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Although the excellent metal-binding capacities of aminopolycarboxylate chelants 

(APCs) facilitate their extensive use, pre- and post-toxicity of APCs and their high 

persistence in aquatic environments evoke concerns. Several treatment techniques with a 

principal focus on the degradation of APCs at the pre-release step have been proposed. Here, 

we report a technique for the separation of metal ions from waste solution containing excess 

APCs using a solid phase extraction system with an ion-selective immobilized macrocyclic 

material, commonly known as a molecular recognition technology (MRT) gel. Synthetic 

metal solutions with 100-fold chelant content housed in H2O matrices were used as samples. 

The MRT gel showed a higher recovery rate compared with other SPE materials at 20 °C 

using a flow rate of 0.2 mL min-1. The effects of solution pH, metal-chelant stability 

constants and ionic radii were assessed for 32 metals. Compared to the conventional 

treatment options for such waste solutions, our proposed technique has the advantage of non-

destructive separation of both metal ions and chelants.  

 

Keywords: solid phase extraction; molecular recognition technology gel; metal-chelant 

complexation, wastewater treatment, pH  
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Multidentate chelating agents (chelant) are receiving widespread acclaim for their 

usefulness in a variety of industrial applications (Nowack and VanBriesen, 2005) including 

the treatment of toxic metal-contaminated solid waste materials (Ayres, 1970; Bell, 1977; 

Grasso, 1993; Roundhill, 2001). Since major elements (e.g., Ca2+, Fe3+, Mg2+, Al3+) compete 

with toxic metals for the binding sites of chelating agents, an excess amount of chelant is 

added to ensure the adequate separation of toxic metal-contaminants from solid wastes 

(Leštan et al., 2008). Meanwhile, aminopolycarboxylate chelants (APCs), such as 

nitrilotriacetic acid (NTA), ethylenediaminetetraacetic acid (EDTA) and 

diethylenetriaminepentaacetic acid (DTPA), are commonly used to restrict metal ions from 

playing their normal chemical roles, through the formation of stable and water-soluble metal 

complexes. In particular, EDTA has most often been utilized among the APCs, since EDTA 

forms strong water-soluble chelant complexes with most toxic metals (Egli, 2001; Nowack 

and VanBriesen, 2005; Leštan et al., 2008).  

While chelants are advantageous because of their powerful metal-binding properties, it is 

this same characteristic that may have undesirable environmental consequences. Wherever 

APCs have been introduced into the natural environment, the aqueous transport of metals, 

which characteristically form stable complexes with chelates, can be expected to occur 

(Means et al., 1980; Nowack and VanBriesen, 2005). Residence time of the metals is thus 

extended, as they are remobilized from soils and sediments into the water phase. EDTA and 

its homologs are poorly photo-, chemo- and biodegradable in the environment (Means et al., 

1980; Bolton Jr. et al., 1993; Kari and Giger, 1995; Kari et al., 1995; Egli, 2001; Nowack, 

2002; Nörtemann, 2005) and, in most cases, metal complexation raises the threshold values 

for toxic effects (Sillanpää and Oikari, 1996; Sorvari and Sillanpää, 1996; Sillanpää, 2005). 

Excess chelant also increases the total nitrogen content and the phosphate solubility in 
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interstitial waters (Norvell, 1984; Horstmann and Gelpke, 1991; Erel and Morgan, 1992; Li 

and Shuman, 1996; Hering and Morel, 2002). 

Wastewater with excess APCs entails subsequent separation or degradation treatment 

before it can be safely discharged. In Europe, treatment of EDTA-containing wastewaters is 

increasingly required because of the increasingly stringent environmental regulations 

(Grundler et al., 2005; van Ginkel and Geerts, 2005). Several processes have been proposed 

for the degradation of APCs to restrict their intrusion to the environment (Sillanpää and 

Oikari, 1996; Kagaya et al., 1997; Madden et al., 1997; Krapfenbauer and Getoff, 1999; 

Muñoz and von Sonntag, 2000; Rämö et al., 2000; Bucheli-Witschel and Egli, 2001; Rämö 

and Sillanpää, 2001; Sillanpää and Pirkanniemi, 2001; Sillanpää and Rämö, 2001; 

Pirkanniemi et al., 2007). The cost of chelants is also an important issue surrounding their use 

in metal ion sequestration. Methods that recycle not only the processed water, but also the 

chelant, may therefore be economically feasible (Lim et al., 2005; Leštan et al., 2008).  

