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Abstract—Present status of GaInAsP/InP long-wavelength
quantum wire lasers, fabricated by a method using electron beam
exposure, dry etching, and two-step organometallic vapor-phase
epitaxy, is described from aspects of low-damage interface forma-
tion and size uniformity of quantum wire structures. Even though
superior lasing properties attributed to sharper gain spectrum over
that of quantum well structure have not been realized yet, polariza-
tion anisotropic feature of the quantum wire structure and forma-
tion of good interfaces by this fabrication method were confirmed.
Single-wavelength lasers consisting of quantum wire structure as
the active and/or the passive regions have been realized as possible
candidates for future integrated photonics.

Index Terms—Distributed Bragg reflector (DBR) laser, dis-
tributed feedback (DFB) laser, distributed reflector (DR) laser,
GaInAsP/InP, low-dimensional quantum well (QW) structure, po-
larization anisotropy, quantum wire laser.

I. INTRODUCTION

S EMICONDUCTOR lasers are one of most successful pho-
tonic devices, benefitting from the quantum size effect,

since their operation characteristics have been markedly im-
proved by the introduction of lattice-matched (LM) [1] and
strained [2]–[4] quantum well (QW) structures based on de-
velopments in epitaxial growth technologies enabling the real-
ization of high-quality QW structures with precisely controlled
thickness and composition. A further improvement in semi-
conductor laser performance is expected with the introduction
of quantum confinement in more than one dimension. In low-
dimensional QW structures, such as quantum wire (Q-wire) and
quantum box (Q-box or Q-dot) structures, carriers are more
strongly confined than in quantum film (Q-film) due to the fur-
ther modification of band structures and density of states (DOSs)
distributions [5].

Owing to the strong confinement of carriers into low-
dimensional QW structures with sharper DOS features, higher
optical gain and a narrower gain spectrum are obtained at
the same injection current density and intraband relaxation
time (0.1 ps). In other words, a higher differential gain can
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Fig. 1. Theoretical optical gain spectra of low-dimensional quantum structures
by Asada et al. [6].

be obtained. Fig. 1 shows the calculated gain spectra of differ-
ent quantized dimensions in the case of LM GaInAs/InP under
the same injection carrier density [6]. Not only the sharpness
of the gain spectrum but also its symmetric shape of lower
dimensional structures was found to be very promising for nar-
row spectral chirp under a high-speed direct modulation and a
narrow-linewidth operation due to reduced linewidth enhance-
ment factor [7], [8]. Therefore, the threshold current, differ-
ential quantum efficiency, and linewidth of Q-wire and Q-box
lasers have been expected to be superior to those of Q-film
lasers [9]. Further improvements by a combination of strain and
low-dimensional QW structures have also been expected [10].

The DOS distributions of Q-wire and Q-box structures are
sharper than those of Q-films, but these sharp features are
inferior owing to the size distributions of Q-wire and Q-box
structures, leading to inhomogeneous broadening of the energy
spectrum or spectral linewidth [11], [12]. The broadening sig-
nificantly reduces the impact of the modified DOS, resulting in
inferior optical gain and lasing properties.

In this paper, we would like to review fabrication methods and
lasing performance of long-wavelength Q-wire lasers consisting
of GaInAsP/InP system. Various fabrication methods and related
accomplishments are reviewed in Section II, and theoretical in-
vestigations of gain and its polarization anisotropy are given
in Section III. After explaining the fabrication method using
an electron beam lithography (EBL) followed by low-damage
dry etching and regrowth in Section IV, lasing properties of
GaInAsP/InP long-wavelength Q-wire lasers, including polar-
ization anisotropy of gain spectra measured in Fabry–Perot cav-
ity lasers and low-threshold lasers by adopting distributed Bragg
reflector (DBR) and distributed feedback (DFB) structures will
be given in Section V.

