDDS. 

Chelating ligands and arsenic species also influenced iron uptake in rice roots. Irrespective of 

arsenic species, HIDS was found to be more effective in the increase of iron bioavailability 

and uptake in rice roots compared to other chelants. There was a significant positive 

correlation (r = 0.78, p < 0.05) between arsenate and iron concentrations in the roots of rice 

seedlings grown with or without additional iron indicating that arsenate inhibit iron uptake. In 

contrast, there was no correlation between iron and DMAA uptake in roots. Poor correlation 

between iron and arsenic in shoots indicated that iron uptake in shoots was neither affected 

by additional iron nor by arsenic species. Compared to the control, chelating ligands 

increased iron uptake in shoots of rice seedlings significantly (p < 0.05). Regardless of 

additional iron and arsenic species, iron uptake in rice shoots did not differed among EDTA, 

EDDS, and HIDS treatments. 

 

 

Keywords: Arsenic, Iron, Bioavailability, Phytoextraction, HIDS, EDDS, EDTA, Rice 

(Oryza sativa L.) 
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1. Introduction 

Although iron is the most abundant nutrient for plants in the mineral solid phase of 

soils (average of 3.8%), its presence in soil solution is extremely low (Lucena, 2006). Iron 

forms insoluble ferric hydroxide complexes (Fe-plaque) in the rhizosphere soil at neutral or 

alkaline pH (Guerinot and Yi, 1994). The formation of Fe-plaque in the rhizosphere soils, 

however, causes iron deficiency and produces visible symptoms of iron chlorosis in plants 

(Pestana et al., 2003). Rhizospheric microbes exude siderophores at the root-plaque interface 

which solubilize ferric hydroxide in the rhizosphere, render its bioavailability, and plants take 

up iron by its specific membrane receptors (Romheld and Marschner, 1986). Synthetic iron 

chelants have also been used to increase iron uptake and correct iron chlorosis in plants 

(Hernandez-Apaolaza et al., 1995; Pestana et al., 2003; Alvarez-Fernandez et al., 2005; 

Lucena, 2006). 

Arsenic is one of the widespread toxic environmental pollutants which has chronic 

and epidemic effects on humans through water and crop contamination reported in 

Bangladesh (Hossain, 2006) and West Bengal, India (Chowdhury et al., 2000). Arsenic-

contaminated groundwater has been used extensively to irrigate paddy rice (Oryza sativa L.) 

in Bangladesh, particularly during the dry season with 75% of the total cropped area given 

over to rice cultivation (Meharg and Jardine, 2003). Background levels of arsenic in rice 

paddy soils range from 4 to 8 mg kg-1, which can reach up to 83 mg kg-1 in areas where the 

crop land has been irrigated with arsenic-contaminated groundwater (Abedin et al., 2002).  

Arsenic-contamination in groundwater has also been reported in some other countries of 

South and South-East Asia, which is supposed to be a threat to sustainable agriculture in this 

region (Brammer and Ravenscroft, 2009). Increasing arsenic level in soil leads to elevated 

arsenic in rice, vegetables and other food crops (Meharg and Jardine, 2003; Williams et al., 

2006). Being rice the staple food, elevated arsenic in rice would be a health hazard for the 
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population in this region (Meharg, 2004). Remediation of contaminated soil is important to 

prevent arsenic deposition in food crops and its subsequent transfer into the humans through 

the food chains. 

Phytoremediation, a plant based green technology, becomes a promising 

environmentally safe technology for the remediation of environmental pollutants. Solubility 

and bioavailability is an essential prerequisite for arsenic phytoremediation (Fitz and Wenzel, 

2002), which may be reduced by adsorption to iron oxides (Pierce and Moore, 1982) and 

minerals (Goldberg, 2002) at alkaline pH. Chelant-enhanced phytoremediation of heavy 

metals has received much attention in the past (Luo et al., 2005; Meers et al., 2005; 

Evangelou et al., 2007; Hernández-Allica et al., 2007; Lestan et al., 2008). This technique 

aims to cleanse polluted soils by solubilizing the toxic metals, allowing them to be 

accumulated in plants that would subsequently remove them from the site.. 

