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Abstract:  The crystal structures of 5-benzyl-2-thiohydantoin (5-BTH) and 1-acetyl-5-benzyl-2-thiohydantoin (1-Ac-

5-BTH) have been determined by X-ray diffraction.  In the 5-BTH crystals, the enantiomeric (R)- and (S)-5-BTH 

molecules are connected to form cyclic dimers via the hydrogen bonds of the thioamide and the amide moieties.  On 

the other hand, the intermolecular hydrogen bonds in 1-Ac-5-BTH crystals form an infinite chain.   These differences 
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in the hydrogen bond pattern are also discussed in the IR and Raman spectra.  The ab initio molecular orbital 

calculations (Gaussian 03) with 6-31G(d,p) basis set were carried out for 5-BTH and 1-Ac-5-BTH to get the preferred 

conformation. 
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INTRODUCTION 

Hydantoins (imidazolidine-2,4-diones), having a 5-membered ring containing a reactive cyclic urea core, form a wide 

range of biologically active compounds[1-4]. Their 2-thioxo analogs, 2-thiohydantoins (2-thioxo-imidazolizin-4-one) 

also display significant biological activities and are employed as established drugs, fungicides or herbicides [5,6] .  Both 

compounds are considered as useful intermediates in peptide synthesis and structure determination of polypeptides [7].  

Since their biological activities and physicochemical properties are closely related to the electronic structure, 

conformation and intermolecular interactions, experimental data pertaining to these features are therefore very 

important.  Furthermore, the 2-thiohydantoin furnishes an interesting feature in structural chemistry.  This compound 

carries a thioamide and an amide group in a molecule, which provide equal numbers of proton donor (D) and acceptor 

(A) in a D-A-D-A sequence.  Because of this unique structural feature, 2-thiohydantoins are expected to form intricate 
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hydrogen bonding networks in crystals.  However, there have been few reports on molecular and crystal structures of 

2-thiohydantoins compared to hydantoins [8]. 

In this work, we have studied the crystal structures and conformations of 5-benzyl-2-thiohydantoin (5-BTH) 

and 1-acetyl-5-benzyl-2-thiohydantoin (1-Ac-5-BTH).  The D-A-D-A hydrogen bonding motif of 5-BTH is modified 

by acetylation of the NH group in 1-Ac-5-BTH. Differences in IR and Raman spectra between the two compounds 

were interpreted in terms of changes in the molecular structure and the hydrogen bonding.  The theoretical molecular 

conformations were obtained by ab initio MO calculation and compared to the experimental data.   

 

EXPERIMENTAL 

 Materials     

5-BTH was prepared from L-phenylalanine via acid hydrolysis of 1-Ac-5-BTH by the thiocyanate method[9].  5-BTH 

and 1-Ac-BTH were obtained as racemic crystals due to racemization of an reaction intermediate[10].    L-
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phenylalanine and ammonium thiocyanate were purchased from Tokyo Kasei Co.  Other chemicals were commercial 

products and used without further purification.  L-phenylalanine (5.03 g, 30.0 mmol) was allowed to react with a 

mixture of ammonium thiocyanate (2.7 g, 35.4 mmol), acetic anhydride (30 ml, 317 mmol) and acetic acid (3.9 ml) at 

100 ºC for 1 h according to the reported procedure[9].  A white precipitate of 1-Ac-5-BTH was formed by adding 100 

ml of distillated water and subsequent cooling of the solution in a refrigerator and recrystallized from methanol.  The 

1-Ac-5-BTH obtained was dissolved in 12 M hydrochloric acid and heated at 60 ºC for 1 h to yield 5-BTH.  The 

crude product was washed with cold water several times and purified by repeated crystallization from methanol.  The 

purities of these compounds were checked by the elemental analyses and 1H NMR spectra.  1-Ac-5-BTH: Yield 83%; 

m.p. 178-180 ºC; Found: C, 58.32; H, 4.82; N, 13.59%. Calcd for C12H12N2O2S: C, 58.23; H, 4.89; N, 13.59 %. 1H

NMR(270 MHz, DMSO-d

 

: C, 

6): δ 2.69 (s, 3H, -CH3), 3.12 (dd, 1H, J = 13.5 Hz, 2.7 Hz, -CH2-), 3.38 (dd, 1H, J = 13.5 

