-

View metadata, citation and similar papers at core.ac.uk brought to you byfz CORE

provided by Kanazawa University Repository for Academic Resources

Implementation of large-scale FIR adaptive
filters on nVIDIA GeForce graphics processing

unit
0ad Hirano Akihiro, Nakayama Kenji
journal or ISPACS 2010 - 2010 International Symposium on

publication title [Intelligent Signal Processing and
Communication Systems, Proceedings

page range 5704666
year 2010-01-01
URL http://hdl._handle.net/2297/27097

doi: 10.1109/ISPACS.2010.5704666

https://core.ac.uk/display/196706651?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2010 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS 2010) December 6-8, 2010

TA122

IMPLEMENTATION OF LARGE-SCALE FIR ADAPTIVE FILTERS
ON NVIDIA GEFORCE GRAPHICS PROCESSING UNIT

Akihiro Hirano and Kenji Nakayama

Kanazawa University
Kakuma-Machi, Kanazawa, 920-1192, Japan

ABSTRACT

This paper presents implementations of an FIR adaptive fil-
ter with a large number of taps on nVIDIA GeForce graph-
ics processing unit (GPU) and CUDA software development
environment. In order to overcome a long access latency
for slow off-chip memory access, reduction of memory ac-
cesses by re-ordering and vector load/store operations and
an increase of the number of threads are introduced. A
tree adder is introduced to reduce the cost for summing
thread outputs up. A simultaneous execution of multiple
filters are also examined. On low-cost platform such as an
Atom/ION nettop, GPU will accelerates the computation by
almost three times. For simultaneous multiple simulations
such as an ensemble averaging, a GPU with a large num-
ber of processing elements outperforms a dual-core CPU;
almost six times faster for 16 runs.

1. INTRODUCTION

Echo cancellers are used to reduce echoes in a wide range of
applications, such as teleconference systems and hands-free
telephones. For acoustic echo cancellers (AEC’s), the num-
ber of taps is very large; from several hundreds to several
thousands. Therefore, efficient implementation of AEC’s
has been studied[1, 2]. In research of AEC’s, optimiza-
tion of adaptation parameters requires multiple simulations.
Thousands of simulations for ensemble averaging might be
necessary in order to confirm a convergence analysis[3].
Parallel simulations might be useful for these cases.

Recent years, PC-based communication systems such
as Skype and Messenger becomes very popular. PC-based
systems are also useful for simulations because they have
powerful CPU’s over giga floating-point operations per sec-
ond (FLOPS) performance. Recent PC’s are also equipped
with powerful graphics processing units (GPU’s). These
GPU’s are also capable of numerical computations by us-
ing C/C++ language[4, 5, 6] and have been used for com-
puter simulations. Latest GPU’s have computation perfor-
mance over tera FLOPS. Even some low-cost chipsets con-
sist of programmable GPU’s. An example is ION platform
by nVIDIA for Intel Atom processor.

978-1-4244-7370-0/10/$26.00 ©2010 |IEEE

In this paper, an implementation of an FIR adaptive filter
on nVIDIA GeForce family GPU and CUDA is discussed.
Section 2 describes the FIR adaptive filter with the normal-
ized least mean squares (NLMS) algorithm[7]. GeForce
family GPU and CUDA is briefly described in Sec. 3. The
proposed implementation is shown by Sec. 4. Section 5
compares the performance.

2. FIR ADAPTIVE FILTER BASED ON NLMS
ALGORITHM

The adaptive FIR filter generates its output signal y(n) from
the input signal z(n) and the filter coefficient wy (n) by

y(n) = w" (n)z(n) M

a(n) = [z(n) z(n—1) - z(n-N+1" (@)

w(n) = [wo(n) wi(n) - wy-1(n)]", ©)

where N is the number of taps, [---]7 is a transpose of a

vector |- - - |. The error signal e(n) between the desired sig-
nal d(n) and the filter output y(n) is calculated by

e(n) = d(n) —y(n). ©)

By using the NLMS algorithm[7], the filter coefficient vec-
tor w(n) is updated by

pe(n)z(n)

wn+1)=w(n)+ FOE

(&)

where a positive constant (i is a step-size parameter.

