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Virtual Structure Based

Target-enclosing Strategies for Nonholonomic Agents

Hiroki Kawakami and Toru Namerikawa

Abstract— In this paper, we discuss a target-enclosing prob-
lem for a group of multiple nonholonomic agents in a plane. The
proposed strategies guarantee that multiple agents’ coordina-
tion finally results in a circular formation enclosing the target-
object which moves in the plane. Firstly, virtual agents for
the feedback linearization of the real nonholonomic agents are
introduced. Secondly, we propose the target-enclosing control
laws based on the consensus algorithm to the virtual agents.
Algebraic graph theory and consensus algorithm are employed
to prove convergence and stability of the enclosing problem. Fi-
nally, experiments are provided to demonstrate the effectiveness

of the proposed control laws.

I. INTRODUCTION

In recent years, there have been increasing research in-

terests in the distributed cooperative control of multi-agent

systems [1]-[4]. Several research groups developed the coor-

dination control strategies that achieve a capturing formation

around a target object (specific area) by multiple mobile

agents using local information [5]-[11]. Owing to the broad

range of applications (e.g. investigations in hazardous envi-

ronments, mobile sensor networks and security systems), the

task of capturing target-object is researched in the distributed

cooperative control of multi-agent systems.

The capturing the target-object is divided into two prob-

lems, grasping behavior and enclosing behavior. The grasp-

ing behavior is the object-closure condition in decentralized

form in [5]. On the other hand, the enclosing behavior is

that multiple agents are controlled in a distributed manner to

converge to an assigned formation while tracking the moving

target object. Kobayashi et al. [7] proposed the decentralized

grasping control law using the concept of force-closure and

enclosing control law based on a gradient decent method for

multiple agents with local information in 2D plane. In their

method, each agent requires local information about target

object and two neighbor agents.

Marshall et al. [12][13] proposed a cyclic pursuit based

formation control strategies for multiple mobile agents mov-

ing in a plane. They showed that the multiple agents finally

can assemble in a circular formation that is similar to that

of [7]. In [6], Kim et al. proposed a distributed cooperative

control method based on a cyclic pursuit strategy in a target-

enclosing task in 3D space by multi-agent systems. In the

above method, each agent’s behavior is decided using the

local information about target-object and one neighbor agent.
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In [6][7], however, enclosing strategies for multiple agents

with nonholonomic constraints (e.g. two-wheeled vehicles

and AUVs) have not been considered and in their method,

all agents require the states of the target object. In addition,

the information exchange topologies between the agents are

limited to the cycle graphs. i.e. enclosing the target-object

cannot be achieved with the information exchange topologies

except cycle graphs.

On the other hand, consensus algorithm based formation

control strategies for multi-agent systems are proposed in

[14]-[17]. Ren [15] proposed the formation control strategies

for multi-agent systems where the information states of

each agent approach a common time-varying reference state.

Namerikawa et al. [16] proposed virtual structure based

formation control strategies for nonholonomic multi-vehicle

systems.

Most consensus algorithm results related to cooperative

control are obtained for linear agents. However, most practi-

cal cooperative control applications involve systems that are

nonlinear and nonholonomic. Therefore, it is necessary to

discuss cooperative control of nonholonomic agents. There

have been some previous research works [10], [18], [19]

which treated cooperative control of multiple nonholonomic

agents. In this paper, we propose virtual structure based

target-enclosing strategies for multiple nonholonomic agents

which are controlled to converge to the formation while they

are tracking the target-object moving in 2D plane. Firstly,

we introduce a virtual agent for the feedback linearization

of the real agent. Secondly, we propose the target-enclosing

control laws based on the consensus algorithm to the virtual

agents. Finally, experiments are provided to demonstrate the

effectiveness of the proposed control laws.

This paper is organized as follows. Section II introduces

background and preliminaries (algebraic graph theory and

consensus algorithm). Section III introduces the virtual struc-

tures corresponding to real agents and real target-object

respectively and control objectives of the enclosing behavior.