Hz, 2.7 Hz, -CH2-), 4.98 (dd, 1H, J = 13.5 Hz, 2.7 Hz, -CH-), 6.96-6.99 (m, 2H, -Ph), 7.23-7.31 (m, 3H, -Ph), 12.41 (s, 

1H, -NH-).  5-BTH: Yield: 43 %; m.p. 171-174 ºC;  Found: C, 57.83; H, 4.87; N, 11.12 %.  Calcd for C10H10N2OS
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58.05; H, 4.87; N, 11.28 %. 1H NMR(270 MHz, DMSO-d6): δ 2.98 (d, 2H, J = 5.4 Hz, -CH2-), 4.56 (t, 1H, J = 5.4 Hz, 

-CH-), 7.15-7.31 (m, 5H, -Ph), 10.06 (s, 1H, -C(=S)-NH-), 11.43 (s, 1H, -C(=O)-NH-).  The N-deuterated 5-BTH and 

1-Ac-5-BTH (5-BTH-Nd2 and 1-Ac-5-BTH-Nd2) were obtained by exchange reaction with methanol-Od1 (Merck, 

99% atom D). 

Spectral Measurements   

The IR spectra were recorded on a Perkin Elmer 1650 FT-IR spectrometer as KBr disks, and Nujol and 

hexachlorobutadiene mulls by averaging 64 scans with a resolution of 4 cm-1.  The FT-Raman spectra were obtained on 

a Perkin-Elmer 2000R spectrometer as powder sealed in a capillary tube.  The 1064 nm line of an Elforlight Model 

L04-2000S Nd:YAG laser was used as the exciting source with an output power of about 200 mW at the sample 

position.  All spectra were accumulated for 60 scans with a resolution of 4 cm-1. 

 

 X-ray Crystal Structure Analysis   
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Single crystals of 5-BTH and 1-Ac-5-BTH suitable for X-ray diffraction analysis were grown by slow evaporation 

from chloroform and hexane/ethanol solutions, respectively, at room temperature. X-ray diffraction data were obtained 

on a Rigaku/MSC Mercury CCD diffractometer with a graphite-monochromated Mo Kα radiation (λ= 0.7107 Å). The 

crystal sample was cooled under a cold nitrogen stream at –150 ±1 °C during X-ray exposure to enhance data quality. 

The data were corrected for both Lorentz and polarization effects.  Table 1 summarizes the crystal data and 

experimental conditions for the crystal structure determination. 

The 5-BTH and 1-Ac-5-BTH structures were solved by direct methods using SIR92[11] and SIR88[12], 

respectively.  Crystal structure analysis was performed by using the teXsan crystallographic software package[13]. The 

non-hydrogen atoms were refined anisotropically.  All the H-atom positions were found from a difference Fourier map 

and refined isotropically.  OPTEP diagrams were created using the program ORTEP-3[14]. 

 

 Quantum Mechanical Calculation 
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Semiempirical and ab initio MO calculations were carried out using the CAChe MOPAC[15] and the Gaussian 03 set 

programs[16], respectively.  The starting structures of 5-BTH and 1-Ac-5-BTH were taken from the crystal structure 

coordinates obtained in this work.  The low-energy conformers were searched for the rotation about the C-benzyl bond 

using the MOPAC AM1 Hamiltonian.  In all cases, the PRICISE option was used to provide higher accuracy within 

this calculation.  The low energy conformers were extracted from the MOPAC AM1 calculations and their molecular 

structures were further optimized by the ab initio calculation at the HF level using 6-31G(d,p) basis set. 

RESULTS AND DISCUSSION 

Crystal Structures of 5-BTH and 1-Ac-5-BTH     

The final positional and thermal parameters of 5-BTH and 1-Ac-5-BTH for non-H atoms are presented in Table 2.  

Table 3 summarizes the selected structure parameters and the hydrogen bonding geometries.  As given in Table 1, 5-

BTH and 1-Ac-5-BTH were crystallized in the monoclinic forms with eight and four molecules, respectively, in a unit 

cell.  The thiohydantoin unit is nearly planar in both molecules, with maximum deviations from planarity of 0.036 and 
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0.052 Å, respectively, for  5-BTH and 1-Ac5-BTH.  As shown in Fig. 1(a), the benzyl moiety of 5-BTH takes the 

extended conformation with respect to the thiohydantoin ring [C2-C3-C4-C5 -179.8(1) °; N2-C3-C4-C5 66.1(2) °].  

