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Abstract. We investigated the assignments and characteristics of the X-ray-induced 
colour centres in a silver-activated radiophotoluminescent glass. The induced-
absorption spectrum was decomposed into six Gaussian bands, which were, in turn, 
attributed to the Ag+, Ag3

+ or Ag3
2+, Ag2

+, Ag2+, Ag0 and hole-trap centres, respectively, 
by means of optical and thermal measurements. All components of the blue and 
orange radiophotoluminescence (RPL) in a silver-activated phosphate glass were 
confirmed to be X-ray-induced colour centres. We also proposed and constructed a 
new readout system for the measurement of the RPL of the glass dosimeter that 
considers the characteristics of the radiation-induced bands. 

1.  Introduction 
The silver-activated phosphate glass (designated PG:Ag) after the exposure to ionizing radiation emits 
an intense radiation-induced orange luminescence by the excitation with a pulsed ultraviolet (UV) 
laser, which is called radiophotoluminescence (RPL). Such a dose-dependent RPL in PG:Ag has long 
been examined [1-3] for large-scale use in personal and environmental monitoring of the dose. In 
particular, radiation-induced colour centres in PG:Ag have been extensively studied by means of 
optical spectroscopy [1, 3] and the electron spin resonance (ESR) method [2]. When PG:Ag is exposed 
to ionising radiation, various colour centres such as Ag0, Ag2

+, Ag2+, Ag3
+ and other silver ion species 

are produced and the existence of each these species has been confirmed by ESR studies [2]. However, 
the spectral contribution of these small clusters to the overall spectrum remains unknown.  

As the basic characteristics of these Agm
X+ centres have been studied, a readout system has been 

developed for the measurement of the RPL of the glass dosimeter [4-6] based on a time-resolved 
technique using a pulsed UV nitrogen laser excitation. The basic principle of the conventional reader 
is as follows [4]: the radiation-induced component (normally, the orange RPL with lifetime values of 2 
μs < t ≤ 20 μs) is only integrated by subtracting the radiation independent short-term (t ≤ 2 μs) and 
long-term (t > 20 μs) components of the pre-dose fluorescence from the total RPL values. If these 
latter terms do not result from parasitic luminescence, then the time-resolved technique will not be 
necessary to discriminate the orange RPL from short- and long-term components. This will eliminate 
the instabilities of the pulsed laser power, the degradation of the induced colour centres and the 
complicated processing that is required due to the use of a pulsed UV N2 laser excitation. 

The purpose of this study is to further study the characteristics of the induced colour centres in 
PG:Ag after exposure to X-rays. In addition, a new reader for the measurement of the RPL of the glass 



 
 
 
 
 
 

dosimeter using a modulated continuous-wave (cw) UV laser diode and phase-sensitive method is 
proposed and constructed. Preliminary results using a home-made reader are also presented. 

2.  Experimental Details  
A commercially available GD-450 dosimeter (AGC Techno Glass) was used as the 
radiophotoluminescent PG:Ag. Samples were cut from the original glass dosimeter plate to a size of 
approximately 10 mm × 7 mm × 1 mm. The weight composition of the GD-450 dosimeter was 31.55% 
P, 51.16% O, 6.12% Al, 11.00% Na and 0.17% Ag.  
    All samples were coloured by irradiation from an X-ray unit (energy: 8 keV) with a copper target 
operated at 30 kV and 20 mA. In this work, the samples were irradiated such that the absorbed doses 
ranged from 30 mGy to 24.5 Gy. Absorption, excitation and emission measurements were performed 
at room temperature using a Hitachi U-2010 UV-VIS and an F-2500 fluorescence spectrophotometer. 
Radiative lifetime measurements were performed using a time-resolved spectrofluorometer (Horiba, 
NAES-1100) with a resolution limit of sub-ns, which was operated based on the time-correlated multi-
photon counting technique [7].  

For the direct photo-induced reduction from Ag+ ions to Ag0 centres in PG:Ag, this work used a 
regeneratively amplified 800-nm Ti:sapphire laser (Coherent, Mira and RegA) that emitted 80-fs, 250-
kHz mode-locked pulses. The femtosecond (fs) laser pulses were focused using a 20× objective lens 
(NA=0.40) to a depth of 250 μm beneath the sample surface with the help of a computer-controlled 3D 
X-Y-Z stage at a speed of 1000 and 50 μm/s. The pulse energy ranged from 2.0 to 3.0 μJ/pulse and the 
spot diameter was approximately 2 μm.  