Separation and pre-concentration of metal ions from aqueous solutions using solid 

sorbent materials, known as solid phase extraction (SPE) systems, have increased in 

popularity since the 1980s (Hosten and Welz, 1999). Some of the sorbent materials have the 

capability to interact with a variety of metal ions, while others are fairly specific for a 

particular ion (Ebdon et al., 1991; Carbonell et al., 1992; Nickson et al., 1995; Ghaedi et al., 

2006; Ghaedi et al., 2007; Ghaedi et al., 2008). Lately, there has been increasing interest in 

developing more specific materials that can be used for the separation of particular ions from 

solutions containing complex matrices with high concentrations of interfering ions. However, 

there is no report of an SPE system for the removal of APCs in wastewaters. The extraction 

efficiency of SPE materials remarkably decreases in aqueous solutions containing excess 

chelant, since APCs compete with SPE materials for complexation of metal ions. One group 

of SPE materials includes the macrocyclic chelants, such as crown ethers, immobilized on a 
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silica or polymer support (Hosten and Welz, 1999). Ion-selective behavior of SPE-type 

systems with immobilized macrocyclic materials has been mentioned for pre-concentration 

and separation of metals (Bradshaw et al., 1988; Izatt et al., 1988; Bruening et al., 1991; Izatt 

et al., 1994; Izatt et al., 1995; Izatt et al., 1996; Izatt, 1997; Izatt et al., 2003).  

In this study, we propose a method for the separation of metal ions from waste solutions 

containing excess amount of APCs. Synthetic wastewater was treated with an ion-selective 

immobilized macrocyclic material attached to a solid phase, commonly known as a molecular 

recognition technology (MRT) gel. The performance of the separation process with the MRT 

gel was studied in terms of metal-chelant stability constants, ionic radii of the metals and 

solution pH. 

 

2.0  Materials and Methods 

2.1 Reagents and instrumentation 

SPE materials (Table 1): AnaLig TE-01 and MetaSEP ME-1 from GL Science, Japan, 

Chelex-100 from Bio-Rad, USA, and NOBIAS Chelate PA-1 from Hitachi High-

Technologies, Japan were used. APCs: NTA, EDTA, DTPA and GEDTA [O,O'-bis(2-

aminoethyl)ethyleneglycol-N,N,N',N'-tetraacetic acid] were used without further purification 

as supplied by Dojindo Laboratories, Japan. Other chemicals were analytical grade 

commercial products. Deionized water prepared using four housing E-Pure systems 

(Barnstead, USA) was used throughout, and is referred to as EPW hereafter.  

The stock solutions containing 10 mM chelants were prepared by dissolving appropriate 

amounts of NTA, EDTA, DTPA and GEDTA in EPW. Metal-stock solutions (1000 ppm) 

were purchased from GL Science, Japan. In total, 32 metals were used: five alkaline earth 

metals (Be, Mg, Ca, Sr and Ba), 10 transition metals (Sc, Y, Ti, V, Mn, Fe, Co,  Ni, Cu, Cd), 

four post-transition metals (Al, Ga, In, Pb), 12 rare earth metals (Ce, Pr, Nd, Sm, Eu, Gd, Tb, 
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Ho, Er, Tm, Yb, Lu) and one radioactive metal (U). Sample solutions were prepared by 

mixing the 10 mM chelant solutions in 0.1 M buffer (CH
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3COONa/CH3COOH for pH 4–5, 

and NaH2PO4/Na2HPO4 for pH 6–8) and 50 ppm metals at a ratio of 99:1.  

