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Abstract. FFT and Multilayer neural networks (MLNN) have been ap-
plied to ‘Brain Computer Interface’ (BCI). In this paper, in order to
extract features of mental tasks, individual feature of brain waves of
each channel is emphasized. Since the brain wave in some interval can
be regarded as a vector, Gram-Schmidt orthogonalization is applied for
this purpose. There exists degree of freedom in the channel order to be
orthogonalized. Effect of the channel order on classification accuracy is
investigated. Next, two channel orders are used for generating the MLNN
input data. Two kinds of methods using a single NN and double NNs are
examined. Furthermore, a generalization method, adding small random
numbers to the MLNN input data, is applied. Simulations are carried out
by using the brain waves, available from the Colorado State University
website. By using the orthogonal components, a correct classification rate
Pc can be improved from 70% to 78%, an incorrect classification rate Pe

can be suppressed from 10% to 8%. As a result, a rate Rc = Pc/(Pc +Pe)
can be improved from 0.875 to 0.907. When two different channel orders
are used, Pe can be drastically suppressed from 10% to 2%, and Rc can
be improved up to 0.973. The generalization method is useful especially
for using a sigle channel order. Pc can be increased up to 84 ∼ 88% and
Pe can be suppressed down to 2 ∼ 4%, resulting in Rc = 0.957 ∼ 0.977.

Keywords: BCI, Brain waves, Neural network, Mental task, Orthogonal
components, Gram-Schmidt, Generalization.

1 Introduction

Among the interfaces developed for the handicapped persons, Brain Computer
Interface (BCI) has been attractive recently [1], [2]. Approaches to the BCI
technology includes nonlinear classification by using spectrum power, adaptive
auto-regressive model and linear classification, space patterns and linear classi-
fication, hidden Markov models, and so on [3],[4]. Furthermore, application of
neural networks have been also discussed [5],[6],[7], [8], [9], [10]. In our works,
FFT of the brain waves and a multilayer neural network (MLNN) have been
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applied to the BCI. Efficient pre-processing techniques have been also employed
in order to achieve a high score of correct classification of the mental tasks [16].
Furthermore, the generalization methods have been applied to the neural net-
work based BCI. The method of adding small random noise to the MLNN inputs
can improve classification performance [17].

The multi-channel brain waves have some common features, which make fea-
tures vague, and make mental task classification difficult. We will try to remove
the common and vague features and emphasize individual features of each men-
tal task. For this purpose, essential features of the multi-channel brain waves
are extracted. Conventional methods have employed Independent Component
Analysis (ICA), Blind Source Separation (BSS) and so on [11],[12]. However,
these methods have an essential problem, that is ‘Permutation’. Order of the
components, which are extracted, is not fixed. It can be changed depends on
data sets. Thus, these methods are difficult to be combined with the MLNN.

In this paper, the BCI using the FFT amplitude of the brain waves and the
MLNN is employed. The brain wave in some time interval, that is a frame,
can be regarded as vectors. Letting M be the number of channels, M vectors
are obtained for one mental task and one measuring trial. Let M vectors be
{x1, x2, · · · , xM}. This vector set is transferred to the orthogonal vector set
{v1, v2, · · · , vM}. This vector set is further pre-processed and is used for the
MLNN input data.

2 Brain Waves and Mental Tasks

2.1 Mental Tasks

In this paper, the brain waves, which are available from the web site of Colorado
State University [13], are used. The following five kinds of mental tasks are used.

– Baseline - Relaxed situation - (B)
– Multiplication (M)
– Letter-composing (L)
– Rotation of a 3-D object (R)
– Counting numbers (C)

2.2 Brain Wave Measurement

Location of the electrodes to measure brain waves is shown in Fig.1. Seven
channels including C3, C4, P3, P4, O1, O2, EOG, are used. EOG, which does
not appear in this figure, is used for measuring movement of the eyeballs. In this
paper, channel numbers Ch1 through Ch7 are assigned to C3, C4, P3, P4, O1,
O2 and EOG, respectively, for convenience.

The brain waves are measured for a 10sec interval and sampled by 250Hz for
each mental task. Therefore, 10sec × 250Hz = 2, 500 samples are obtained for
one channel and one mental task. One data set includes 2,500 samples for each
channel and each mental task. Five mental tasks and seven channels are included
in one data set.
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Fig. 1. Location of electrodes measuring brain waves

2.3 Mental Task Classification by Using Multilayer Neural Network

An MLNN having a single hidden layer is used. Activation functions used in the
hidden layer and the output layer are a hyperbolic tangent and a sigmoid func-
tion, respectively. The number of input nodes is 10 samples×7 channels=70. Five
output neurons are used for five mental tasks. The target for the output has only
one non-zero element, such as (1, 0, 0, 0, 0). In the testing phase, the maximum
output becomes the winner and the corresponding mental task is assigned. How-
ever, when the winner have small value, estimation becomes incorrect. Therefore,
the answer of the neural network is rejected, that is any mental task cannot be
estimated. The error back-propagation algorithm is employed for adjusting the
connection weights.