3. Results and Discussion 
 
3.1 Optical characteristics and peak fitting analysis 
Figure 1(a) shows the absorption spectrum (solid line) of the X-ray-irradiated PG:Ag under an 
absorbed dose of 24.5 Gy, and its spectrum was decomposed into the sum of separate Gaussian bands 
(indicated by a dotted line). The peak fitting analysis was carried out on the basis of the strong analogy 
with X-ray-irradiated silver-activated sodium chloride (NaC:Ag) [8]. In the case of NaCl:Ag, the 
appropriate absorption band could be decomposed into six bands (not shown here) with peaks at 224, 
276, 308, 335, 382 and 443 nm, which are called the “A”, “B”, “C”, “D”, “E” and “F” bands, 
respectively. The peak positions of each band are in good agreement with those of the observed 
radiation-induced bands in NaCl:Ag [9,10]. The absorption peaks of the RPL in NaCl:Ag are mainly 
attributed to bands “B”, “C” and “D”. The origin of these bands in NaCl:Ag has already been clarified 
as follows: bands “B” and “D” are related to F (i.e., a single electron trapped at an anion vacancy) and 
F2 (i.e., a pair of nearest-neighbour F centres along a <110> axis) centres with neighbouring Ag+, 
respectively, and the narrow “C” band is strongly related to the Ag0 centres located at large lattice 
defects. In the case of PG:Ag, the absorption bands could also be decomposed into six absorption 
bands from “A” to “F”, with peaks at 225, 252, 270, 307, 354 and 424 nm, respectively.   

Figure 1 (b) shows the excitation spectra (Curves 1 and 2) and the corresponding emission spectra 
(Curves 3-5) after X-ray irradiation for PG:Ag. An absorption spectrum is also shown for comparison. 
The excitation spectra consist of two different spectra. One spectrum peaks at 308 nm (Curve 1) for 
emission at 560 nm, and the other peaks at 270 and 345 nm (Curve 2) for emission at 450 and 560 nm. 
The former corresponds to the decomposed 307-nm (corresponding to “D”) Gaussian band, while the 
latter mainly corresponds to the decomposed 270- (“C”) and 354-nm (“E”) bands, respectively. The 
blue emission and some portion of the orange emission are strongly related to the 270- and 345-nm 
excitation bands.  
 
3.2  Femtosecond laser exposure 
Recently, intense fs laser pulses with high-peak power densities (>100 TW/cm2) and high repetition 
rates (>200 kHz) have enabled the direct precipitation of silver nanoparticles in silver-activated 



 
 
 
 
 
 

glasses without heat treatment [11]. In the case of silver-activated glasses, it is well known that 
irradiation with fs laser pulses as well as X-rays and subsequent annealing at high temperature (~770 
K) for 30 min bring about the reduction of Ag+ ions to Ag0 atoms and result in the formation of 
plasmonic nanoparticles, as observed using luminescence and ESR spectroscopy and transmission 
electron microscopy (TEM) [12]. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1. (a) Absorption and (b) excitation 
and RPL spectra of PG:Ag after X-ray 
irradiation with a dose of 24.5 Gy. The 
absorption spectrum was decomposed into the 
sum of separate Gaussian bands (dashed lines). 
Excitation was detected at 560 nm (Curve 1) 
and 450 nm (Curve 2) and RPL was excited at 
308 nm (Curve 3), 270 nm (Curve 4) and 345 
nm (Curve 5). 