All laboratory glassware was soaked for 24 h in an alkaline detergent (Scat 20X-PF, 

Nacali Tesque, Japan) and for 24 h in 4 M hydrochloric acid, followed by rinsing with EPW.  

The pH of the sample solutions was measured with a Navi F-52 pH meter (Horiba 

Instruments, Japan). A Perkin-Elmer Model 3300XL inductively coupled plasma atomic 

emission spectrometer (ICP-AES) was used to determine the concentrations of metal ions in 

aqueous solutions. Detection limits for the measurements were 0.01–6 ppb. 

 

2.2 Experimental procedure 

The SPE materials packed into 3 or 6 mL columns were used in this experiment. Figure 1 

shows a comprehensive view of the experimental setup. Column cleaning was conducted 

with 8 mL of 1 M HNO3 and 6 mL of EPW. 0.1 M buffer solution (5 mL) was allowed to 

pass through the column to ensure the desired pH condition. Solubility of APCs decrease at 

low pH (Ueno et al., 1992), and silica gels of the AnaLig TE-01 column may dissolve due to 

increased solubility at higher pH (Vogelsberger et al., 1992). Therefore, the study was 

restricted to the selected pH range of 2–8. The pH values of the solutions were maintained by 

using buffer solutions of 0.1 M CH3COONa/CH3COOH for pH 4–5 and 0.1 M 

NaH2PO4/Na2HPO4 for pH 6–8. For pH 2, 0.01 M HCl was used without the addition of 

chelant.  

Sample solutions were then treated with the pH-conditioned SPE columns at a controlled 

flow rate. Studies were conducted on the sample loading flow rates adjusted in a range of 

0.2–4.0 mL min-1. Quantitative retention of metal ions was observed up to 0.25 mL min-1, 

while the retention rate decrease gradually with increasing flow rates in the range of 0.3–1.0 
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mL min-1. At high flow rates (2.0–4.0 mL min-1), the recovery of analyte was about 60% 

which indicates the constant retaining capability of the SPE columns at the initial loading 

period. Since quantitative extraction of the analyte is desirable, 5 mL of the sample solutions 

was passed through the SPE columns at a flow rate of 0.2 mL min
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-1.  

The ‘captured’ metal ions were eluted with 5 mL of 6 M HCl solution followed by 

ICP-AES measurement. Effect of eluent concentration on the recovery percentage of analyte 

with the SPE columns were conducted using 0.1–6.0 M HCl (analyte: Fe(III) – 0.1 mM, 

chelant: EDTA –  10 mM, matrix: H2O, pH: 8.0, volume: 5 mL, flow rate: 0.2 mL min-1). The 

recovery percentage increased with increasing concentrations of HCl until 0.5 M, and then 

remained constant. Hence, 6 M HCl was selected as the eluent for the subsequent 

experiments to ensure quantitative elution of the analyte. The recovery of metals via eluent 

was calculated as follows:  

100  
column  the toapplied metal of moles ofnumber 
fractions allin  recovered metal of moles ofnumber  = (%)Recovery   (1) 162 
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For all mixture compositions, triplicate measurements were performed, and the average of 

these values was considered in all calculations. The standard deviations and relative errors of 

the measurements were within 3%. 

 

3.0 Results and discussion 

3.1 Recovery (%) with different SPE materials and APCs 

To investigate the comparative affinities of the different SPE materials with the APCs, 

the sorption experiments were first carried out in a non-competitive environment. 

Performance of the solution of Fe(III) in excess EDTA was first checked as a representative 

metal species, because Fe(III)-EDTA solution is the main EDTA species released from solid 

waste treatment processes and comprises 20–90% of total EDTA in the effluents (Kari and 

Giger, 1996; Nowack, 2002). Similar experiments were repeated with aqueous solutions 
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containing excesses of NTA, GEDTA and DTPA. Figure 2 shows the recovery performance 

comparison of different SPE materials from aqueous metal solutions containing excess APCs. 