The thiohydantoin ring geometries of 5-BTH are comparable to those reported for 2-thiohydantoin and 5,5-diphenyl-2-

thiohydantoin[17-19].  Thus, the C2-O1 and C2-N1 [1.214(2) and 1.374(2) Å] bond distances are in the range observed 

for the normal cis-amide moiety.  The C1-S1 bond distance [1.666 (2) Å] is intermediate between those of a C-S bond 

(1.82 Å) and a C=S bond(1.56 Å), and the C1-N2 distance [1.334(2)Å] is between those of a C-N bond (1.47 Å) and a 

C=N bond (1.27 Å)[20].  

In contrast to the 5-BTH case, a folded conformation with the aromatic ring over the thiohydantoin ring was 

found for 1-Ac-5-BTH as shown in Fig. 1(b) [C2-C3-C4-C5 52.2(2) °; N2-C3-C4-C5 -60.7(2) °].  Overall molecular 

geometries of 1-Ac-5-BTH are similar to those in 1-acetyl-2-thiohydantoin[21].  The acetyl group on the N2 atom is 

rotated 11.78(6) ° out of plane from the least square plane of the thiohydantoin ring, and the C11-O2 bond is oriented 

trans to the N2-C1 bond.  The bond angle C1-N2-C11 [130.3(1) °] is wider than the C3-N2-C11 [117.7(1) °], resulting 
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from the repulsion between the S1 atom and the methyl group.  The C1-S1[1.645(1) Å] and C1-N2[1.380(2) Å] bond 

distances of 1-Ac-5-BTH are significantly shorter and longer, respectively, than those of 5-BTH [1.666 (2) and 

1.334(2) Å].  Differences in the C1-S1 and C1-N2 bond lengths between 5-BTH and 1-Ac-5-BTH can be rationalized 

by differences in the resonance structure, as shown in Fig. 2.  In the structure of 5-BTH, the zwitterionic canonical 

forms, Ib and Ic, contribute together with the neutral canonical form Ia to the resonance structure.  As a result, the C1-

S1 and C1-N2 bonds have single and double bond characters, respectively.  On the other hand, in the case of 1-Ac-5-

BTH the canonical structures, IIb and IIc, contribute to the resonance structure.     

The intermolecular hydrogen bonds which link the molecules are indicated in the molecular packing shown in 

Figs. 3 and 4.  In 5-BTH crystals, the amide and thioamide groups of one molecule form centrosymmetric cyclic 

dimers with the amide and thioamide groups, respectively, of the adjacent molecules through the intermolecular N-

H···O and N-H···S hydrogen bonds [N2···S1(x-1/2, y+1/2, z), 3.375(2) Å, N2-H2····S1(x-1/2, y+1/2, z),  178(2) ° , 

N1···O1(x, y-1, z), 2.831(2)Å , N1-H1···O1(x, y-1, z), 165(2) °].   The hydrogen bondings form an infinite sheet.  On 
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the other hand, in 1-Ac-5-BTH crystals, the amide N-H of one molecule is hydrogen-bonded to the amide C=O group 

of another molecule to form an infinite hydrogen bonding chain [N1···O1(-x, y+1/2, -z+1/2), 2.804(2) Å, N1-H1···O1(-

x, y+1/2, -z+1/2), 179(2) °].  The S1 atom does not participate in the hydrogen bond system. 

 

 IR and Raman Spectra of 5-BTH and 1-Ac-5-BTH and their N-Deuterated Analogs 

There are some studies on the IR specta of 2-thiohydantoin derivatives, but no reports have been published on the 

Raman spectra.  Elmore discussed the nature of the thioureide bands[22], and Poupaert and Bouche studied an IR 

spectroscopic characterization of these compounds[23].  Lebedev et al. reported vibrational analyses of 2-thiohydantoin 

and its 1-acetyl derivative[24]. 