1077-260X/$25.00 © 2008 IEEE
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II. FABRICATION METHODS

A. Various Fabrication Techniques of Q-Wire Structures

To realize the high-performance operation of optical and/or
electrical devices with low-dimensional quantum structures, a
low-damage technology for the fabrication of ultrafine structures
with good size uniformity is required, and various fabrication
methods have been studied. The first attempt to fabricate GaAs
Q-wire structures was carried out in 1982 by combining the
growth of a QW structure followed by conventional lithogra-
phy and a burial of the growth layer [13]. Similar technologies
have also been investigated, including EB direct lithography
and wet chemical etching [14], and dry etching [15], [16] fol-
lowed by embedding growth [17], [18] for GaInAsP/InP, Al-
GaAs/GaAs [19], GaInAs/GaAs [20], [21] and Si/Si1−xGex

[22] systems. Other similar techniques including electrochemi-
cal anodization [23] and impact lithography [24] have also been
attempted.

For GaAs/Al(In)GaAs systems, fractional layer growth on
a tilted substrate [25] or multiatomic steps on a vicinal sub-
strate [26]–[30] have been used to fabricate Q-wires, and QW
structures have been grown on patterned substrates [31], [32]
or on very fine V-shaped grooves (V-grooves) [33]–[35], since
the oxidation of AlGaAs/GaAs is much severer and the surface
recombination velocity of this system is much faster compared
with GaInAsP/InP systems. Furthermore, for GaInAsP/InP sys-
tems, selective growth on a patterned substrate [36] or on
V-grooves [37] as well as fractional layer growth on a vici-
nal InP substrate [38] have also been carried out for applica-
tions to single-electron devices or optical devices. Concern-
ing other selective growth methods, the fabrication of Q-wires
has also been attempted on grooved sidewalls [39], on cleaved
edges [40], giant step edges on vicinal (1 1 0) surfaces [41],
and (1 1 1)B facets by glancing angle molecular beam epitaxy
(MBE) [42].

The aforementioned fabrication methods are much more
difficult than those used to grow conventional Q-film struc-
tures, because the realization of high-quality QW structures
with precisely controlled thickness and compositions is at-
tributed only to developments in epitaxial growth technology.
However, since 1990s, a simple technology for fabricating
Q-wire or Q-box (Q-dot) structures directly on a substrate,
involving only a growth technique has been investigated ac-
tively by many research groups, i.e., these structures can be
self-assembled by adjusting the growth conditions. The strain-
induced lateral-layer ordering (SI-LO) of binary superlattices
was used [43]–[45]. The SI self-organized (SI-SO) growth
technique using the Stranski–Krastanow (SK) epitaxial growth
mode has been investigated [46]. The various fabrication meth-
ods of Q-wire structures are summarized in Fig. 2.: 1) frac-
tional (submonoatomic) layer growth on the step edge of a
vicinal substrate [13], [47], [48]; 2) a combination of lithog-
raphy, etching, and embedding growth [49]–[52]; 3) selective
growth on a patterned substrate [53]–[55]; 4) SI-LO of binary
superlattices [56]; 5) SI-SO growth [46]; and 6) cleaved edge
overgrowth [40].

Fig. 2. Fabrication methods of Q-wire structures. (1) Titled Superlattices.
(2) Lithography and Etching. (3) Selective Growth on V-shaped Sub. (4) Binary
Superlattices Growth. (5) Self-organization. (6) Cleaved Edge Overgrowth.

We have investigated a fabrication method that combines EB
lithography, etching, and two-step organometallic vapor-phase-
epitaxial (OMVPE) growth, because this method has better po-
sition controllability and wider applications than other methods.
These factors are important for achieving high-performance
semiconductor lasers and various photonic devices with low-
dimensional QW structures. It is also easy to apply an optional
strained structure to Q-wire and Q-box lasers using this method,
which is expected to render lasing properties superior to those
of unstrained Q-wire and Q-box lasers [10]. Furthermore, this
fabrication method is suitable for use in the production of DFB
lasers [57]–[59]. In particular, a dry etching system should be
applied to form high-density nanostructures with stacked mul-
tiple layers that are necessary for obtaining adequate optical
confinement for a low-threshold-current operation.