Hydroxyiminodisuccinic acid (HIDS), a novel biodegradable chelating ligands, has 

been reported to be more effective in increasing iron bioavailability and is expected to be a 

good choice and alternative to less biodegradable and high persistent EDTA (Rahman et al., 

2008a; Rahman et al., 2009). The biodegradation rate of HIDS is about 22.4% within 48 h, 

and it forms complexes with various kinds of metals ions, especially Fe3+, over a wide rage of 

pH. It also shows high stability in harsh conditions and high temperature (80 ºC), and is 

highly soluble in aqueous alkaline solution (Rahman et al., 2009). We have been interested in 

HIDS because of high degradation rate and high stability constant with Fe3+ (pKaFe3+ = 12.5).  

Rice plants take up small amounts of dimethylarsinic acid (DMAA) compared to that 

of inorganic species (As(V) and As(III)) (Odanaka et al., 1987; Rahman et al., 2008b). 

Although the effect of iron on As(V) uptake in rice has been studied (Liu et al., 2004; Deng et 

al., 2010), its effect on DMAA uptake in rice hasn’t. Previously, we investigated the iron 

bioavailability and arsenate uptake using hydroponic rice (Rahman et al., 2009). Since rice is 
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a wetland plant, studies with soil culture would provide more useful information than the 

hydroponic experiment. Results of both soil and hydroponic studies would be helpful for the 

justification and understanding of the facts of the chelating ligands on iron bioavailability in 

rice. Therefore, the present study was designed to compare the EDTA, EDDS and HIDS as 

potential soil amendments for iron and arsenic bioavailability and uptake in rice (Oryza 

sativa L.). 

 

2. Materials and Methods 

2.1. Seed sterilization 

Rice seeds of BRRI dhan28 were collected from Bangladesh Rice Research Institute 

(BRRI), Gazipur, Bangladesh. The seeds were surface-sterilized before using them in the 

experiment. For surface sterilization, about 100 g seeds were soaked in 200 mL of 1% 

methyl-1-butylcarbamoyl-2-benzimidazole carbonate solution for 10 min. Seeds were then 

washed by deionized (DI) water (using an E-pure system (Barnstead)) and kept in DI water at 

20, 45 and 52 ºC for 24 h, 2 min and 10 min, respectively.  

 

2.2. Plant growth 

Sterilized rice seeds were soaked in DI water for 48 h, and were germinated on pre-

sterilized moistened filter paper placed in petri dishes. After 7 d. the germinated seeds 

produced enough roots and the shoot was about 2 cm. The seedlings were then transplanted 

into 50-mL polystyrene tubes containing 10 g soil. The composition of the soil was- SiO2 

(95.5%), Al2O3 (2.3%), Fe2O3 (0.2%), CaO (0.02%), MgO (0.08%). Particle size of the soil 

was 0.42-0.60 mm (24%) and 0.30-0.42 mm (60%). The experimental soil was irrigated with 

modified Murashige and Skoog (MS) nutrient solution (Murashige and Skoog, 1962) before 
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transplantation. Phosphate was not included in modified MS nutrient solution to avoid its 

competition with arsenate for uptake transporter in rice roots, and iron concentration in the 

solution was 0.36 mM. Four germinated seeds were transplanted in each tube, and the 

seedlings were allowed to grow for 10 d. Water levels in the tubes were maintained to 1.5 cm 

above the soil by irrigating with modified nutrient solution every 2 d throughout the 

experiment. The growth of rice seedlings and subsequent steps of the experiments were 

performed in a plant growth chamber with conditions of 14:10 h light/dark schedule, 100-125 

µE m-2 s-1 light intensity, and 22(±2) ºC. 

 

2.3. Chemical treatments 

Treatments of arsenic, iron, and chelating ligands in the soil solution were applied 

with the MS solution. Stock solution of iron, As(V) and DMAA were prepared from 

FeSO4·7H2O, Na2HAsO4·7H2O and (CH3)2AsO(OH), respectively.  

Three treatments of iron, arsenic (As(V) or DMAA) and chelating ligands (EDTA, 

EDDS, or HIDS) were applied to the experimental soil with the modified MS solution as- i) 

2.5 mM chelating ligand and 0.36 mM additional iron (referred as Fe + EDTA, Fe + EDDS, 

and Fe + HIDS); ii) 0.6 µM and 2.5 mM arsenic and chelating ligand, respectively, without 

additional iron (referred as As + EDTA, As + EDDS, and As + HIDS); and iii) 0.6 µM 

arsenic, 2.5 mM chelating ligands, and 0.36 mM of additional iron (referred as As + Fe + 

EDTA, As + Fe + EDDS, and As + Fe + HIDS). One control was also maintained for each of 

the treatments, and the explanation of control for each treatment is given in the caption of 

respective figures. The soil solution pH was maintained at 6.5 using 0.1 M HCl or KOH. 