Section IV describes the proposed enclosing strategies for

multiple nonholonomic agents. In Section V, we validate our

results by experiments. Finally, we summarize the obtained

results and future works in Section VI.

II. PRELIMINARIES

Let G = (V , E ) denoted a graph with the set of vertices

V = {1, 2, · · · , n} and the set of edges E ⊆ V ×V [20]. The

graph is divided into undirected graphs and directed graphs

(digraphs). It is natural to model information exchange

between agents by graphs. If any two vertices i, j ∈ V and
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(i, j) ∈ E , the vertex j is neighbors of vertex i is denoted

by i ∼ j. The set of neighbors of vertex i is denoted by

Ni = {j|i ∼ j} ⊆ {1, . . . , n} \ {i} (1)

An undirected graph is called connected if there is an edge

between any distinct pair of vertices. An directed graph is

called strongly connected if there is a directed edge from

every from every other vertices, while a directed graph is

called balanced if
∑

j �=i aij =
∑

j �=i aji, i ∈ V . A directed

tree is a directed graph, where every vertex has exactly

one parent except for one vertex, called root, which has

no parent, and the root has a directed path to every other

vertex [15]. Note that in a directed tree, each edge has a

natural orientation away from the root, and no cycle exists.

In the case of undirected graphs, a tree is a graph in which

every pair of vertices is connected by exactly one path. A

directed spanning tree of a directed tree formed by graph

edges that connect all of the vertices of the graph. Note that

the condition that a digraph has a directed spanning tree

is equivalent to the case that there exists as least a vertex

having a directed path to all of the other vertices. In the

case of undirected graphs, having an undirected spanning

tree is equivalent to being connected. The adjacency matrix

A(G ) = [aij ] ∈ R
n×n is defined as aii = 0 and aij = 1 if

(j, i) ∈ E where i �= j. The adjacency matrix of a undirected

graph is defined accordingly except that aij = aji,
∀i �= j,

since (j, i) ∈ E implies (i, j) ∈ E . The degree of vertex i is

the number of its neighbors |Ni| and is denoted by deg(i).

The degree matrix of graph G is diagonal matrix defined as

D(G ) = [dij ] ∈ R
n×n where

dij =

{

deg(i) , i = j

0 , i �= j
(2)

Laplacian matrix of the graph G is defined by

L(G ) = D(G ) −A(G ) = [lij ] ∈ R
n×n (3)

For an undirected graph, the Laplacian matrix L is sym-

metric positive semi-definite. This property does not hold

for a digraph Laplacian matrix. An important feature of L
is that all the row sums of L are zero and thus 1n =
[ 1 1 · · · 1 ]T ∈ R

n is eigenvector of L associated with

the eigenvalue λ(L) = 0.

III. PROBLEM FORMULATION

A. Virtual Structures

In this subsection, we consider n nonholonomic mobile

agents (see the lower left at Figure 1(a)). ith nonholonomic

mobile agent is modeled by the following nonlinear ordinary

differential equations





ẋi

ẏi

θ̇i



 =





cos θi 0
sin θi 0

0 1





[

vi

ωi

]

(4)

where ri = [xi yi]
T ∈ R

2 is the position of ith agent, θi ∈
[0, 2π) is the orientation, vi ∈ R is the forward velocity and
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Fig. 1. Definition of virtual structures. (a) Real agent and virtual agent,
(b) Real target-object and virtual target-object.

ωi ∈ R is the angular velocity. The agents has the following

nonholonomic constraint of pure rolling and non-slipping.