The recovery efficiency of AnaLig TE-01 was much better, compared with Chelex-100, 

MetaSEP ME-1 and NOBIAS Chelate PA-1. Possible maximum percentage recovery of 

metals was achieved with the NTA-, GEDTA- and EDTA-metal mixed feed solutions. On the 

contrary, the recovery efficiency was reduced to half with the DTPA-enriched waste solution.  

 

3.2 Effect of metal-chelant stability constants and ionic Radii of metals 

The advantages of using chelating agents in the treatment of metal-containing wastes 

include the high efficiency of metal extraction and high thermodynamic stabilities of the 

metal complexes formed (Fischer et al., 1998; Lim et al., 2005). Figure 3 shows the effect of 

the metal-chelant stability constant on the performance of SPE materials during column-

extraction of Fe(III) from the Fe(III)EDTA aqueous solution containing 100-fold 

concentrations of EDTA. Better efficiency of AnaLig TE-01 was observed compared to the 

other SPE materials for the metal-chelant complexes. Thus, considering the high stability 

constants and chemical forms of the metal-DTPA complexes, better performance of AnaLig 

TE-01 is expected with the following APCs: NTA, GEDTA and EDTA.  

Metal-chelant stability constants are pH-dependent. Therefore, pH plays a key role in 

the separation of metals from metal-chelant solutions using SPE-type systems. The effects on 

metal separation efficiency of solution pH, in the range of pH 5–8, were examined using the 

AnaLig TE-01 and the excess chelant containing waste solutions for all 32 metals (Fig. 4). 

The treated metal-contaminated waste solutions at pH 2 were without chelant due to the 

minimal solubility of chelant at low pH. Most of the transition and post-transition elements 

were extracted with TE-01 quantitatively at pH 5–6.5, and the recoveries decreased at pH 8.0. 

The rare earth and radioactive elements showed the highest recovery rate at pH 8. The 
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recovery efficiency of TE-01 with the alkaline earth metals was not remarkable. Quantitative 

retention in the entire experimental pH range of 5–8 was observed for some metals such as, 

Be, Sc, Fe, Cu, Pb, Sm, Eu, Gd and Tb. 

The effect of the metal-EDTA stability constants and ionic radii of the metals on the 

metal separation efficiency of the AnaLig TE-01 at pH 8.0 are shown in Fig. 5. Although the 

oxidation states were used to identify the metals, no correlation was observed between the 

change in oxidation states and percentage recoveries. Izatt et al. (1994) reported that ionic 

radii of the metals govern the separation behavior of some MRT-type SPE systems. However, 

no such patterns were observed in the present study with AnaLig TE-01 (Fig. 5b). The metal 

separation efficiency of the MRT gel was instead related to the stability constant of the metal-

chelant complex with EDTA within the studied pH region (Fig. 5a). A positive correlation 

with the percentage recovery and metal-chelant stability constants was notable for the studied 

metals with the exception of Be and V.  

 

3.3 Non-destructive separation of metals and APCs 

Systems with macrocycles attached to solid supports (Bradshaw et al., 1988; Horwitz et 

al., 1992; Izatt, 1997) allow the non-destructive separation of metals from APCs. They also 

facilitate the repeated use of macrocycles, since the material can be regenerated after each use.  

The separation mechanism of the AnaLig TE-01 is still unknown and requires extensive 

study. However, based on the behavior of the SPE systems with macrocycles attached to solid 

supports (Bradshaw et al., 1988; Horwitz et al., 1992; Izatt, 1997), we predicted a schematic 

model, as shown in Fig. 6, to show how the non-destructive selective separation of metal and 

APCs occurred within the system. Such selective separation ensures the minimization of both 

macrocycle loss to the environment and the use of diluents (Favre-Réguillon et al., 1997). 
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4.0 Conclusions 225 

226 

227 

228 

229 

230 

231 

232 

233 

234 

235 

236 

237 

238 

239 

240 

241 

242 

243 

244 

245 

246 

247 

248 

249 

In the present work, an MRT gel-SPE system was used to treat metal-contaminated 

wastewater containing 100-fold APCs in solution. The MRT-SPE system was tested using 32 

metals with a number of APCs (NTA, EDTA, DTPA and GEDTA) in the pH range of 5–8. 