Replicated (three replications of each treatment) samples were collected after 10 d of the 

chemical treatments. Rice seedlings were uprooted by hand and washed by deionized water 

for several times to remove send attached to the roots. 
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2.4. Chelating ligands and other reagents 

Stock solutions of EDTA, EDDS and HIDS were prepared by dissolving 

ethylenediamine-N,N,N',N'-tetraacetic acid (Dojindo Molecular Technologies, Japan), 

ethylenediamine-N, N'-disuccinic acid (Chelest corporation, Japan), and tetrasodium 3-

hydroxy-2,2’-iminodisuccinate (Nippon Syokubai, Japan), respectively. Other reagents were 

of analytical grade or better.  All solutions were prepared with DI water. 

 

2.5. CBE-extraction of Fe-plaques 

At harvest Fe-plaques from root surfaces were extracted using citrate-bicarbonate-

ethylenediaminetetraacetate (CBE)-technique, a modified method of dithionite-citrate-

bicarbonate extraction by Taylor and Crowder (1983) to determine the real amount of iron 

and arsenic contents in rice tissues. The CBE solution was prepared from 0.03, 0.125 and 

0.050 M of sodium citrate, sodium bicarbonate, and EDTA, respectively. Roots were treated 

with 5 mL of CBE solution for 60 min at room temperature. The roots were then rinsed with 

deionized water for 3 times, and the rinsed water was added to the CBE-extracts to make a 

total of 10 mL. 

 

2.6. Samples digestion and preparation for chemical analysis 

The roots were rinsed by ID water, and blotted dry with tissue paper. The roots were 

then excised at the basal node and separated from shoots. Roots and shoots were then oven 

dried at 65 ºC for 48 h and dry weights of roots and shoots were measured. The samples were 

taken into 50-mL polyethylene digestion tubes, and 3 mL of 65% HNO3 were added and 

allowed to stand over night. The samples were heated on a heating block at 95 ºC for 90 min. 

After cooling to room temperature, 2 mL of 30% H2O2 were added, and heated again at 105 
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ºC for 30 min. Then, the digests were diluted to 10 mL with DI water for arsenic and iron 

analysis. 

 

2.7. Chemical analysis 

Total arsenic and iron were analyzed in CBE-extract of root surfaces, roots, and 

shoots of rice seedlings using Total arsenic and iron were analyzed in CBE-extract of root 

surfaces, roots, and shoots of rice seedlings using Perkin Elmer Zeeman-effect GFAAS 

(Model- AAnalyst 600) equipped with a transverse heated graphite atomizer (THGA) (Ajtony 

et al., 2008). Instrumental and working conditions for the determination of arsenic and iron 

by the GFAAS are summarized in Table 1. For arsenic determination, 10 µL of matrix (5 µg 

Pd (as nitrate) plus 3 µg Mg(NO3)2) was added to 20 µL of sample in the THGA as modifier.. 

At least one reagent blank and two certified standard reference material (1573a, tomato leaf 

from National Institute of Standards and Technology (NIST), USA) were included in the 

digestion. Arsenic concentration in certified standard reference material was 0.112±0.004 µg 

g-1 d. wt. while the measured concentration was 0.124±0.057 µg g-1 d. wt. All chemical 

reagents used in this experiment were of analytical grade. Glassware and dishes were washed 

with detergent and 5 M HCl solution, and rinsed with deionized water before use. 

 

2.8. Data analysis 

Data analysis was performed by SPSS 16.0 for windows. The analysis of variance 

(ANOVA) for arsenic and iron concentrations in roots and shoots of rice was 

performed using F-statistics. Comparison of means of the treatments was made by 

Duncan’s Multiple Range Test (DMRT). Correlation statistics was calculated by T-test. 
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3. Results and discussions 

3.1. Effect of chelating ligands on arsenic uptake in rice root 

Chelating ligands increased arsenate uptake in rice roots while DMAA uptake was not 

affected by the ligands. The increase of arsenate uptake by chelating ligands was higher in 

rice seedlings grown with additional iron than those grown without additional iron. HIDS was 

better for arsenate uptake compared to that of EDDS and EDTA (Figs. 1A, 1B). Previously, 