ẋi sin θi − ẏi cos θi = 0 (5)

We define the virtual agent (see the upper right at Figure

1(a)) corresponding to the real agent (4). Then, the relation

between ith real agent and ith virtual agent is given by





xvai

yvai

θvai



 =





xi + xd cos θi − yd sin θi

yi + xd sin θi + yd cos θi

θi



 , (6)

where rvai = [xvai yvai]
T ∈ R

2 and θvai ∈ [0, 2π) are,

respectively, the position, the orientation of ith virtual agent.

rd = [xd yd]
T ∈ R

2 is the distance between the real agent

and the virtual agent. Then, the derivative of eq. (6) is given

as




ẋvai

ẏvai

θ̇vai



 =

[

Bi

Bθ

] [

vi

ωi

]

= B(θi)ui (7)

where ui = [vi ωi]
T ∈ R

2 is the control input to ith agent

and

Bi =

[

cos θi −xdi sin θi − ydi cos θi

sin θi xdi cos θi − ydi sin θi

]

(8)

Bθ =
[

0 1
]

(9)

If we assume xdi �= 0, Bi is a regular matrix.

Similarly, we consider the virtual target-object correspond-

ing to real target-object (see Figure 1(b)). Then, the states of

virtual target-object are given as well as the case of virtual

agents as follows





xvobj

yvobj

θvobj



 =





xobj + xd cos θobj − yd sin θobj

yobj + yd sin θobj + yd cos θobj

θobj



 , (10)

where robj = [xobj yobj ]
T ∈ R

2 is the position of real target-

object, rvobj = [xvobj yvobj ]
T ∈ R

2 is the position of virtual

target-object, θobj ∈ [0, 2π) is the moving orientation of real

target-object and θvobj ∈ [0, 2π) is the moving orientation

of virtual target-object.
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Fig. 2. An example of n = 4 virtual agents enclosing virtual target object.

B. Control Objectives

We first define the position in which ith agent encloses

the target-object as enclosing position Ri ∈ R
2. This paper

only considers the equal convergence positions for all agents;

i.e.,

‖R1‖ = ‖R2‖ = · · · = ‖Rn‖ = ξ = const. (11)

where ‖ · ‖ is the Euclidean norm, ξ ∈ R is the

enclosing radius. Let φvai ∈ R denote the counterclock-

wise angle of ith virtual agent around the center of the virtual

target-object. Control objectives for virtual structure based

enclosing behavior can be formulated as follows (see Figure

2) ;

A1) ‖rvai − rvobj‖ → ξ [m] as t → ∞,

A2) ‖φva(i+1) − φvai‖ → 2π
n

[rad] as t → ∞,

A3) ‖θvai − θvobj‖ → 0 [rad] as t → ∞,

for i = 1, · · · , n.

In case of i = n, n + 1 = 1.

IV. VIRTUAL STRUCTURE BASED TARGET ENCLOSING

STRATEGIES

A. Enclosing Control Law for Balanced Relative Positions

In this subsection, we propose the target-enclosing control

law 1 for balanced relative positions. If the average of initial

positions of all virtual agents is equal to the initial position

of virtual target-object, the control law 1 achieves the above

control objectives A1)-A3). Here, we make the following

Assumption 1-2.

Assumption 1 : Information exchange topology between

agents is a connected graph or a balanced graph.

Assumption 2 : The target-object moves at the forward

speed vobj �= 0 and all agents can acquire the target object’s

position robj and its derivative ṙobj from the target object.

Then, the proposed enclosing control law 1 for ith agent is

described as

ui = B−1
i



−k
∑

j∈Ni

{r̂vai − r̂vaj} + ṙvobj



 , (12)

where ui ∈ R
2 is an input, k ∈ R is a constant controller

gain, Ri ∈ R
2 is the enclosing position, Ni is the set of

neighboring agents of ith agent, B−1
i is the inverse matrix

of Bi and r̂vai
.
= rvai − Ri. This enclosing control law 1

requires relative distances between the agent and the other

agent, the derivative of robj and the orientation θi. Next, we

require the following Lemma 1-2 from [3][16].