3 Pre-processing of Wave Forms

Several techniques for pre-processing proposed in [16] are also employed in this
paper, and are briefly described here.

3.1 Amplitude of FFT of Brain Waves

In order to avoid effects of brain wave shifting along the time axis, which is not
essential, the brain wave is first Fourier transformed and its amplitude is used.

3.2 Reduction of Samples by Averaging

In order to make the neural network size to be compact and to reduce effects
of the noises added to the brain waves, the FFT samples in some interval are
averaged. By this averaging, the number of samples is reduced from 2,500 to 20.
Since the brain waves are real values and their FFT amplitude are symmetrical,
a half of the 20 samples can represents all information. Finally, 10 samples are
used.
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3.3 Nonlinear Normalization

The amplitude of the FFT is widely distributed. Small samples also contain
important information for classifying the mental tasks. However, in the neural
networks, large inputs play an important role. If large samples do not include
important information, correct classification will be difficult. For this reason, the
nonlinear normalization as shown in Eq.(1) has been introduced [17]. x is the
FFT amplitude before normalization and f(x) is the normalized amplitude. In
Eq.(1), xmin and xmax mean the minimum and the maximum values of x in all
channels. The small samples are expanded and the large samples are compressed.
In this paper, usefulness this nonlinear normalization method for the orthogonal
components of the brain waves will be also investigated.

f(x) =
log(x − xmin)

log(xmax − xmin)
(1)

The linear normalization given by flinear(x) = (x−xmin)/(xmax −xmin) will
be examined for comparison.

4 Generalization by Adding Small Random Numbers

The brain waves are very sensitive, which easily change depending on health
conditions of the subjects and the measuring environment. The data sets mea-
sured for the same subject, have different features. Therefore, generalization is
very important for the BCIs. In our previous work, two kinds of generalization
techniques, which are adding small random numbers to the MLNN input data
[14] and a weight decay technique [15], have been applied. The former method
can provide good classification performance [17].

In this paper, the method of adding small and different random numbers to
the MLNN input data at each epoch of the learning process is applied, and its
usefulness for the orthogonal components of the multi-channel brain waves will
be investigated.

5 Orthogonal Components of Multi-channel Brain Waves

5.1 Orthogonal Component Analysis

There are several kinds of methods for analyzing orthogonal components, in-
cluding blind source separation (BSS), independent component analysis (ICA),
principal component analysis (PCA) and so on. They have an essential prob-
lem, that is ‘Permutation’. In these methods, it is not guaranteed that the same
component is analyzed in the same order. This point is described in detail here.

LettingM be the number of channels, a set ofM vectors ismeasured for onemen-
tal task and one measuring trial. Let a whole vector be X =[xT

1 , xT
2 , · · · , xT

M ]T . xi

corresponds to the brain wave measured at the ith channel. Let the correspond-
ing orthogonalized vector be V = [vT

1 , vT
2 , · · · , vT

M ]T . The whole vector V is used
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as the MLNN input data after the pre-processing. Therefore, the order of vi in V
is very important. Let consider two sets of the vectors V 1 and V 2 for the same
mental task and for different measuring trials. Let v1i and v2j be the ith and jth
vectors in V 1 and V 2, respectively. If v1i is most similar to v2j , i �= j, for instanse
vT

1iv2j/ ‖ v1i ‖‖ v2j ‖ is most close to 1, then V 1 and V 2 cannot express the same
feature even though they belong to the same mental task. BSS, ICA and PCA can-
not guarantee the same order of the orthogonal components in the different mea-
suring trials due to ‘Permutation’ problem [11],[12]. This is an essential problem
to use the orthogonal components as the MLNN input data.

For this reason, in this paper, Gram-Schmidt orthogonalization is applied to
the vector set {x1, x2, · · · , xM}. The order of the orthogonal components can be
controlled by selecting the channels to be orthogonalized in the specified order.
‘Permutation’ of the orthogonal components does not occur.