Rahman et al. (2008b) reported that EDTA increased arsenate and arsenite uptake in aquatic 

macrophyte (Spirodela polyrhiza L.) significantly while DMAA and monomethylarsonic acid 

(MMAA) uptake was not affected by EDTA. Rahman et al. (2008a) also reported that 

chelating ligands increased arsenate uptake in roots of hydroponically grown rice and the 

trend of effectiveness of the ligands was HIDS > EDTA > EDDS > MGDA ≥ IDS. Results of 

the present study were in agreement with the previous reports of Rahman et al. (2008a; 2009) 

suggesting that the effectiveness of chelating ligands in the enhancement of arsenic uptake 

does not differ whether the plant is grown in hydroponic culture or in soil solution. It is also 

evident from the results of present and previous studies (Rahman et al., 2008a; Rahman et al., 

2009) that HIDS is more effective for arsenic uptake in roots from both water and soil 

compared to that of other synthetic chelating ligands.  

Arsenic concentration on rice root surfaces was negatively correlated with the 

increase of its concentration in the roots (Rahman et al., 2008a), and arsenate has stronger 

adsorptive affinity to iron oxides (Pierce and Moore, 1982) than that of DMAA (Lafferty and 

Loeppert, 2005). Thus, increased arsenate uptake in rice roots was the direct effect of 

chelating ligands, and the increment of arsenic uptake by the ligands indicate the 

effectiveness of respective ligand. Additional iron in the soil solution increased the amount of 
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iron oxides on rice root surfaces which increased the physicochemical adsorption of arsenate 

on and uptake in the roots. 

 

3.2. Effect of additional iron on arsenic uptake in rice root 

DMAA uptake in rice roots was not increased by the additional iron while arsenate 

uptake was increased. Arsenate uptake in rice roots was 15-20 times higher than that of 

DMAA when rice seedlings were grown without additional iron (Fig. 1A). In contrast, 

arsenate uptake was 19-28 times higher than that of DMAA when the seedlings were grown 

with additional iron in the soil (Fig. 1B). Results indicate that additional iron in the soil 

solution increased arsenate uptake in rice roots which might be due to the increased 

physicochemical adsorption of arsenate on Fe-plaque of rice root surfaces (Robinson et al., 

2006). Previous studies also showed that the uptake of inorganic arsenic species was much 

higher than those of methylarsenic species in rice (Odanaka et al., 1987; Rahman et al., 

2008b) and in aquatic macrophytes (Salvinia natans L., Spirodela polyrhiza L.) (Rahman et 

al., 2008c; Rahman et al., 2008b).  

Arsenate has high binding affinity to iron oxides (iron oxides) (Pierce and Moore, 

1982). Additional iron in the soil solution increased the amount of Fe-plaque on the roots of 

rice seedlings, which might facilitate arsenate adsorption on Fe-plaque and uptake in rice 

roots. Previous studies also showed that arsenate concentration was positively correlated with 

the amount of iron plaque on roots of Typha latifolia (cattail) grown in arsenic contaminated 

wetland sediments (Blute et al., 2004) and of aquatic plats Taupo Volcanic Zone and Waikato 

River, New Zealand (Robinson et al., 2006). Thus, arsenate is supposed to be incorporated 

into iron oxides attached to the surface of the plants. Chen et al. (2005) demonstrated that 

iron plaques on rice root surfaces not only bound arsenic but also promote its uptake by the 

roots. According to Robinson et al. (2006) other than the biological mechanisms, 
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physicochemical adsorption of arsenate on the suspended oxides attached to the roots is an 

important mechanism for arsenic uptake in aquatic plants. Results of the present study 

revealed that adsorption of arsenate on the iron plaques of rice root surfaces was much higher 

then that of DMAA. This was because arsenate strongly adsorbed on iron oxides while 

DMAA was not appreciably retained by iron oxides (Lafferty and Loeppert, 2005). This 

phenomenon was also observed by Blute et al. (2004) in roots of wetland plant Typha 

latifolia (cattail). Blute et al. (2004) also observed that the ferric plaques cattail roots were 

predominantly Fe(III) oxyhydroxide and 80% of the arsenic in it was arsenate. 

 

3.3. Influence of iron on arsenate and DMAA uptake in rice shoot 

Arsenate uptake in rice shoots was significantly (p < 0.01) higher than that of DMAA. 