Lemma 1 : [16] Consider an information exchange topol-

ogy G of n agents with the Laplacian matrix L(G ) applying

the following consensus algorithm

ζ̇ = − (L ⊗ Im) ζ (13)

Suppose G is a connected graph or a strongly connected

graph. Then, a consensus is asymptotically reached for initial

states of all agents ;

ζ →
(

ζr1ζ
T
l1 ⊗ Im

)

ζ (0) = 1n ⊗ α as t → ∞ (14)

Let ζr1, ζl1 be a right / left eigenvector of laplacian matrix

L is associated with eigenvalue 0. ζr1 and ζl1 satisfying

ζT
l1ζr1 = 1 and ζT

l11n = 1, where ζi ∈ R
m, ζ =

[

ζT
1 ζT

2 · · · ζT
n

]T
∈ R

nm, ⊗ denotes the Kronecker

product and α ∈ R
m is the group decision vector.

Lemma 2 : [3] If an information exchange topology G sat-

isfies Assumption 1, an average-consensus is asymptotically

reached and

α =
1

n

n
∑

i=1

{ζi(0)}. (15)

Now, we have the following Theorem 1.

Theorem 1 : Consider the system of n virtual agents (7) and

the virtual target-object (10). We apply the enclosing control

law 1 (12) to the system. If the control law 1 satisfies k > 0,

Assumption 1-2 and equ. (16)

1

n

n
∑

i=1

r̂vai(0) = rvobj(0), (16)

then the control law 1 asymptotically achieves the control

objectives A1)- A3).

Proof: Let rva
.
= [ rT

va1 · · · rT
van ]T , r̂va

.
=

[ r̂T
va1 · · · r̂T

van ]T , r′va

.
= [ r′va1

T · · · r′van
T ]T ,

R
.
= [ RT

1 · · · RT
n ]T and u

.
=

[

uT
1 · · · uT

n

]T
. Also

let
{

r′va = r̂va − 1n ⊗ rvobj = rva − R − 1n ⊗ rvobj

ṙ′va = ˙̂rva − 1n ⊗ ṙvobj = ṙva − Ṙ − 1n ⊗ ṙvobj
(17)

Then, enclosing-control input u of n agents is described as

u = ⊕
n

∑

i=1

B−1
i {−k(L⊗ I2)r

′
va + 1n ⊗ ṙvobj} , (18)

where u ∈ R
2n, ⊕

∑

i ai has diagonal block elements ai and

L is Laplacian matrix of information exchange topology of
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the agents. The virtual agent (7) can be written in n virtual

agents form as

ṙva = ⊕
n

∑

i=1

Biu. (19)

With (18), eq. (19) is given by

ṙ′va = −k(L⊗ I2)r
′
va. (20)

From Lemma 1, we know that r′va → 1 ⊗ α as t → ∞,

therefore

rva − 1⊗ rvobj → 1⊗ α + R as t → ∞, (21)

where α ∈ R
2 is a group decision vector. From Assumption

2, if the information exchange topology is connected graph or

balanced graph, the group decision α asymptotically reaches

the average of initial positions of all agents. Thus, we have

α =
1

n

n
∑

i=1

r′vai(0) =
1

n

{

n
∑

i=1

r̂vai(0) − n · rvobj(0)

}

.

(22)

If initial positions of all agents satisfy α = 0, eq. (21) can

be rewritten as

rvai − rvobj → Ri as t → ∞. (23)

In addition, if we design enclosing position Ri as follows

Ri = ξ

[

cos
2π(i − 1)

n
sin

2π(i − 1)

n

]T

, Ṙi = 0 (24)

we obtain ‖rvai − rvobj‖ → ξ [m] and ‖φva(i+1) −φvai‖ →
2π
n

[rad] as t → ∞, i ∈ V simultaneously.

Proposition 1 : The steady orientation of virtual target-

object and convergence positions of virtual agents are as-

sumed as θ̇vobj = 0 and r̂vai − Ri = r̂vaj − Rj . Then, the

orientations of all virtual agents achieve the orientation of

virtual target-object. i.e. θvai → θvobj , i ∈ V .

Proof: From (7) and (12), the derivative of the orien-

tation of ith virtual agent is given by

θ̇vai = −
‖ṙvobj‖

xd

sin (θvai − θvobj) , (25)

which implies that θvai → θvobj as t → ∞, i ∈ V .