B. Long-Wavelength Q-Wire and Q-Dot Lasers

The, so-called “long-wavelength” semiconductor lasers with
wavelength of 1.3 and 1.55 µm are indispensable for optical fiber
communication systems since the material dispersion of stan-
dard optical fiber is minimum at a wavelength of 1.3 µm and
its loss is minimum at 1.55 µm. As explained in the previous
section, various fabrication methods for Q-wire structures have
been studied to realize high-performance semiconductor lasers.
In 1993, a threshold current of as low as 16 mA and a thresh-
old current density of 816 A/cm2 were obtained under room
temperature (RT) continuous-wave (CW) conditions for tensile-
strained (TS) single-layered Q-wire lasers with 30–40-nm-wide
and 70-nm-period wire active regions fabricated by EB lithogra-
phy, wet etching, and two-step OMVPE growth [60], [61]. This
method is the most direct approach for the fabrication of Q-wire
and Q-box structures, and it is easy to control their size, density,
and position. In particular, this fabrication method can control
the lasing wavelength through the design of the initial QW and
the size of the Q-wire or Q-box structure.
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In 1996, single-layer Q-wire lasers were fabricated with a
wire width of 20 nm in a period of 50 nm, which had a lower
threshold current and a higher differential quantum efficiency
than those of Q-film lasers at 200 K [62], [63]. On the other
hand, not only wet chemical etching but also dry etching for
the fabrication of stacked multiple-layered Q-wire and Q-box
structures have been studied to obtain quantum structures with
better uniformity so as to increase the optical confinement
factor of the active region. In addition, for the fabrication of
DFB lasers with wire-like active regions, dry etching yields
a strong index-coupling coefficient because it can be used for
deep etching. Although, there have been many reports on fab-
rication processes and photoluminescence (PL) or electrolumi-
nescence (EL) measurements for Q-wire and Q-box structures
fabricated by dry etching [15], [16], [20], [51], [64]–[66], it
seemed to be very difficult to use the dry etching method to
obtain high-performance Q-wire and Q-box lasers due to the
large amount of damage induced by fabrication. In 1995, Q-wire
DFB lasers with wire widths of 140 nm down to 100 nm were
reported [58]. These lasers were fabricated by electrocyclotron
resonance-enhanced reactive ion-beam etching (ECR-RIBE) us-
ing a CCl2F2/Ar gas mixture [67] and wet chemical etch-
ing followed by OMVPE regrowth. In addition, by applying
CH4/H2 reactive ion etching (RIE) to multiple QW (MQW)
structures [68] and a much slower growth rate during the em-
bedding growth of an InP layer than that used in conventional
OMVPE growth [69], Q-wire lasers with lower threshold cur-
rent density than that fabricated by wet chemical etching were
obtained [59].

Using the SI-SO method, which is a self-assembled growth
technology, a low-threshold current density of 16 A/cm2 in 1.25-
µm-wavelength InAs/GaInAs Q-dot lasers [70], a threshold
current of 5.4 mA in 1.3-µm-wavelength GaInAs/GaAs Q-dot
lasers [71], a threshold current of 17 mA and a submode suppres-
sion ratio (SMSR) of 55 dB in 1.3-µm-wavelength InAs/GaInAs
Q-dot DFB lasers [72], and high-frequency operation [73] were
demonstrated. To attain an emitting wavelength of 1.5 µm, InAs
Q-dot lasers grown on (3 1 1)B-oriented InP substrate [74] and
InAs Q-dash lasers on (1 0 0) InP substrate [75], [76] have been
studied.

Furthermore, Gax In1−xAs/InP multiple-layered Q-wire
lasers with an emitting wavelength of 1.69 µm at T = 77 K
were fabricated by the SI-LO method [56], and GaInAs/InP
single Q-wire lasers with an emitting wavelength of more than
1.3 µm at T = 15 K were fabricated by selective growth on a
V-groove substrate [77].

III. THEORETICAL ANALYSIS

A. Optical Gain

QW lasers with higher optical gain and reduced cavity loss can
be achieved by reducing the volume of the active region, leading
to low-threshold-current operation [4], [78], [79]. QW lasers
also exhibit reduced temperature sensitivity, higher modulation
bandwidths, and low-wavelength chirp operation. The material

Fig. 3. Injection carrier density dependence of maximum gain for Q-wire
structures with various wire widths.

gain as a function of frequency is expressed as [80]

g(ω) =
ω

nr

√
µ0

ε0

∫ ∞

Eg

〈
R2

cv
〉
gcv (Ecv ) {fc − fv}

× h̄/τin

(Ecv − h̄ω)2 + (h̄/τin)2 dEcv (1)

where the subscripts c and v denote the conduction and valence
bands, respectively, ω is the angular frequency of the input light,
nr is the refractive index without the dispersion at the active
region, 〈Rcv〉2 is the transition matrix element of the dipole
moment [81], [82], fc and fv are the Fermi functions for the
conduction and valence bands, respectively, τin is the intraband
relaxation time [83], and Ecv is the transition energy between
the conduction and valence bands.