Figures 5 and 6 show the IR and Raman spectra of 5-BTH  and 1-Ac-5-BTH. The differences in intermolecular 

hydrogen bondings between 5-BTH and 1-Ac-5-BTH crystals are reflected in their IR and Raman spectra.  The typical 

group frequencies are summarized in Table 4.  In the Raman spectrum of 5-BTH, νC=O band is observed at 1724cm-1, 
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a lower frequency by 16 cm-1 than the corresponding IR band.  This frequency difference between the IR and Raman 

bands is explained in terms of the in-phase and out-of-phase C=O stretchings of the centrosymmetric hydrogen 

bonding cyclic dimer.  Other many IR bands of 5-BTH also have frequencies different from those of the Raman bands, 

whereas in the 1-Ac-5-BTH spectra the frequency differences are small. 

In the IR spectrum of 5-BTH, the C=O band is hardly influenced by N-deuteration, but in the Raman spectrum 

a shift of 18 cm-1 to a lower frequency is observed. This shift suggests a possibility that a vibrational coupling with the 

NH bending within the constituent molecules occurs through the strong hydrogen-bond dimer in the Ag or Bg  crystal 

modes.  5-BTH crystals belong to a space group C2h
6 (C2/c); the Ag and Bg  crystal modes are Raman-active and the Au 

and Bu crystal modes are IR-active.  For 1-Ac-5-BTH, the ring νC=O is observed as a doublet (1756 and 1730 cm-1) in 

the Raman spectrum.  This splitting is probably caused by the crystal field; since a space group is C2h
5 (P21/c), the two 

crystal modes (Ag and Bg) appear in the Raman spectrum.  Although no clear splitting is observed in this region of the 

IR spectrum, a weak shoulder band occurs at 1735 cm-1 a lower frequency side of the very strong 1748 cm-1 band, 
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suggesting the presence of this splitting.  In fact, a splitting clearly appears at 1747 and 1720 cm-1 in the IR spectrum of 

1-Ac-5-BTH-Nd1, corresponding to the Au and Bu crystal modes.  A lower component of the doublet is shifted by 

about 15cm-1 in the both spectra on N-deuteration.  This behavior could be attributed to a difference in coupling 

between the crystal modes.       

The νC=O of the acetyl group of 1-Ac-5-BTH is ascribed to the 1705 cm-1 band in the IR spectrum 

and to the 1704 cm-1 band in the Raman spectrum.  Although the bond length of the acetyl C=O is slightly 

shorter than that of the ring C=O (Table 3), this assignment is reasonable, since this band is not shifted at all 

by N-deuteration.  Contrarily, for 1-acetyl-2-thiohydantoin Lebedev et al. assigned the bands at 1788 cm-1 

and 1714 cm-1 to the acetyl C=O and the ring C=O band, respectively, stating that the presence of the acetyl 

group leads to a decrease in the ringνC=O (from 1738 cm-1 in thiohydantoin to 1714 cm-1 in the acetyl 

derivative) [24b].  However, their assignment should be revised, because the following effects are expected; in 

such five-membered ring carbonyl compounds C=O stretching frequencies increase owing to ring strain, and 
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furthermore in 1-acetyl-2-thiohydantoin the acetyl group attracts electrons from the ring, so that the ring C=O 

frequency is higher than that of the acetyl C=O.      

Quantum Mechanical Calculation 

The molecular conformations of 5-BTH and 1-Ac-5-BTH were searched for the rotation about the C3-C4 bond using 

the MOPAC AM1 method.  The torsion angle (C2-C3-C4-C5) was varied between -180° and 180°.  As a result, three 

local minima were found for 5-BTH and 1-Ac-5-BTH which correspond to the I-A, I-B and I-C conformers for 5-BTH 

and the II-A, II-B and II-C for 1-Ac-5-BTH.  The molecular structures of these low energy conformers were further 

optimized by the ab initio calculation at the HF level using 6-31G(d,p) basis set.  Table 5 gives selected structural 

geometries and total energies of these conformers calculated by the ab initio MO, together with the X-ray data.  The I-

B and II-A forms were obtained as the lowest energy conformers for 5-BTH and 1-Ac-5-BTH, respectively, although 

the energy difference is very small (1.33-2.90 kcal/mol for 5-BTH and 1.86-4.33 kcal/mol for 1-Ac-5-BTH).  The I-A, 

I-B and I-C forms and the II-A, II-B and II-C have similar bond lengths and bond angles, respectively, but the torsion 
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angles are very different.  The I-B form of 5-BTH has an extended conformation with the N2-C3-C4-C5 torsion angle 

of 65.02° , whereas the II-A form of 1-Ac-5-BTH takes a folded conformation with the N2-C3-C4-C5 torsion angle of 