B. Enclosing Control Law for Any Initial Position

In this subsection, we propose the control law 2 which

achieves the above control objectives A1)-A3) for any initial

relative positions between all agents and the target-object.

Then, the proposed enclosing control law 2 for ith agent is

described as

ui = B−1
i

[

−ka {r̂vai − rvobj}

−kb

∑

j∈Ni

{r̂vai − r̂vaj} + ṙvobj

]

,

(26)

where ka, kb ∈ R are constroller gains. Now, we have the

following Theorem 2.

Theorem 2 : Consider the system of n virtual agents (7)

and the virtual target-object (10). We apply the enclosing

control law 2 (26) to the system. If the control law 2

satisfies ka, kb > 0 and assumption 1-2, the control law 2

asymptotically achieves the control objectives A1)- A2).

Proof: With (26), eq. (19) can be written in matrix

form as

ṙ′va = −kar′va − kb(L ⊗ I2)r
′
va = −Pr′va (27)

where P ∈ R
2n. We know that

rva − 1⊗ rvobj → R as t → ∞. (28)

Therefore, if we design the following enclosing position Ri

(24), the enclosing control law 2 asymptotically achieves the

control objectives A1)-A2) for any initial relative positions

between all agents and the target-object.

C. Enclosing Control Law for Leader-follower Systems

In this subsection, we discuss the case that a portion of

agents has access to the target-object (i.e. the leader-follower

systems). It is generally difficult to acquire information about

the target-object moving in actual environment. Here, we

make the following Assumptions 3-4.

Assumption 3 : Information exchange topology between

agents has a spanning tree.

Assumption 4 : The target-object moves at the forward

speed vobj �= 0, the leaders can acquire the position robj

of target object and its derivative ṙobj . ith follower can

acquire the position rvaj of the adjacent jth follower and

its derivative ṙvaj .

We propose the target-enclosing control law 3 based on [15].

The proposed control law for the leader-agents and follower-

agents is described as

• Control input for the ith leader-agent

ui =
B

−1

i

1+
P

j∈Ni
aij

[−ki (r̂vai − rvobj)+ ṙvobj

−
∑

j∈Ni

{ ki (r̂vai − r̂vaj) + ṙvaj }

]

(29)

• Control input for the ith follower-agent

ui =
B−1

i
∑

j∈Ni
aij





∑

j∈Ni

−ki (r̂vai − r̂vaj) + ṙvaj



 (30)

where ki ∈ R are controller gain. Here, we have the

following Theorem 3.

Theorem 3 : Consider the system of n virtual agents (p ≥ 1
leaders and q(= n − p) followers) and the virtual target-

object (10). We apply the enclosing control law 3 (29)(30)

to the system. If the control law 3 (29)(30) satisfies ki > 0,

Assumption 3-4, the control law 3 asymptotically achieves

the control objectives A1)- A2).
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TABLE I

CONTROLLER PARAMETERS FOR EXPERIMENTS

Case 1 : ka, kb 0.3

Case 2 : ki 0.3

rd [m] [0.2, 0]
R1 [m] [1/3, 0]

R2 [m] [1/6 ,
√

3/6]

R3 [m] [−1/6 ,
√

3/6]

Proof: For (29)(30), let rvobj
.
= r̂va(n+1). We rewrite

equ. (29)(30) as

n+1
∑

j=1

aij

(

˙̂rvai − ˙̂rvaj

)

= − ki

n+1
∑

j=1

aij (r̂vai − r̂vaj). (31)

Eq. (31) can be written in matrix form as

(Ln+1 ⊗ I2) ˙̂rvai = −ki (Ln+1 ⊗ I2) r̂vai, which implies

that (Ln+1 ⊗ I2) r̂vai → 0 and r̂vai → rvobj as t → ∞,

since r̂va(n+1)
.
= rvobj . Therefore, if we design the

following enclosing position Ri, the enclosing control law 3

asymptotically achieves the control objectives A1) - A2).