gcv (Ecv ), which is the DOSs in a Q-wire, is given by

gcv (Ecv ) =
(

2m∗
cm

∗
v

m∗
c + m∗

v

)1/2

× 1
πh̄WxWy

/
(Ecv−Ecxy ,l,m−Evxy ,l,m−Eg)

1/2

(2)

where m∗
c and m∗

v are the effective masses of an electron and
hole, respectively, Wx and Wy are the width and thickness of the
Q-wire, respectively, Eg is the band gap energy, and Ecxy ,l,m
and Evxy ,l,m are the quantized energy levels of the Q-wire in
the conduction band and valence band, respectively.

Fig. 3 shows the injection carrier density dependence of max-
imum gain for a Q-wire structure with various wire widths (W ).
No difference between the Q-wire with W = 40 nm and the
Q-film could be observed. Hence, to obtain improved optical
gain properties due to the lateral confinement effect, Q-wire
structures with a wire width of less than 20 nm should be
realized.

B. Size Distribution of Optical Gain

In the previous section, the size distributions of Q-wire
structures were not considered in the analysis. However, the
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Fig. 4. Injection carrier density dependence of maximum gain for Q-wire
structures with a wire width of 15 nm and a Q-film structure. The size distribu-
tions (∆W/W0 ) are 0%, 10%, 20%, and 40%.

inhomogeneity of Q-wire structures due to the fabrication pro-
cess has a strong effect on the lasing properties. Accordingly,
the investigation of the permissible size distribution is very
important for realizing applications of low-dimensional QW
structures.

The injection carrier density dependence of maximum gain
for a Q-wire with a width of 15 nm and for a Q-film structure
was calculated at 300 K. The thickness in the growth direction
is 7 nm for the Q-wire and Q-film structures. As can be seen
in Fig. 4, the maximum gain and differential gain are markedly
reduced with increasing size distribution (∆W/W0). In the case
of ∆W/W0 = 40%, the maximum gain and differential gain of
the Q-wire structure are inferior to those of the Q-film struc-
ture. Accordingly, to observe strong lateral confinement for Q-
wires, a size distribution of less than 10% (∆W/W0 < 10%) is
necessary.

C. Strain Effect in Q-Wires

Q-wires fabricated by etching and regrowth produce a strain
effect. The strain distribution in such Q-wires is calculated
using an analytical technique based on a 2-D Green’s func-
tion for the stress field. An eight-band k·p theory was used
for calculating the energy band structures including strain re-
laxation. The experimentally observed wire-width dependence
of the large energy blue shift in the PL spectrum of partially
strain-compensated (SC) GaInAsP/InP vertically stacked mul-
tiple Q-wires can be accurately plotted without using any fitting
parameter [84].

D. Polarization Anisotropy of Q-Wires

The in-plane polarization anisotropy of optical gain in com-
pressively strained (CS) GaInAsP/InP Q-wire lasers including
elastic-strain-relaxation-induced band mixing has been stud-
ied [85]. Fig. 5 shows the maximum material gain as a function
of carrier density N for a 10-nm-wide SC-SQW Q-wire. The
maximum possible gain is obtained at the E// polarization. We
also observed that the transparent carrier density Ng in the E//

Fig. 5. Injection carrier density dependence of maximum gain of the SC-SQW
for E// and E⊥.

polarization is smaller than that in the E⊥ polarization, where E//

represents the parallel polarization along the wire direction and
E⊥ the normal polarization perpendicular to the wire direction.

E. Recombination Velocity at Eched/Regrown Interface

The carrier lifetime (τs), incorporating additional nonradia-
tive recombination processes from the sidewalls of the active
region via the surface recombination velocity (S), can be ex-
pressed as follows [86], [87]:

1
τs

∼= Beff N +
2S

W − 2Wd
(3)

where W is the wire width, Beff is the effective recombination
coefficient, N is the carrier density, and Wd is the so-called
“dead layer” width, and is regarded as a region that does not
generate photoexcited carriers [88].