 
 
 

Figure 2 shows the absorption spectrum before (Curve 1) and after (Curves 2 and 3) irradiating fs 
laser pulses in multi-shot mode (1.0×105 shots in 1 s) on the non-X-ray-irradiated PG:Ag. Note that 
Curves 2 and 3 show the difference in absorbance between the 800-nm fs laser-irradiated and non-
irradiated regions. The inset shows the excitation and emission spectra corresponding to the absorption 
spectrum for Curve 2. In the inset an excitation spectrum (solid line) for an emission at 560 nm 
(orange RPL) and emission spectra for excitations at 308 nm (dashed line) and at 345 nm (dashed-
dotted-line) are shown. These spectra of fs irradiation were in good agreement with those of the X-ray 
irradiation, as shown in Figure 1(b). For Curves 2 and 3, the pulse energy was 2.0 μJ/pulse and 3.0 
μJ/pulse at scanning rates of 1000 μm/s and 50 μm/s, respectively. The spot diameter was 
approximately 2 μm. The light intensity of the laser beam irradiated on the sample was estimated to be 
8.0×1014 W/cm2 for Curve 2 and 1.2×1015 W/cm2 for Curve 3. For Curve 2, a peak position at 315 nm 
of the absorption band was in good agreement with that of the X-ray irradiated absorption band, as 
shown in Figure 1(a).  
     On the other hand, for Curve 3 the difference in the absorption spectrum was decomposed into a 
sum of separate Lorentzian bands. As a result, the spectrum was dominated by an absorption band at 
404 nm that could be ascribed to the surface plasmon resonance (SPR) of the formed silver 
nanoparticles [13].  Note that orange or blue emission for an excitation at 404 nm for Curve 3 could 
not be observed (not shown here). The other broad absorption band from 400 to 600 nm can be 
attributed to the hole-trap centres corresponding to the “F” band, as shown in Figure 1(a).  
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The average diameter d of the embedded silver nanoparticles corresponding to Curve 3 was 
calculated from the decomposed absorption band using the formula d = Vfλp

2 / (πcΔλ) [14], where Vf is 
the Fermi velocity of the electrons in bulk silver (~1.39×106 m/s), Δλ is the full-width at half 
maximum (FWHM) of the absorption band, and λp is the characteristic wavelength at which SPR 
occurs. The average size of the silver nanoparticles was calculated to be approximately 2.8 nm, which 
is in a good agreement with the observation by TEM [12]. 
 
 

 
 
 
 
 
 
Figure 2. Absorption spectrum before 
(Curve 1) and after (Curves 2 and 3) 
irradiating fs laser pulses on the non-X-ray-
irradiated PG:Ag. The excitation (solid line) 
and emission (dashed and dashed-dotted-
lines) spectra corresponding to the 
absorption spectrum for Curve 2  are shown 
in the inset. 
 

 
 

Note that irradiation with X-rays and fs laser pulses yields different absorption peak wavelengths 
of the Ag0 centres as described above: the former is 345 nm, and the latter is 404 nm. One of the 
reasons for this difference is that when fs laser pulses are focused inside the sample at a high repetition 
rate over 250 kHz, the temperature at the focal point increases to as high as several thousand K [15], a 
much higher temperature than that reached in normal heat treatment. As a result, highly successive fs 
laser pulses and a slow scanning rate caused cumulative heating around the focal point. Increasing the 
temperature greatly increased the average size of nanoparticles formed by fs laser irradiation, resulting 
in a red-shift of the peak wavelength. Moreover, Ma et al. [11] have reported that the light intensity on 
the order of 1015 W/cm2 was high enough to generate multi-photon ionisation in the glass matrix, and 
the heat accumulated by the 250-kHz fs laser resulted in the subsequent Ag nanoparticle growth 
process. 
 
3.3  Heat treatment 
Furthermore, to obtain additional evidence for the band assignments to Ag0, Ag2

+, Ag2+ and Ag3
+ 

centres, heat treatments were performed at temperatures from 295 (room temperature) to 523 K. 
Before measuring the absorption, excitation and emission spectra of the RPL at each temperature after 
exposure to X-rays, a 30-min pre-heat was performed at 343 K to suppress the ‘build-up’ kinetics (i.e., 
the RPL centre concentration increases as a function of time after irradiation). Finally, the samples 
were thermally annealed at 673 K for 30 min to eliminate stable colour centres before they were used 
again.  