3. NVIDIA GEFORCE GPU AND CUDA

In this implementation, nVIDIA GeForce 8000 family or
later GPU’s are assumed. Though GeForce 8800 GTS and
GeForce 9400M in ION chipset are used as a benchmark
platform, the results could be applied for other GPU’s. Ex-
ceptions might be latest GeForce GT200 family GPU’s; they
are equipped with L1 and L2 data cache memories and there-
fore, different optimization could be applied. Main features
of GeForce 8000 or 9000 family GPU’s are listed below.

269

FaYa¥ Wa ¥l IO i 1 Q H Lakall: + Q 1,
ZUTUTTIIE T TAliONa— SYTTIPOSTUNT T UMM T ErmTye U SIiYNidl FTOULE

Multiprocessor #N

Multiprocessor #1

Shared Memory (16~32KB)

Registers oeeo Registers
Instructi
Shader Shader ns[;ﬁictlon
Processor oeco Processor

(SP) #1 (SP) #8 -

Constant Memory (64KB)
GeForce GPU

Device Memory (MB~TB) Host CPU

Fig. 1. Computation model of GeForce GPU

e Unified shader architecture

e Large number of shader processors (SP’s):

— 16 ~ 128 SP’s per chip.

— 8 SP’s execute the same instruction.

— The same instruction are executed in four suc-
cessive instruction cycles.

— 32 threads are executed simultaneously by 8-SP

block.

— 8192 data registers per 8 SP’s.

e Floating-Point (FP) support

— 32-bit FP multiply-add.

— Four-clock latency for 32-bit FP multiply-add.

— Some newer GPU’s support 64-bit FP.

e Multiple data memories

— Shared memory: 16KB or 32KB read/write RAM
per 8 SP’s.

Access latency is 4 instruction cycles.

— Constant memory: 64KB read-only RAM per

chip.

— Device memory (off-chip RAM): ~ 1GB.
Very slow: Latency is 400 ~ 600 clocks.

e Compiler support

ing an‘g Communication Systems g SSSI?)@’Q%&Q&@GDgpmber 6-8, 2010

s a programmable proc S can be 1e-
garded as multiple sets of 8-way SIMD (single-instruction
multiple-data) processor array. In order to cover a four-
cycle latency for most operations, each SP repeats a single
instruction by four times. Therefore, a set of 32 threads
is executed by a set of 8 SP’s. A synchronization mech-
anism is prepared between threads in a SIMD processor
array, while there are no synchronization mechanisms be-
tween different SIMD processor arrays.

There are some classes for data memories on GeForce
GPU’s: shared memory, constant memory, texture memory
and device memory. 8 SP’s in the same group can access
shared memory. Though shared memory is the fastest mem-
ory, special care is required for its lifetime. Shared memory
is prepared at the beginning of thread and is removed at the
end. Users have to save data which will be used after the
end of thread into device memory (off-chip memory).

Device memory is a large off-chip memory. The prob-
lem of device memory is a very long access latency which
is 400 ~ 600 instruction cycles. To hide this latency, mul-
tiple groups of threads are commonly used; another thread
starts when a thread is interlocked by slow memory access.
Constant memory is an intermediate-speed memory. From
GPU, constant memory is a read-only memory, while host
CPU can read/write this memory.

“CUDA”[4, 5] is a software development tools and drivers
for GeForce family GPU’s, which is an abbreviation of “Com-
pute Unified Device Architecture.” Programs for both CPU
and GPU can be written in a single source file. Some ex-
tensions to C/C++ language support parallel processing and
multiple memory classes.

4. IMPLEMENTATION OF FIR ADAPTIVE
FILTERS BASED ON NLMS ALGORITHM

In this implementation, only one SIMD processor array per
filter is used. An implementation with one SIMD array is
useful for low-cost GPUs with only two SIMD arrays; one
for the adaptive filter and the other for graphics and video.
Another reason is to avoid synchronization and communi-
cation between multiple SIMD arrays.