F. Threshold Current

The equation of threshold current density (Jth ) can be rewrit-
ten as

Jth =
edNw ρNth

τs
(4)

where e is the electronic charge, d is the thickness of one active
layer, Nw is the number of active layers, ρ is the in-plane space
filling factor of the active regions (ρ = W /Λ), and Nth is the
threshold carrier density.

The dependence of the relative threshold current density
[Jth (Q-wire)/Jth (Q-film)] on S was calculated at 300 K, as
shown in Fig. 6. To ensure that the change in the threshold cur-
rent density is less than 10% of the case for S = 0 cm/s (S = 0
implies no nonradiative recombination at the etched/regrown
interfaces), S should be smaller than 30 cm/s.

IV. FABRICATION PROCESSES AND OPTICAL PROPERTIES OF

QUANTUM STRUCTURES BY DRY ETCHING AND REGROWTH

A. Fabrication Process

Fig. 7 shows the fabrication process for Q-wire lasers. An
SC-5QW structure was prepared on a (1 0 0) p+-InP substrate
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Fig. 6. In-plane space filling factor (ρ) dependence of the relative threshold
current density. The surface recombination velocity (S) is 0, 30, 100, and
300 cm/s.

Fig. 7. Fabrication process of Q-wire structure by dry etching and regrowth
for Q-wire laser. (a) 1st OMVPE. (b) SiO2 CVD and EB lithography. (c) CF4
reative ion etching (RIE). (d) CH4 /H2 -RIF and wet chemical etching. (e) 2nd
OMVPE. (f) Mesa stripe laser.

as an initial wafer by OMVPE growth. The introduction of
the SC-QW structure consisting of CS wells and TS barrier
layers is very effective for the reduction of nonradiative re-
combination at etched/regrown interfaces and the suppression
of 3-D stress due to a large lattice mismatch along the verti-
cal structure between CS wells and unstrained barrier layers
induced during etching and InP embedding regrowth [89], [90].
The initial wafer comprises a p-InP buffer layer, an undoped
Ga0.22In0.78As0.47P0.53 optical confinement layer (OCL), five
Ga0.22In0.78As0.81P0.19 1% CS-QW layers sandwiched by six
−0.15% TS barrier layers, a GaInAsP OCL layer, and an InP
cap layer [see Fig. 7(a)]. After the deposition of a 20-nm-thick
SiO2 layer on the wafer, a Q-wire pattern parallel to the [0 1 1]
direction and perpendicular to the direction of the cavity was de-
scribed by EB lithography using ZEP520 resist mixed with C60

Fig. 8. Cross-sectional SEM view of Q-wire23.

microcomposite [see Fig. 7(b)]. Then, the EB pattern was trans-
ferred to the SiO2 layer by CF4-RIE [see Fig. 7(c)]. Using the
20-nm-thick SiO2 mask, active layers were completely etched
by CH4/H2-RIE [see Fig. 7(d)]. CH4/H2-RIE and O2 ashing
steps were repeated several times throughout the etching to re-
move the polymer deposited during RIE and acquire a vertical
shape. To remove layers damaged by the dry etching process,
a small amount of wet chemical etching was carried out before
the regrowth. After removing the SiO2 mask using BHF, the re-
growth was carried out by the OMVPE technique [see Fig. 7(e)].
First, i-InP was grown into the groove regions at 600 ◦C at a slow
growth speed (250 nm/h) [69]. Then, an n-GaInAsP OCL layer,
an n-InP cladding layer, and an n+-GaInAs contact layer were
grown at 650 ◦C at a growth speed of 1.2 µm/h. Fig. 8 shows a
cross-sectional SEM view around the Q-wire active region and
its schematic diagram. The typical wire width was measured to
be 23 nm, which corresponds to ρ = W/Λ = 0.29.

B. Size Distributions and Interface Quality of Q-Wires

The size distributions of the Q-wire structures were measured
by SEM views, and the standard deviation was estimated to
be less than ±2 nm. From the Q-film EL spectra at 103 K,
the full-width at half-maximum of these Q-wire structures was
comparable to that of the Q-film structure fabricated from the
same initial QW [91].