Although arsenate uptake in rice shoots was influenced by chelating ligands and additional 

iron in the soil solution, DMAA was influenced neither by chelating ligands nor by additional 

iron (Figs. 1C, 1D). Arsenate concentrations were higher in shoots of rice seedlings grown 

without additional iron (Fig. 1C) compared to those grown with additional iron (Fig. 1D). 

Results indicate that arsenate uptake in rice shoots was not affected by its concentrations in 

roots. Previous studies also showed that arsenic uptake in rice roots was several orders of 

magnitude higher than that in other parts of the plant (Abedin et al., 2002; Wang et al., 2006; 

Rahman et al., 2009). Results elucidated that the translocation of arsenic from roots to shoots 

was limited. This might be because arsenate is rapidly reduced to arsenite inside the root cells, 

which has a high affinity to the sulphhydryl (–SH) groups of peptides such as glutathione 

(GSH) and phytochelatins (PCs) (Zhao et al., 2009). In vitro studies also showed that GSH 

and arsenite form a (GS)3-arsenite complex with cysteinyl sulphhydryl as the arsenite binding 

site (Delnomdedieu et al., 1994). Complexation of arsenite with thiols in roots does not favor 

transport of arsenic from roots to shoots. Moreover, arsenite is sequestered into vacuoles of 
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root cells (Zhao et al., 2009). Thus, reduction of arsenate to arsenite and its subsequent 

complexation with thiols and vacuolar sequestration in root cells decrease arsenic 

translocation to the shoots (Zhao et al., 2009). It has also been suggested that the Fe-plaque 

acts as a “buffer” to prevent arsenic translocation from roots to shoots (Chen et al., 2005). 

Results of the present study also revealed that chelating ligands increased arsenate 

uptake in shoots. Compared to control and HIDS treatments, EDTA and EDDS increased 

arsenic uptake in shoots when the seedlings were grown without additional iron (Fig. 1C). 

Enhanced uptake of arsenate in shoots of rice seedlings by chelating ligands has also been 

reported by Rahman et al. (2008a; 2009).  

 

3.4. Effect of chelating ligands, additional iron and arsenic species on iron uptake in rice 

root 

Iron concentrations were determined on root surfaces (CBE-extracts) and in roots of 

rice seedlings to investigate the effect of EDTA, EDDS and HIDS as well as the influence of 

additional iron and arsenic species on its uptake in rice roots. Regardless of the chelating 

ligands, iron uptake was higher in rice roots of seedlings grown with additional iron 

compared to those grown without additional iron. In addition, irrespective of the additional 

iron and arsenic species, chelating ligands increased iron uptake in rice roots significantly (p 

< 0.05) compared to the control treatments (Figs. 2B and 2C). The increase of iron uptake in 

roots of rice seedlings grown with different treatments of arsenic, iron and chelating ligands 

was related to its concentrations in root surfaces. Correlation analysis showed that iron 

concentrations in roots were significantly positively correlated with its concentrations in 

CBE-extracts of the root surfaces (Fig. 3). Therefore, it is evident that the bioavailability and 

uptake of iron in rice seedlings were increased by the chelating ligands. Hasegawa et al. 
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(2010) reported that biodegradable chelating ligands increase iron mobility, bioavailability 

and uptake in radish Raphanus sativus L.), and the mobility and bioavailability of iron 

depends on stability constant and type of the ligand, pH of growth medium, and ligand 

exposure time (Hasegawa et al., 2011). Hasegawa et al. (2010; 2011) found that HIDS was 

the most effective ligands studied for the mobility and bioavailability of iron which is in 

agreement with the results of the present study. 

 

Increasing iron uptake by chelating ligands can be explained by the adsorption of 

metal-chelants complexes on the Fe-plaques of rice root surfaces and subsequent dissociation 

of the Fe-chelant complexes in the soil solution (Nowack et al., 1996; Nowack and Sigg, 

1997). For example, the dissolution of Fe(III) hydroxides by metal-EDTA complexes occurs 

by ligand-promoted dissolution process which is initiated by the adsorption of metal-EDTA 

complexes to the surface and is followed by the dissociation of the complex at the surface and 

the release of Fe(III)-EDTA in the solution (Nowack and Sigg, 1997).  Complexation of 

metals with strong ligands such as EDTA occurs very often in natural systems. In addition to 

the complexation, dissolution of iron oxides in the presence of metal-EDTA complexes have 

been reported to occur in the subsurface environments (Davis et al., 1994). Compared to the 

uncomplexed EDTA, the dissolution rate is decreased to a great extent if EDTA complexes 

with metals (Nowack and Sigg, 1997). 