4.1. Memory assignment

Since the number of taps is assumed to be very large, vec-
tors x(n) and w(n) will be stored in the device memory.
It distinguishes this implementation from that reported in
[2]. The input signals and the desired inputs, which are not
modified, are stored into constant memory.

4.2. Reduction of memory access

The number of memory access can be reduced by similar
manner as in[1, 2]. The data load can be reduced by chang-

270

ing 2SRRI VSTPESH P g oent Signal Process

wr(n) = wg(n—1)
+ dn—-1zn—k—-1) (6)
and
sum(n) = sum(n) + wr(n)z(n — k) @)

in the descending order of the tap index k could reduce the
number of load operation for both wy(n) and z(n — k). In
(6), 6(n — 1) is defined by

S(n—1) = % ®)

The load operation for wy (n) is reduced because wy(n) cal-
culated in (6) is also used for convolution (7) just after (6).
The number of load operation for 2:(n — k) can be reduced
because x(n — k) in (7) can be re-used in (6) for the next
k=Fk-1.

The number of memory access can further be reduced by

introducing a vector data type “float4”, which is 4-dimensional

(4D) vector. By using this data type, the number of access
from/to slow device memory can be reduced by factor of
1/4. Please note that the vector operation can be applied
only to memory access. This is because the SP is a scalar
processor.

The misalignment problem[8] also appears in this im-
plementation. Thanks to the scalar-processor architecture,
the influence of the misalignment is very limited. By using
two 4D vectors for x(n) and selecting four samples from
the eight, this problem can easily solved.

4.3. Multi-thread implementation of adaptive FIR filter

In this implementation, each adaptive filter is divided sim-
ply into short sub filters, which is almost same implementa-
tion as in [2]. Figure 2 shows the implementation of adap-
tive FIR filters. Each thread processes small segments from
all of four adaptive filters. This is because the memory ac-
cess reduction shown in 4.2 requires successive processing
of adjacent filter taps. This division also simplifies thread
division.

A problem specific to GPU computing is the computa-
tional cost for summing all sub filter outputs up. An im-
plementation of an SAEC in [2] has introduced a tree adder
in Fig. 2 in order to reduce the summing-up cost. For a
4096-tap FIR filter case, a tree adder is more effective than
a single-thread adder if the number of threads is more than
64.

4.4. Multiple Simulations on Multiple SIMD array

Execution of multiple simulations with independent x(n),
d(n) and p have also been examined. Applications of such

ng and Con’xn&% |v|e OEﬁ/eSrte&;n n(} SPACS 2010) December 6-8, 2010

1st 2nd 3rd 4th last

thread] [thread] thread] [thread thread

x(n) Ist 2nd 3rd 4th] last
sub E# sub FH¥ sub K sub pr> eeo —# sub

filter] [filter | [ifilter[] Nfilter | filter

%{% o @P,\
. |

\&

Tree Adder
J

y(n)

Fig. 2. Multi-thread implementation of adaptive FIR filter

a parallel processing are parameter optimization and ensem-
ble averaging.

In this configuration, one SIMD array per filter is used.
Multiple SIMD array are assigned for parallel processing.
Handling of multiple (n), d(n) and p are main difference
between the single-filter case and the multiple-filter case.

5. PERFORMANCE COMPARISON

The FIR adaptive filter with NLMS algorithm has been im-
plemented and tested on two different platforms. Table 1 de-
picts the specifications of the platforms. For both CPUs and
GPUs, programs in C language is used. The CPU program
has been optimized by the compiler. For the GPU programs,
the tunable parameters such as the number of thread and the
adder type have been manually optimized for the speed. An
4096-tap FIR adaptive filter and a 16kHz sampling are as-
sumed, which is applicable 250msec reverberation time.

Figure 3 demonstrates the influence of the number of
threads, the adder type, and the load/store type The pro-
cessing time by the Core 2 CPU programs and GeForce
8800 GPU programs for 10-second data have been com-
pared. The GPU program with the vector load/store is twice
faster than that with the scalar load/store. If the number of
threads is larger than 64, the tree adder is faster.