The product of the surface recombination velocity at the
etched/regrown interfaces and the carrier lifetime was estimated
from the relative spontaneous emission efficiency of the Q-wire
structure ηspon,Wire normalized by that of the initial Q-film
structure ηspon,Film , as expressed in (3). As a consequence, the
product S · τs was less than 3 nm [92], which corresponds to
S = 100 cm/s for τs = 3 ns. These results indicate the low dam-
age to the etched/regrown interface of the GaInAsP/InP Q-wire
structure fabricated by dry etching and regrowth with the SC-
QW structure as the initial wafer.

C. Arbitrary-Shaped Low-Dimensional Quantum Structure

Arbitrary-shaped quantum structures such as Q-wires with
width of 6–39 nm [93], Q-wires with lengths of 60–1000 nm
[94], and Q-dot and L-shaped quantum structures [95] can be
realized with better dimensional and positional controllability
using the improved process.

The polarization anisotropy of these quantum structures was
also observed through the lateral quantum confinement effect
[96].
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Fig. 9. L–I characteristics of Q-wire23, wire43, wire70, and Q-film lasers
under RT-CW conditions.

V. LONG-WAVELENGTH Q-WIRE LASERS

The GaInAsP/InP Q-wire lasers fabricated by dry etching and
regrowth were operated at RT under pulse [95], [97] and CW
operations [98]. Fig. 9 shows the light output characteristics
under RT-CW conditions for Q-wire23 (wire width of 23 nm),
wire43 (wire width of 43 nm), a wire-like laser (wire width of
70 nm in a period of 120 nm, wire70, for short), and a Q-film
laser fabricated from the same initial QW structure.

Operation at a low-threshold current density due to the volume
effect of the active region was observed in wire43 and wire70,
but the threshold current density of Q-wire23 was higher than
that of the Q-film laser and its differential quantum efficiency
was slightly lower than that of the others, probably due to the
oscillation from the first excited levels with a too small volume
of the active region for the given cavity design.

The reliable RT-CW operation of Q-wire lasers was ob-
tained without any serious performance degradation even af-
ter 40 000 h [Reliable operation over 7000 h was reported in
ref. [102]; the same device is still operating].

A. Polarization Anisotropy of Optical Gain

To observe the polarization anisotropy of optical gain against
the wire direction, two types of Q-wire lasers were fabricated
simultaneously by the aforementioned method where the Q-wire
structures were arranged parallel (Q-wire//) and perpendicular
(Q-wire⊥) to the cavity direction. Fig. 10 shows a schematic
diagram of both Q-wire lasers. Both Q-wire lasers had a uniform
wire width of 35 nm.

Fig. 11 shows the light output characteristics of Q-wire// and
Q-wire⊥ lasers under a pulsed condition (1 µs width, 1 kHz repe-
tition) at RT. The cavity length (L) and stripe width (Ws) of these
lasers were 1120 and 16 µm, respectively. As shown in Fig. 11,
the threshold current density of the Q-wire// (1.8 kA/cm2) laser
was approximately 2.1 times higher than that of the Q-wire⊥
laser (855 A/cm2). Such a difference should originate from
either a different function of Q-wire structures or different cav-
ity characteristics, as explained next.

The origins of this anomalous threshold current may be due
to three important parameters in the lasing conditions: 1) the

Fig. 10. Schematic diagram and cross-sectional SEM view. (a) Q-wire// laser.
(b) Q-wire⊥ laser.

Fig. 11. L–I characteristics of Q-wire// and Q-wire⊥ lasers under RT-pulsed
condition.

difference in total optical loss in the devices; 2) the difference
in active volume; and 3) the differences in differential gain and
transparency carrier density.

The total optical loss in the laser cavity can be simply ex-
pressed as the sum of waveguide loss and mirror loss. However,
the waveguide loss and mirror loss are considered as constant
parameters became the laser cavity length and cleavage mir-
ror facets were used in the measurements. The quality of the
Q-wire structure interfaces and waveguide loss should not have
a significant effect for such different threshold conditions.

The similar wire widths of Q-wire// and Q-wire⊥ were con-
firmed by SEM images, as shown in Fig. 10. The size distribu-
tion in both Q-wire lasers was almost the same according to the
spontaneous emission spectra at 2% of the threshold current,
and should not affect the lasing conditions. As a result, the dif-
ference in active volume is not the reason for these anomalous
threshold currents.