–55.92°.  These values are close to those obtained by the X-ray analysis [66.1(2)° and –60.7(2)°].  These observations 

indicate that these molecules take rather relaxed conformations in the crystal phase.  For 5-BTH, the calculated C2-O1 

(C=O) and C1-N1 bond lengths in the I-B form are shorter than those in the X-ray structure [1.186 and 1.370 Å 

compared to 1.214 and 1.386 Å, respectively].  1-Ac-5-BTH in the II-A form also shows similar features [1.186 and 

1.361 Å compared to 1.217 and 1.380 Å, respectively].  These differences in the C2-O1 and C1-N1 bond lengths 

between the experimental and the calculated values can be rationalized by the NH…O intermolecular 

hydrogen bonds formed both in 5-BTH and 1-Ac-5-BTH crystals.  These intermolecular hydrogen bonds in 

the crystals lead to the electronic redistribution of the 2-thiohydantoin ring, so that the C2-O1 and C1-N1 

bond distances become longer than those obtained by the quantum chemical calculations for the isolated 

molecules.  In either compound there is no significant difference in the C=S bond length. 
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Table 1.  Crystal data and structure refinement  

 

Compound 5-BTH 1-Ac-5-BTH 
Color / shape colorless/prism colorless/prism 
Chemical formula C10H10N2OS C12H12N2O2S 
Formula weight 206.26 248.30 
Temperature, K 123 123 
Crystal system monoclinic monoclinic 
Space group C2/c (C2h

6) P21/c (C2h
5) 

Unit cell dimensions a=13.368(3)Å a=11.508(2)Å 
 b=5.7553(8)Å b=13.396(3)Å 
 c=25.882(5)Å c=7.714(2)Å 
 β=96.1840(9)° β=95.380(4)° 
Volume, Å3 1979.6(6) 1184.1(4) 
Z 8 4 
Density (calculated), Mg/m3 1.384 1.393 
Absorption coefficient, mm-1   mm-1 0.293 0.264 
Diffractometer  Rigaku/ MSC Mercury 

CCD
Rigaku/ MSC Mercury 
CCDΘ range for data collection, deg 4.8-55.0 15.4-55.0 

Reflections measured 7262 12329 
Independent reflections 2052 (Rint=0.043)  2742 (Rint=0.034) 
Observed reflections 1700 [I>1.20σ(I)] 2270 [I>1.20σ(I)] 
Data/ restrains/ parameters 1700 / 0 / 167 2270 / 0 / 202 
Goodness of fit 1.46 1.21 
Final R indices [I>1.20σ(I)] R=0.040, wR= 0.051 R=0.035, wR = 0.044 
Largest diff. peak and hole, e/Å3 0.34 

-0.16 
0.26 
-0.14 
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Table 2.  Fractional atomic coordinates and equivalent isotropic thermal parameters for non-hydrogen atoms 