The recovery rate was discussed in terms of solution pH, metal-chelant stability constants and 

ionic radii of metals. Maximum separation (∼100%) of metals was observed in the pH region 

of 5–6.5. Quantitative maximum extraction of the analyte from the pH adjusted sample 

solution was attained using a flow rate of 0.2 mL min-1. Metal-chelant stability constants 

influenced the metal recovery to some extent; whereas metal ionic radii seem to produce no 

significant effect. AnaLig TE-01 was found to be stable in the operation process, and enabled 

more than 100 loading and elution cycles to be performed without the loss of analytical 

performance. Thus, the initial high cost of synthesis can be amortized over time. Our survey 

of the literature shows that the idea of using an MRT gel-type SPE material for non-

destructive treatment of chelant-enriched metal-contaminated waste solution is rather new. 

More work is required to investigate the ion-selective property of MRT gels, the behavior of 

the MRT-SPE system in the presence of competing ions and the real mechanism of the ion-

separation technique using an MRT gel.  
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399 Table 1: Different solid phase extraction (SPE) materials used in the study 

SPE material type SPE Base Support Functional group 

MRT Gel AnaLig TE-01 Silica gel Crown ether 

Chelex-100 Styrene divinylbenzene Iminodiacetic acid 

MetaSEP ME-1 Methacrylate polymer Iminodiacetic acid 

Chelate resin 

NOBIAS Chelate PA-1 Hydrophilic methacrylate Polyamino-

polycarboxylic acid 
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1.0 M HNO3, 8 mL 
EPW, 6 mL 

Sample solution

SPE materials 
(MRT gel etc.) 

5 mL 
 
0.1 M CH3COONa/CH3COOH (pH 4–5)  
0.1 M NaH2PO4/Na2HPO4 (pH 6–8) 
0.01 M HCl (pH 2) 

5 mL 

Elution 

Measurement 

6.0 M HCl, 5 mL 

ICP-AES, Perkin-Elmer, 3300XL 

Figure 1: Schematic diagram of the experimental setup 
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Figure 2: Comparative performance of SPE materials with the aqueous metal solution 

containing an excess of APCs (n = 3). Sample solution: Fe(III) – 0.1 mM, Chelant: EDTA –  

10 mM, matrix: H2O, pH: 8.0, sample volume: 5 mL, flow rate: 0.2 mL min-1, elution: 6 M 

HCl –  5 mL. 
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Figure 3: Effect of metal-chelant stability constants on the performance of SPE materials. 

Sample solution: Fe(III) – 0.1 mM, Chelant: EDTA –  10 mM, matrix: H2O, pH: 8.0, sample 

volume: 5 mL, flow rate: 0.2 mL min-1, elution: 6 M HCl –  5 mL. 
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Figure 4: The effect of pH on the metal separation efficiency of the AnaLig TE-01. Sample 

solution: 500 ppb, Chelant: EDTA – 10 mM, matrix: H2O, pH: 2.0, 5.0, 6.5, 8.0, sample 

volume: 5 mL, flow rate: 0.2 mL min-1, elution: 6 M  HCl – 5 mL. 
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Figure 5: Effect of (a) metal-chelant stability constants and, (b) ionic radii of the metals on 

the performance of AnaLig TE-01 with chelant. Sample solution: 0.1 mM, Chelant: EDTA – 

10 mM, matrix: H2O, pH: 8.0, sample volume: 5 mL, flow rate: 0.2 mL min-1, elution: 6 M 

HCl – 5 mL. 
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Figure 6: Selective separation of metal ions by MRT Gel (TE-01): schematic model. 
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