According to the aforementioned experimental results, the to-
tal optical loss and active volume cannot be significant reasons
for the large difference in threshold current of the Q-wire// and
Q-wire⊥ lasers. The relationship between the differential gain
and the transparent carrier density is thus the most probable
cause of this phenomenon. The differential gain can be obtained
from the plot of the peak material gain of the Q-wire structures.



ARAI AND MARUYAMA: GaInAsP/InP QUANTUM WIRE LASERS 7

Fig. 12. Material gain spectra of Q-wire// and Q-wire lasers under CW
condition below threshold (I = 0.95Ith) at 103 K.

In this experiment, Hakki–Paoli’s method was utilized to deter-
mine the material gain spectra [99].

The optical gain spectra were measured at 103 K because
it was necessary to measure the material gain under the CW
condition. Fig. 12 shows the material gain spectra of both Q-wire
lasers. The spectral width at 100 cm−1 below the peak for the
Q-wire⊥ laser (6.2 meV) was narrower than that for the Q-wire//

laser (9.3 meV). The broadening of the material gain spectral
width of the Q-wire// laser has not been experimentally reported
elsewhere. It may be caused by not only the higher injection
carrier density, but also the anisotropic property of the transition
matrix element due to the lateral quantum confinement effect in
the Q-wire structure that was observed in the calculated result
for Q-wire structure grown on V-grooved substrate [100]. The
anisotropic differential gain in Q-wire// and Q-wire⊥ lasers is
an important parameter for evaluating the anisotropy of their
threshold currents. The material gain spectra of both Q-wire//

and Q-wire⊥ lasers were measured at various injection current
densities varying from 75% to 95% of the threshold level for
each Q-wire laser.

Fig. 13 shows the measured peak material gain as a function
of the injection carrier density. The same threshold gain can be
observed in both Q-wire lasers. From the least-squares fitting
method, the differential gain was obtained to be 1.3 × 10−15 and
2.8 × 10−15 cm2 for the Q-wire// and Q-wire⊥ lasers, respec-
tively. The Q-wire⊥ laser has a differential gain approximately
2.2 times higher than that of the Q-wire// laser. A slight differ-
ence in the transparent carrier density of these Q-wire lasers was
also observed. This might be caused by inaccurate linear curve
fitting near the transparent carrier density level. Nevertheless,
its magnitude should not have much effect on such anisotropic
lasing characteristics. Conversely, the estimated threshold cur-
rent density of the Q-wire// laser is estimated to be 1.7 times
higher than that of the Q-wire⊥ laser by using the estimated
value of differential optical gain that is in agreement with the ex-
perimental result (Jth : Q-wire// = 1.8 × Jth : Q-wire⊥). These
results clearly show that the anomalous lasing characteristics
of Q-wire// and Q-wire⊥ lasers are caused by the anisotropic
differential gain in Q-wire structures that contributes to their

Fig. 13. Material gain spectra of Q-wire// and Q-wire⊥ lasers under CW
condition below threshold (I = 0.95Ith ) at 103 K.

polarization dependence of the dipole moment. However, this
anisotropy was stronger than that theoretically predicted [100].
It is considered that the 2-D elastic strain relaxation effect in the
strained Q-wire might have enhanced the quantum confinement
effect similar to the enhancement of energy blue shift in the
strained Q-wire [84], [101].

B. Q-Wire DBR Lasers

GaInAsP/InP multiple-layered Q-wire lasers with an
SiO2 /semiconductor DBR were realized for low-threshold las-
ing [102]. Oscillations due to the transition between the ground
levels were obtained at RT. In addition, the threshold current
densities of these Q-wire lasers were lower than that of Q-film
lasers. The differential quantum efficiency of these Q-wire lasers
was also comparable to that of Q-film lasers.

C. Q-Wire DFB Lasers

Q-wire DFB lasers with a low-threshold current and high
differential quantum efficiency were successfully realized under
RT-CW condition [103], [104]. Fig. 14 shows a cross-sectional
SEM view of the Q-wire DFB active region. The spontaneous
emission efficiency of this Q-wire DFB laser was comparable to
that of a Q-film laser fabricated by one-step growth. A single-
mode operation with an SMSR of 50 dB at a bias current of
twice the threshold current was also achieved.