Figure 3 shows absorption and excitation spectra at annealing temperatures of 295 and 523 K. The 
band peaking at 345 nm due to the Ag0 centres shifted from 345 nm (solid line) at 295 K to 330 nm 
(dashed-and-double-dotted line) at 523 K with increasing annealing temperature. A similar 
phenomenon also appeared in optical absorption spectra taken on the gamma-irradiated, silver-doped 
silicate glass, where the absorption peak is blue-shifted from 345 nm (the characteristic wavelength of 
Ag0 atoms) at room temperature to 310 nm at 633 K [16]. A blue shift from 270 to 260 nm was also 
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observed for the 270 nm band with increasing annealing temperatures, as shown in figure 3(a). The 
blue shift can be explained by the reaction of neutral silver with Ag+, i.e., Ag0 + Ag+ →Ag2

+, which 
therefore shifts the position of the Ag0 band. The Ag2

+ band with coupling to Ag0 atoms also blue-
shifts from the original position at room temperature. The complete set of results taken from 295 to 
523 K showed that the maximum intensity of the blue excitation bands peaking at 270 and 345 nm 
occurred at 343 K. These bands then decreased gradually in intensity with increasing temperature. 
Moreover, another larger band peaking at 244 nm (corresponding to “B”) appeared after annealing at 
523 K, which may be attributed to the formation of Ag3

+ (Ag0 + Ag2
+ →Ag3

+) or Ag3
2+ (Ag+ + Ag2

+ 
→Ag3

2+) from the diffusion and dimerisation of Ag2
+ ions. 

In contrast, the band peaking at 308 nm due to Ag2+ without coupling to Ag0 centres remained in 
essentially the same peak position as shown in Figure 3(b); the intensity of the excitation band at 308 
nm for the orange RPL at 560 nm increased monotonically with increasing temperature. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.  Excitation spectra of the 
irradiated PG:Ag at different annealing 
temperatures for detection at (a) 450 nm and 
(b) 560 nm. Excitation spectra after different 
annealing temperatures: Excitation detected 
at 295 K (solid line), 343 K (dashed line), 
423 K (dashed-and-dotted line) and 523 K 
(dashed-and-double-dotted line). 

 
 
 

 
3.4  RPL decay curve analysis 
Next, to investigate the change in the blue RPL over time by observing the 270- and 345-nm bands, 
the lifetime measurements were performed at room temperature. Table 1 summarises the results of the 
measured lifetimes at 450 nm for different doses, which were obtained by fitting the exponential 
components with the use of a least-squares iteration deconvolution method to the decay curves. The 
relative strength of the lifetimes are also given in parentheses in Table 1. The excitation wavelengths 
for the 270- and 345-nm bands were monochromatised using suitable interference filters. In the case of 
345-nm excitation, the lifetime values are almost independent of the absorbed doses ranging from 1.22 
to 24.5 Gy and are about 5.6 ns. In contrast, the lifetime values of 270-nm excitation are strongly 
dependent on the dose, particularly for doses less than 2.45 Gy, where the lifetime values drastically 
shorten to 2-3 ns. This result supports the other evidence on the different origin and structures of the 
270- and 345-nm bands. In the case of lower doses, photoluminescence (PL) at 302 nm excited by the 
Ag+ band becomes predominant, and thus a shoulder part of the PL completely overlaps a blue RPL at 
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4. Conclusion 
The data obtained in this study allow for the following conclusions: 
(1) An absorption band of X-ray irradiated PG:Ag could be decomposed into six Gaussian bands, 
marked as “A” to “F”, peaking at 225, 252, 270, 307, 354 and 424 nm for PG:Ag, respectively. 
(2) Through fs laser pulse exposure, heat treatment, and lifetime measurements, the “A” band at 225 
nm, the “B” band at 252 nm, the “C” band at 270 nm, the “D” band at 307 nm, the “E” band at 354 nm, 
and the “F” band at 424 nm were attributed to Ag+, Ag3

+ or Ag3
2+, Ag2

+, Ag2+, Ag0 and hole-trap 
centres, respectively. 
(3) In the absorbed-dose range of 1.22-24.5 Gy, no components of the blue and orange emissions 
could be attributed to dirt or any pre-dose. All components of the blue and orange emissions in PG:Ag 
were confirmed to be radiation-induced colour centres. In particular, the lifetime of the blue RPL 
excited at 345 nm remained constant for various doses, while that of the blue RPL excited at 270 nm 
centres were strongly dependent on the absorbed doses. 
(4) Preliminary experimental results were demonstrated using a home-made reader based on a 
modulated UV laser diode and a phase-sensitive technique that we proposed and constructed. 
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