Iron uptake in rice roots was also affected by arsenic species. Regardless of the 

additional iron in the soil solution, iron uptake in rice roots was much higher when the 

seedlings were grown with DMAA (Figs. 2D, 2E) compared to that with arsenate (Figs. 2B 

and 2C). Correlation analysis showed that arsenate and iron concentrations in the roots of rice 

seedlings grown with or without additional iron were related significantly (r = 0.78, p < 0.05) 
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while DMAA and iron concentrations in the roots were not related significant (r = -0.16, p > 

0.05) (Figs. 4A, 4C). The results indicated that iron uptake in rice roots was inhibited by 

arsenate due to the increased adsorption of arsenate on iron oxides of root surfaces compared 

to that of DMAA (Bowell, 1994; Wilkie and Hering, 1996). 

 

3.5. Iron uptake in shoots influenced by chelating ligands, additional iron and arsenic 

species 

Iron concentrations in shoots of rice seedlings were about 23-49 times lower than 

those in roots. Although iron uptake in the roots of rice seedlings was affected by the 

additional iron and arsenic species (Fig. 2), its uptake in shoots was not affected significantly 

by those factors (Fig. 5). Correlation analysis also showed that iron concentrations were 

correlated neither with arsenate nor with DMAA concentrations in shoots of rice seedlings 

(Figs. 4B and 4D). Compared to the control treatment, however, chelating ligands increased 

iron uptake in shoots of rice seedlings grown with arsenate significantly (p < 0.05) (Figs. 5B, 

5C). In contrast, iron uptake in shoots was not affected that much when the seedlings were 

grown with DMAA (Figs. 5D, 5E).  

Compared to the roots, lower iron uptake in shoots of hydroponic rice seedlings has 

been reported by Rahman et al. (2009). It has been reported that soil-grown plants fail to 

translocate iron from the roots to the aerial parts in iron deficient condition, and iron is 

usually taken up and used in plant tops once it is made available for transport by the roots 

(Brown, 1978). But iron uptake in plant roots depends on its mobility and bioavailability in 

growing medium (Hasegawa et al., 2011), and thus iron uptake in shoots would be related to 

its availability and concentrations in roots. Chelating ligands have commonly been used to 

increase iron bioavailability and uptake and to correct iron-chlorosis in plants (Yunta et al., 



15 | P a g e  

 

2003; Alvarez-Fernandez et al., 2005; Lucena, 2006). In addition to the type of chelating 

ligands, we found in a recent study (not published) that the concentration and stability 

constant of the ligands (logKFeL) would be critical determinants for the increase or decrease 

of iron bioavailability and uptake in plant roots. The results of the present study showed that 

chelating ligands increase iron uptake in roots as well as in shoots, and HIDS was found to be 

more effective in increasing iron uptake in rice roots compared to EDTA and EDDS. 

 

4. Conclusion 

Chelating ligands increase arsenate uptake in rice roots, and the increment was 

augmented by additional iron in the soil. In addition, arsenate uptake in rice shoots was 

increased by the ligands in some cases while DMAA was not in any cases. Among the 

chelating ligands tested, HIDS increased arsenic uptake in roots. So, the biodegradable HIDS 

would be a potential ligand for the enhancement of arsenic uptake by plants during 

phytoremediation. Chelating ligands also increased iron uptake both in roots and shoots of 

rice seedlings. But arsenate inhibits iron uptake in roots while DMAA does not. In this case, 

HIDS also found to be more effective for the increase of iron bioavailability and uptake in 

roots of rice seedlings in most cases. Thus, HIDS would also be a good Fe-fertilizer. 

Iron is an important nutrient of plants while arsenic is toxic to plants at high 

concentration except for hyperaccumulators. Since iron and arsenic, particularly arsenate, 

have good correlation in plant uptake chelant-enhanced bioavailability of iron and arsenic 

phytoextraction would be good idea. But if chelating ligands is used for the increase of iron 

bioavailability to reduce iron-chlorosis in rice plant it can be elucidated from the results of 

the present study that the ligands not only increase iron bioavailability, but also increase 

arsenic uptake in rice. Therefore, fertilization of iron-chelants in agricultural soils 
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contaminated with high level of arsenic for the increase of iron uptake in crop plants should 

be considered carefully. 
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Figure captions 

Fig. 1: Influence of chelating ligands and additional iron (in addition to its background 

concentration in the soil) on arsenic uptake in roots (A, B) and shoots (C, D) of rice 

seedlings. Control treatments were contained only arsenic but no chelating ligands 
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and additional iron. Values are mean ± standard deviation (N = 3). In a figure, values 

having same letter don’t differ significantly from each other at 5% level by DMRT. 