A single-mode operation with high characteristic temperature
was achieved for 1590 nm GaInAsP/InP Q-wire DFB lasers
by adopting Bragg wavelength detuning from the gain peak
wavelength [105]. Single-mode operation and a characteristic
temperature of 95 K were obtained over a temperature range of
20 ◦C to 80 ◦C, as shown in Fig. 15. These results indicate that
Bragg wavelength detuning with a Q-wire DFB laser is very
attractive for temperature-insensitive and low-threshold-current
operation [106].

D. High-Performance Lasers Using Q-Wire Passive Section

We proposed a new integration method utilizing the energy
blue shift observed in Q-wire lasers. This energy blue shift

maruyama
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Fig. 14. Cross-sectional SEM view of the Q-wire DFB laser.

Fig. 15. Temperature dependence of L–I characteristics of Q-wire DFB
lasers.

can be applied for the integration of various types of photonic
devices. A blue shift of over 30 meV was obtained for the wire
widths of less than 30 nm [84].

The emission wavelength can be controlled by adjusting the
wire width. An emission wavelength of 1.55 µm can be used
for the gain regions, such as lasers and amplifiers. Using shorter
wavelengths, namely, in the case of narrower wires, modula-
tors and switches can be realized. Longer wavelengths can be
applied to detectors. Therefore, the integration of various types
of photonic devices is expected by modulating wire widths in
the same wafer [107]. This integration technique utilizing the
energy blue shift is advantageous for realizing the high-density
integration of various elements with the same crystal quality in
the active and passive sections.

A distributed reflector (DR) laser, which consists of ac-
tive DFB and passive DBR sections, was proposed, and low-
threshold and high-efficiency operations were realized [108]. A
novel DR laser, which is one of the applications of the integration
method utilizing the lateral quantum confinement effect, was

Fig. 16. Schematic structure of DR laser.

proposed [109], and a low-threshold-current, high-efficiency,
stable single-mode operation was realized [110], [111].

Fig. 16 shows the schematic structure of the new type of DR
laser, which consists of an active DFB section with periodically
etched wire-like active regions and a passive DBR section with a
narrow Q-wire structure. To realize high reflectivity, a low-loss
waveguide is necessary. Thus, the transition energy in the DBR
section was enhanced by utilizing the energy blue shift due to
the lateral quantum confinement effect by using narrower wires.
Recently, the threshold current of as low as 0.8 mA was obtained
by utilizing a deep DFB grating region in the active section for
higher index coupling coefficient [112].

The monolithic integration of a DR laser with a front power
monitor utilizing a narrow Q-wire structure has been real-
ized [113]. The front power monitor is a new concept; a low-
absorption waveguide section is placed in front of an active or
another passive device to monitor the modulated signal power.
It can be used at any position in photonic ICs with minimum
interference from the signal.

VI. CONCLUSION

Recent progress in the research on long-wavelength
GaInAsP/InP Q-wire lasers is reviewed. Although there still
remain problems to be solved for a realization of high-
performance lasers required for the fabrication of low-
dimensional structures, we can demonstrate moderately good
size uniformity and low damage to the etched/regrown in-
terface of GaInAsP/InP strain-compensated multiple-layered
Q-wire structures fabricated by EB lithography, CH4/H2-RIE,
and two-step OMVPE growth. Arbitrary-shaped quantum struc-
tures were also realized by this method. It was found that the
anisotropic optical gain in the Q-wire structure is the reason
for the anomalous characteristics in Q-wire lasers. As an ap-
proach to reducing the threshold current density, we introduced
DBR and DFB structures in the cavity and realized the low-
threshold-current RT-CW operation of Q-wire lasers. In the
present stage, the threshold current of Q-wire lasers is worse
than that of Q-film lasers. The reason is that the narrow gain
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spectrum caused by the quantum confinement effect cannot be
obtained by size fluctuation in Q-wire structure fabricated by
our method. To reduce the size fluctuation, low-temperature
development [114], nanoimprinting lithography [115], block
copolymer lithography [116], [117], etc., are proposed.

In addition, low-threshold current and high differential quan-
tum efficiency with stable single-mode operations were achieved
for DR lasers that are composed of wire-like active regions with
a DFB cavity and a passive DBR region with Q-wire structures.

Therefore, these results indicate that this fabrication method is
very promising for the realization of not only high-performance
lasers but also various photonic devices consisting of arbitrary-
shaped low-dimensional structures with high position control-
lability.
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