Atom X Y Z Beq/Å2 
5-BTH     
S1 0.13862(3) -0.08450(7) -0.05987(1) 1.961(10) 
O1 0.05475(9) 0.5058(2) 0.07014(4) 2.24(2) 
N1 0.08229(9) 0.2576(2) 0.00265(5) 1.77(2) 
N2 0.1906(1) 0.0132(3) 0.04177(5) 2.23(3) 
C1 0.1381(1) 0.0588(3) -0.00386(6) 1.76(3) 
C2 0.0951(1) 0.3381(3) 0.05290(6) 1.94(3) 
C3 0.1734(1) 0.1803(3) 0.08240(6) 1.98(3) 
C4 0.1385(1) 0.0660(3) 0.13036(6) 2.03(3) 
C5 0.2198(1) -0.0878(3) 0.15807(5) 1.98(3) 
C6 0.1917(1) -0.2970(3) 0.17868(6) 2.30(3) 
C7 0.2622(2) -0.4430(3) 0.20537(6) 2.66(3) 
C8 0.3626(1) -0.3810(3) 0.21165(7) 2.69(8) 
C9 0.3930(1) -0.1743(4) 0.19102(7) 2.85(4) 
C10 0.3213(1) -0.0264(3) 0.16435(6) 2.48(3) 
1-Ac-5-BTH     
S1 0.84753(3) 0.03491(3) 0.12011(4) 1.454(8) 
O1 0.88337(10) -0.25409(7) -0.2655(1) 1.54(2) 
O2 0.8813(1) 0.11039(8) -0.4531(1) 2.04(2) 
N1 0.8638(1) -0.12893(9) -0.0683(2) 1.13(2) 
N2 0.8535(1) 0.00571(8) -0.2336(1) 1.11(2) 
C1 0.8542(1) -0.02630(10) -0.0636(2) 1.06(2) 
C2 0.8721(1) -0.16623(10) -0.2307(2) 1.12(3) 
C3 0.8589(1) -0.07901(10) -0.3551(2) 1.14(3) 
C4 0.7470(1) -0.0898(1) 0.4802(2) 1.45(3) 
C5 0.6393(1) -0.1080(1) -0.3873(2) 1.54(3) 
C6 0.5963(2) -0.2041(1) -0.3703(3) 2.58(4) 
C7 0.4970(2) -0.2206(2) -0.2839(3) 3.71(5) 
C8 0.4404(2) -0.1424(2) -0.2135(3) 3.14(4) 
C9 0.4820(1) -0.0462(2) -0.2286(2) 2.51(4) 
C10 0.5806(1) -0.0293(1) -0.3155(2) 1.94(3) 
C11 0.8601(1) 0.1030(1) -0.3020(2) 1.42(3) 
C12 0.8408(2) 0.1914(1) -0.1900(2) 1.84(3) 
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Beq=(8/3)π2(U11(aa*)2+U22(bb*)2+U33(cc*)2+2U12aa*bb*cosγ+2U13aa*cc*cosβ+2U23bb*cc*cosα) 
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Table 3.  Selected bond lengths(Å), and bond and torsion angles(°) for 5-BTH and 1-Ac-5-BTH 

 

 5-BTH 1-Ac-5-BTH 
Bond lengths   
S1-C1 1.666(1) 1.645(2) 
O1-C2 1.214(2) 1.217(2) 
N1-C1 1.386(2) 1.380(2) 
N1-C2 1.374(2) 1.360(2) 
N2-C1 1.334(2) 1.380(2) 
N2-C3 1.462(2) 1.477(2) 
C2-C3 1.527(2) 1.510(2) 
N2-C11  1.415(2) 
O2-C11  1.214(2) 
C11-C12  1.494(2) 
Bond angles   
C1-N1-C2 112.3(1) 113.8(1) 
C1-N2-C3 113.5(1) 111.6(1) 
S1-C1-N1 124.0(1) 122.0(1) 
S1-C1-N2 128.9(1) 131.9(1) 
N1-C1-N2 107.1(1) 106.1(1) 
O1-C2-N1 126.9(1) 125.2(1) 
O1-C2-C3 126.7(1) 127.9(1) 
N1-C2-C3 106.4(1) 106.8(1) 
N2-C3-C2 100.6(1) 101.5(1) 
N2-C3-C4 112.8(1) 112.7(1) 
C2-C3-C4 114.3(1) 110.7(1) 
C3-C4-C5 111.7(1) 113.2(1) 
O2-C11-N2  117.0(1) 
N2-C11-C12  119.7(1) 
O2-C11-C12  123.2(1) 
Torsion angles   
S1-C1-N1-C2 178.5(1) -178.0(1) 
S1-C1-N2-C3 179.2(1) -178.8(1) 
O1-C2-N1-C1 -178.7(2) 178.6(1) 
O1-C2-C3-N2 179.0(2) -178.0(1) 
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O1-C2-C3-C4 57.9(2) 62.1(2) 
N1-C1-N2-C3 -0.1(2) 1.9(1) 
N1-C2-C3-N2 -3.1(2) 4.6(1) 
N1-C2-C3-C4 -124.2(1) -115.2(1) 
N2-C1-N1-C2 -2.2(2) 1.4(2) 
N2-C3-C4-C5 66.1(2) -60.7(2) 
C1-N1-C2-C3 3.4(2) -4.0(2) 
C1-N2-C3-C2 1.9(2) -4.0(1) 
C1-N2-C3-C4 124.1(1) 114.4(1) 
C2-C3-C4-C5 -179.8(1) 52.2(2) 
O2-C11-N2-C1  165.9(1) 
C3-N2-C11-C12  172.3(1) 