Note that the control law 2 is the case that all agents can

acquire the target-object.

V. EVALUATION BY CONTROL EXPERIMENTS

Figure 3 shows the two kinds of the information exchange

topologies.

In experiments (see Figure 4), the four two-wheeled vehi-

cles (nonholonomic agents) and the same one vehicle for the

target object are used. The vehicles used in the experiments

are controlled by a digital signal processor (DSP) from

dSPACE Inc., which utilizes a PowerPC running at 3.2

[GHz]. Control programs are written in MATLAB/Simulink,

and implemented on the DSP using the Real-Time Workshop

and dSPACE software which includes ControlDesk, Real-

Time Interface. A CCD camera is mounted above the ve-

hicles. The video signals are acquired by a frame grabber

board PicPort and image processing software HALCON. The

sampling time of the controller is 0.2 [s]. The position,

velocity and orientation of the vehicles are calculated by

using the image processing. In the experiments, it is assumed

that enclosing was achieved when it satisfies the following

conditions, because a complete enclosing behavior cannot be

achieved by restricting the experimental environment.

• ‖r′i‖ ≤ 0.06 [m] ( within 20 [%] )

• φ(i+1) − φi ≤ 2π/3 ± 0.3 [rad] ( within 15 [%] )

• ‖θi − θobj‖ ≤ 0.3 [rad]

Then, enclosing performances of case 1 and case 2 are

compared on the above condition.

Right MotorLeft Motor

Receiver

 Camera

Multi-Vehicle

Pic-Port

2.7 [m]

1.8 [m]

Transmitter

PowerPC

       Packet 

Communication

Microcomputer H8

     RS232C 

Communication

DSP (DS1104) 

HALCON 

Fig. 4. Experimental setup

Case 1: To illustrate the enclosing performances of the

proposed control law 2, the experiments are carried out in

which n = 3 agents and one target-object with information

exchange topology in Figure 4 (a). The controller parameters

of the experiments are given as shown in Table I. The

velocity of the target-object is 0.04 [m/s]. The experiment

results are shown in Figures 5-6. Figure 5 illustrates the

trajectories of the three agents and the target object. Figure

6 illustrates ri − robj , φ(i+1) − φi and θi − θobj of each

agent. They show that all agents converge to a circular

formation around the target object at about 18 [s]. The above

experimental results demonstrate that the control objectives

A1)-A3) are achieved.

Case 2: To illustrate the enclosing performances of the

proposed control law 3, an experiments are carried out in

which n = 3 agents (one leader and two followers) and a

target-object with information exchange topology in Figure

4 (b). The controller parameters of the experiments are given

as shown in Table I. The velocity of the target-object is

0.04 [m/s]. The experiment results are shown in Figures 7-8.

Figure 7 illustrates the trajectories of the three agents and

the target object. Figure 8 illustrates ri − robj , φ(i+1) − φi

and θi − θobj of each agent. The above experimental results

demonstrate that the control objectives A1)-A3) are achieved.

They show that all agents converge to a circular formation

around the target object at about 26 [s]. The convergence

speeds for Case 2 (26 [s]) are slow compared with Case 1

(18 [s]), because in Case 1 and Case 2, the communication

costs between the agents are different.

VI. CONCLUSIONS AND FUTURE WORKS

In this paper, we have proposed virtual structure based

target-enclosing strategies for multiple nonholonomic agents.

Firstly, virtual agents for the feedback linearization of the

real nonholonomic agents were introduced. Secondly, we

proposed the target-enclosing control laws based on the

consensus algorithm to the virtual agents. Algebraic graph

theory and consensus algorithm were employed to prove

convergence and stability of the enclosing problem. Finally,

experiments are provided to demonstrate the effectiveness of

the proposed control laws. Future work will address target

enclosing for the target-object which is at a stand still. In

addition, the extension of the current work to target enclosing

1047
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under switching information exchange topologies will also be

a topic of future work.
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