 

Fig. 2: Influence of chelating ligands, additional iron (in addition to its background 

concentration in the soil) and arsenic species on iron uptake in rice roots. Without 

arsenic (A); arsenate (B, C) and DMAA (D, E). Control treatments did not contain 

additional iron and chelating ligands. Values are mean ± standard deviation (N = 3). 

In a figure, values having same letter don’t differ significantly from each other at 5% 

level by DMRT. 

 

Fig. 3: Correlation between iron concentrations in roots and on root surfaces of rice seedlings 

grown with different treatments of arsenate, additional iron and chelating ligands. 

 

Fig. 4: Correlation between arsenic and iron concentrations in roots (A, C) and shoots (B, D) 

of rice seedlings. Arsenate (A, B) and DMAA (C, D). CL (chelating ligand). 

 

Fig. 5: Influence of chelating ligands, additional iron (in addition to its background 

concentration in the soil) and arsenic species on iron uptake in rice shoots. Without 

arsenic (A); arsenate (B, C) and DMAA (D, E). Control treatments did not contain 

additional iron and chelating ligands. Values are mean ± standard deviation (N = 3). 

In a figure, values having same letter don’t differ significantly from each other at 5% 

level by DMRT. 
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Table 1: Instrumental and working conditions for the determination of arsenic and iron by 

Perkin Elmer Zeeman-effect GFAAS (AAnalyst 600) equipped with a transverse 

heated graphite atomizer (THGA). 
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For arsenic (As)      

Lamp Electrodeless discharge lamp (EDL)   

Lamp current 380 mA   

Wavelength 193.7 nm     

Slit width 0.7 nm     

Furnace program settings Drying 1 Drying 2 Pyrolysis Atomization Cleaning 

Temperature (ºC) 110 130 1200 2000 2450 

Ramp time (s) 1 15 10 0 1 

Holding time (s) 30 30 20 5 3 

Argon flow rate 
(cm3 min−1) 

250 250 250 0 250 

For iron (Fe)      

Lamp Hollow cathode lamp   

Lamp current 30 mA     

Wavelength 248.3 nm     

Slit width 0.2 nm     

Furnace program settings Drying 1 Drying 2 Pyrolysis 1 Atomization Cleaning 

Temperature (ºC) 110 130 1400 2100 2450 

Ramp time (s) 1 15 10 0 1 

Holding time (s) 30 30 20 5 3 

Argon flow rate 
(cm3 min−1) 

250 250 250 0 250 
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Fig. 1: Influence of chelating ligands and additional iron (in addition to its background 

concentration in the soil) on arsenic uptake in roots (A, B) and shoots (C, D) of rice 

seedlings. Control treatments were contained only arsenic but no chelating ligands 

and additional iron. Values are mean ± standard deviation (N = 3). In a figure, values 

having same letter don’t differ significantly from each other at 5% level by DMRT. 
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Fig. 2: Influence of chelating ligands, additional iron (in addition to its background 

concentration in the soil) and arsenic species on iron uptake in rice roots. Without 

arsenic (A); arsenate (B, C) and DMAA (D, E). Control treatments did not contain 

additional iron and chelating ligands. Values are mean ± standard deviation (N = 3). 

In a figure, values having same letter don’t differ significantly from each other at 5% 

level by DMRT. 
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Fig. 3: Correlation between iron concentrations in roots and on root surfaces of rice seedlings 

grown with different treatments of arsenate, additional iron and chelating ligands. 
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Fig. 4: Correlation between arsenic and iron concentrations in roots (A, C) and shoots (B, D) 

of rice seedlings. Arsenate (A, B) and DMAA (C, D). CL (chelating ligand). 
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Fig. 5: Influence of chelating ligands, additional iron (in addition to its background 

concentration in the soil) and arsenic species on iron uptake in rice shoots. Without 

arsenic (A); arsenate (B, C) and DMAA (D, E). Control treatments did not contain 

additional iron and chelating ligands. Values are mean ± standard deviation (N = 3). 

In a figure, values having same letter don’t differ significantly from each other at 5% 

level by DMRT. 

 

 