 

D-H···A D-H (Å) H···A(Å) D···A(Å) D-H···A(°) 
5-BTH     
N2-H···S1i) 0.80(2) 2.58(2) 3.375(2) 179(2) 
N1-H···O1ii) 0.78(2) 2.07(2) 2.831(2) 165(2) 
1-Ac-5-BTH     
N1-H1···O1iii) 0.80(2) 2.00(2) 2.804(2) 179(2) 

Symmetry codes: (i) x-1/2, y+1/2, z  (ii) x-1/2, y-1, z  (iii) -x, y+1/2, -z+1/2 

Estimated standard deviations in the least significant figure are given in parentheses. 
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Table 4.    Some characteristic frequencies of 5-BTH and 1-Ac-5-BTH and their N -deuterated compounds

5-BTH 5-BTH-Nd 2 1-Ac-5-BTH   1-Ac-5-BTH-Nd 1
IR (KBr disk)Raman IR (Nujol) Raman IR (KBr disk)Raman    IR (Nujol) Raman Assignment
  3175 vs 3163 w  2365 s 2376 w N-H(N-D), thioamide
  3102 s   --    --   --   3106 m 3101 vw  2318 m 2319 vw N-H(N-D), amide
  1740 vs 1724 w  1738 vs 1706 m   1747 vs 1756mw  1746 m 1754 mw C=O, amide

  1735 sh 1731 mw  1720 w 1717 ms ( C=O, amide, doublet)
  1704 vs 1704 m  1705 vs 1705 w C=O, acetyl

  1549 s 1522 vw  1496 m   --   1464 s 1462 w  1419 s 1422 vw C-N+ N-H or C-N (thioureide band)
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Table 5.  Comparison of structural parameters and total energies obtained by ab initio MO calculation and X-ray analysis 

 

5-BTH 1-Ac-5-BTH 

Calculated  Calculated 

 
 
Parameters 

I-A I-B I-C 

 
Experimental 

II-A II-B II-C 

 
Experimental

Bond 
length(Å) 

        

S1-C1 1.656 1.656 1.656 1.666(1) 1.651 1.653 1.652 1.645(2) 

O1-C2 1.186 1.186 1.186 1.214(2) 1.186 1.186 1.186 1.217(2) 

N1-C1 1.369 1.370 1.367 1.386(2) 1.361 1.362 1.359 1.380(2) 

N1-C2 1.370 1.373 1.375 1.374(2) 1.370 1.374 1.376 1.360(2) 

N2-C1 1.334 1.333 1.334 1.334(2) 1.369 1.365 1.369 1.380(2) 

N2-C3 1.448 1.448 1.451 1.462(2) 1.474 1.472 1.476 1.477(2) 

C2-C3 1.523 1.523 1.527 1.527(2) 1.511 1.512 1.512 1.510(2) 

Torsion 
angles(°) 

        

N2-C3-C4-
C5 

-56.94 65.02 165.60 66.1(2) -55.92 67.75 177.33 -60.7(2) 

C2-C3-C4-
C5 

58.35 179.04 -80.69 -179.8(1) 65.29 175.72 -84.00 52.2(2) 

Total 
energy(a.u.) 

-
965.84359 

-
965.84571 

-
965.84107

 -
1117.62013

-
1117.61323 

-
1117.61717

 

Energy 
difference 

        

ΔE 
(kcal/mol) 

1.33 0.00 2.90  0.00  4.33 1.86  
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 Figure captions 

 

Figure 1.  ORTEP drawings of 5-BTH (a) and 1-Ac-BTH (b).  The R-antipode of a racemic pair is shown with the 

atom numbering.  

Figure 2. Resonance structures related to the thioamide group in BTH (Ia, Ib, Ic) and 1-Ac-5-BTH (IIa , IIb, IIc). 

Figure 3.  Perspective views of intermolecular hydrogen bonds in BTH crystals.. 

Figure 4.  Perspective views of intermolecular hydrogen bonds in 1-Ac-BTH crystals. 

Figure 5.  IR (a) and Raman (b) spectra of 5-BTH. 

Figure 6.  IR (a) and Raman (b) spectra of 1-Ac-5-BTH. 
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