5.2 Gram-Schmidt Orthogonalization

The vectors {x1, x2, · · · , xM}, which express the brain waves at M-channels, are
usually linearly independent. This set can be transferred into the orthogonal
vector set {v1, v2, · · · , vM} by Gram-Schmidt orthogonalization [18]. x1 is used
for v1. v2 is a part of x2, which is orthogonal to v1. In the same way, vk is
a component of xk, which is orthogonal to all the previous orthogonal vectors
v1, v2, · · · , vk−1.

{vi} are Fourier transformed and their amplitude are pre-processed as de-
scribed in Sec.3, and are used as the MLNN input data.

5.3 Order of Orthogonalization

There exists degree of freedom of selecting the channel order, in which the brain
waves are orthogonalized by the Gram-Schmidt method. The first channel can
hold a whole information, and the following channels provide only a part of the
vector, which is orthogonal to the previous orthogonal vectors. Therefore, the
order of the channels will affect accuracy of classifying the mental tasks. We will
investigate effects of the channel order through simulation.

5.4 Input Data Sets by Using Two Channel Orders

As described in the previous sections, we can use a plural number of the channel
orders for generating the MLNN input data. Let the input data sets, which are
generated from the same brain waves by using two kinds of the channel orders,
be I1 and I2. Thus, the input data are equivalently doubled for each mental task.

Single MLNN Method. A single MLNN, denoted NN, is used for classifying
the mental tasks. In the training phase, both I1 and I2, generated from the
training brain waves, are used to train NN. In the testing phase, I1, generated
from the test brain waves, is applied to NN, and the output O1 is obtained.
Separately, I2, generated from the same brain waves, is applied to NN, resulting



884 K. Nakayama, H. Horita, and A. Hirano

in the output O2. The final output Ot is given by Ot = (O1 +O2)/2. The mental
task is estimated based on the maximum value of Ot.

Double MLNN Method. Two independent MLNNs are used, denoted NNa

and NNb. I1 of the training brain waves is used to train NNa, and I2 of the
same brain waves is used to train NNb, respectively. In the testing phase, I1 of
the test brain waves is applied to NNa and the output Oa1 is obtained. In the
same way, I2 of the same brain waves is applied to NNb and Ob2 is obtained.
The final output Ot is evaluated by Ot = (Oa1 + Ob2)/2. The mental task is
classified based on the maximum value of Ot.

The threshold of rejection, that is ‘No estimation’, is also employed in all
methods. If all the outputs are less than the threshold, then the MLNN answers
‘any mental task cannot be estimated’.

6 Simulations and Discussions

6.1 Simulation Setup

Training and Testing Brain Waves
The brain waves with a 10 sec length for five mental tasks were measured 10
times. Therefore, 10 data sets are available. Among them, 9 data sets are used
for training and the remaining one data set is used for testing. Five different
combinations of 9 data sets are used for the training. As a result, five different
data sets are used for testing. Thus, five independent trials are carried out.
Classification accuracy is evaluated based on the average over five trials [3].

Score of Correct and Error Classifications
Estimation of the mental tasks is evaluated based on a correct classification
rate (Pc) and an error classification rate (Pe), and a rate of correct and error
classification (Rc) as follows:

Pc =
Nc

Nt
× 100%, Pe =

Ne

Nt
× 100% (2)

Rc =
Nc

Nc + Ne
, Nt = Nc + Ne + Nr (3)

Nc, Ne and Nr are the numbers of correct and incorrect classifications and
rejections, respectively. Nt is the total number of the testing data. Rc is used to
evaluate a correct classification rate except for ‘Rejection’.

Parameters in Neural Network Learning
A hyperbolic tangent function and a sigmoid function are used fin the hidden
layer and the output layer, respectively. The number of hidden units is 20. The
threshold for rejection is 0.7. A learning rate is 0.02.

6.2 Brain Waves Before and After Orthogonalization

Figure 2 shows the brain waves before (gray) and after (black) orthogonalization.
The horizontal axis shows the sample number in the time domain. The channel
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Fig. 2. Brain waves of 7 channels before (gray) and after (black) orthogonalization

order of orthogonalization is Ch1, 2, 3, 4, 5, 6, 7. The orthogonalized brain waves
are gradually decreased along the channel order. Since Ch7 is used for detecting
blinking, which is not the mental task, its brain wave is not correlated with that
of the other channels, resulting in a large orthogonal component.

Figure 3 shows the MLNN input data before (dashed line) and after (solid
line) orthogonalization. They are normalized by using the nonlinear function
Eq.(1) [16]. The FFT amplitude responses are arranged from Ch1 through Ch7
along the horizontal axis from the left side to the right side. One channel includes
10 samples.