Table 2 compares processing time for different platforms.
The fastest parameters have been manually selected. The
tree adder and the vector load/store are used for GPU pro-
grams. The number of threads is 128 for both GPU’s. Core
2 CPU and GeForce 8800 and ION GPUs can be used for
real-time processing. In both platforms, GPU’s are faster
than the corresponding CPU’s. The acceleration by GPU is

271

2010 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS 2010) December 6-8, 2010

Table 1. Specifications of Platforms

Platform Server Nettop
CPU Core 2 Duo E8200 Atom N330
Physical cores 2 2
Logical cores 2 4
CPU clock 2.66GHz 1.6GHz
GPU GeForce 8800 GTS | GeForce 9400M
(ION chipset)
SPs 8 x 16 8 x 2
SP clock 1.62GHz 1.1GHz
oS Linux Linux
(bits) (64bit) (64bit)
1000
Warp Size¥32

Hard Limit=512

9\#OfSP:8
100

\k\ X: GeForce, Scalar, Simple Adde

+: GeForce, Scalar, Tree Adder
[3\
10 >

=N Qﬁ N

- ~, .‘;_. ié'*

~
%: GeForce, Vector, Simple Adder 3% ?DK— -
| <
’ t: GeForce, Vector, TreeJAdder
1 L I

1 10 100 1000
Number of Threads

Time [sec]

Core2 _

Fig. 3. Influence of number of threads

larger for Atom/ION platform.

The elapsed times for 16 independent simulations for
a 4096-tap filter, 16kHz sampling and 10-second data case
are compared by Fig. 4. The tree adder and 256 threads
have been chosen for GPU programs. GeForce 8800 GPU
program with the vector load/store outperforms the other
programs. The computation time is well reduced until eight
SIMD arrays are used. Almost no performance improve-
ments has been achieved by using sixteen SIMD arrays,
possibly because of the limitation on the memory band-
widths.

6. CONCLUSION

Efficient implementations of a large-scale FIR adaptive fil-
ter on nVIDIA GeForce GPU’s have been discussed. Re-
duction of memory accesses including vector load/store and
multi-thread code help to overcome the influence of slow
off-chip memory access. A tree adder is introduced to re-
duce the cost for summing thread outputs up. Two or three
times acceleration for a single-filter case and six times ac-

Table 2. Computation time for 4096-tap, 10 seconds data

Type Core 2 | GeForce 8800 | Atom | ION
Time [sec] 4.75 2.32 19.60 | 6.51
1000 3

— i ION, Scalar
D too—m==-- I L e
KD, T I
R oA
S O
x lOO).“ ------- [S T LF 9|
© ION, Vector
< T SR T x*
o I Trteal
= | T~ T
) el GeForce, Scalar
e | Tl ;
= O R :
C_U """" Heram e -
= GeForce, Vector
o ;
2 |

1 i n

1 2 4 8 16

Number of Simultaneous Runs

Fig. 4. Performance for multiple simulations

celeration for a 16-filter case have been achieved by GPU
computing.

7. REFERENCES

[1] A. Hirano and K. Nakayama, “Implementation of
stereophonic acoustic echo canceller on intel IA-32 pro-
cessors with SIMD capability,” Proc. of 22nd SIP sym-
posium, Nov. 2007.

[2] A. Hirano and K. Nakayama, “Implementation of
stereophonic acoustic echo canceller on nvidia geforce
graphics processing unit,” Proc. of ISPACS 2009, pp.
303-306, Dec. 2009.

[3] S. Koike, “Performance analysis of least mean
modulus-newton algorithm,” Proc. of ISPACS2009, pp.
413-414, Doc. 2009.

[4] “NVIDIA CUDA compute unified device architecture
reference manual,” Nov. 2008.

[5] “NVIDIA CUDA programming guide,” Dec. 2008.
[6] “ATI stream computing user guide,” Mar 2009.

[7] J. Nagumo and A. Noda, “A learning method for system
identification,” |EEE Trans. AC, vol. 12, no. 3, pp. 282—-
287, Mar. 1967.

[8] B. Juurlink A. Shahbahrami and S. Vassiliadis, ‘“Per-
formance impact of misaligned accesses in SIMD ex-
tensions,” Proc. of ProRISC 2006, pp. 334-342, 2006.

272