6.3 Classification by Using Orthogonal Components

Table 1 shows classification rates by using the orthogonal components of the
brain waves. 7 kinds of channel orders are used, which are selected by circular
shifting. Although they do not include all permutations, effects of the channel
order can be investigated. ‘Conventional’ means our method, which employs
the original brain waves and the pre-processing techniques [16]. By using the
orthogonal components, Pc can be improved from 70% to 78%, and Pe can be
suppressed from 10% to 8%, and Rc is increased from 0.875 to 0.907.

As expected in the previous section, also from Table 1, the classification accu-
racy depends on the channel order to be orthogonalization. The channel orders
Ch2, 3, 4, 5, 6, 7, 1 and Ch3, 4, 5, 6, 7, 1, 2 can provide good classification
accuracy. The optimum channel order can be searched for in advance, and can
be fixed for an individual subject.

Furthermore, the generalization method of adding small random numbers to
the MLNN input data was carried out for the best channel order Ch2, 3, 4, 5, 6,
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Fig. 3. Input data of MLNN. Dashed line and solid line indicate input data before and
after orthogonalization, respectively.

Table 1. Score of classification by using orthogonal components

Pc Pe Rc

Conventional 70 10 0.875

Ch1, 2, 3, 4, 5, 6, 7 70 12 0.854

Ch2, 3, 4, 5, 6, 7, 1 78 8 0.907

Ch3, 4, 5, 6, 7, 1, 2 74 8 0.902

Ch4, 5, 6, 7, 1, 2, 3 70 12 0.854

Ch5, 6, 7, 1, 2, 3, 4 68 12 0.85

Ch6, 7, 1, 2, 3, 4, 5 66 24 0.733

Ch7, 1, 2, 3, 4, 5, 6 70 12 0.854

Generalization ±0.1
Ch2, 3, 4, 5, 6, 7, 1 88 4 0.957

Generalization ±0.05
Ch2, 3, 4, 5, 6, 7, 1 84 2 0.977

7, 1. Random numbers uniformly distributed during ±0.1 and ±0.05 are used.
As shown in the same table, Pc is well improved from 78% up to 84 ∼ 88%, Pe

is well suppressed from 8% to 2 ∼ 4%, resulting in R = 0.957 ∼ 0.977.
The linear normalization flinear(x) described in Sec.3.3 is also examined. The

best channel order is Ch5, 6, 7, 1, 2, 3, 4, and Pc = 62%, Pe = 14% and
Rc = 0.816, which are not good compared with the nonlinear normalization.

6.4 Classification by Using Two Channel Orders

Two channel orders, Ch2, 3, 4, 5, 6, 7, 1 and Ch3, 4, 5, 6, 7, 1, 2, which provide
good classification accuracy in Table 1, are used to generate the MLNN input
data I1 and I2, respectively.

Table 2 shows simulation results. A method of using a single NN is not good.
By using double NN, Pe is well suppressed and Rc can be well increased before
the generalization. After the generalization, its performances Pc = 82%, Pe = 2%
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Table 2. Score of classification by using two channel orders

Pc Pe Rc

Conventional 70 10 0.875

Single NN 66 8 0.892

Generalization ±0.1 76 6 0.927

±0.05 78 8 0.907

Double NN 72 2 0.973

Generalization ±0.1 82 2 0.976

±0.05 72 4 0.947

and Rc = 0.976 are almost same as those of the method using a single channel
order Ch2, 3, 4, 5, 6, 7, 1.

When the generalization method, adding random numbers to the MLNN input
data, is embedded in the learning process, a single channel order can provide
good performance by optimizing the channel order.

6.5 Dependence on Individual Subjects

Since brain waves are dependent on the subjects, the MLNN is needed to be
optimized or tuned up for individual subjects. It is not useful to apply the same
MLNN to different subjects. From our experiences, the best channel order of
orthogonalization also depends on both the subjects and mental tasks. However,
it can be searched for by using the training data in advance. The proposed
method, using the orthogonal components, has been applied to three subjects,
and almost the same improvement on the classification rates have been achieved.

7 Conclusion

In this paper, the BCI based on the FFT amplitude and the MLNN is dealt
with. Especially, the orthogonal components of the multi-channel brain waves
are used to generate the MLNN input data. Gram-Schmidt orthogonalization is
applied. The proposed approach can improve Pc from 70% to 78%, Pe from 10%
to 8%, and Rc from 0.875 to 0.907. When two channel orders are used, Pe can
be well suppressed from 10% to 2%, and Rc can be well improved up to 0.973.
The generalization method is also useful, which can improve Pc up to 88% and
Pe down to 2%, resulting in Rc = 0.977.
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