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Abstract—A novel optical non-invasive in vivo blood glucose 
concentration (BGL) measurement technique, named "Pulse 
Glucometry", was combined with a kernel method; support 
vector machines. The total transmitted radiation intensity (Iλ) 
and the cardiac-related pulsatile changes superimposed on Iλ in 
human adult fingertips were measured over the wavelength 
range from 900 to 1700 nm using a very fast spectrophotometer, 
obtaining a differential optical density (∆ODλ) related to the 
blood component in the finger tissues. Subsequently, a 
calibration model using paired data of a family of ∆ODλs and 
the corresponding known BGLs was constructed with support 
vector machines regression instead of using calibration by a 
conventional partial least squares regression (PLS). Our results 
show that the calibration model based on the support vector 
machines can provide a good regression for the 183 paired data, 
in which the BGLs ranged from 89.0-219 mg/dl (4.94-12.2 
mmol/l). The resultant regression was evaluated by the Clarke 
error grid analysis and all data points fell within the clinically 
acceptable regions (region A: 93%, region B: 7%). 

I. INTRODUCTION 
EASUREMENT of blood glucose concentration (BGL) 
has long been considered as important for screening in 

diabetes, diabetes management, pre-diabetes management 
and so on. For diabetes management in particular, frequent 
measurement of BGL is necessary [1], thus, many portable 
BGL instruments have appeared in the market. However, 
current instruments suffer from several problems. Almost all 
BGL monitors are based on withdrawal of blood samples 
with small needles or lancets. The user must puncture their 
skin and squeeze the surrounding tissue to draw blood out. 
Because frequent monitoring is essential, the repeat 
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procedure of skin puncturing becomes painful and 
troublesome and, furthermore, can cause an infection. 
Although a non-puncturing type of BGL monitor, the 
GlucoWatch Biographer, (using iontophoresis to draw 
glucose molecules via skin), has been approved by the FDA, 
its measurement procedure can still cause skin irritation after 
repeated application [2]. Therefore, overall, it has to be said 
that there is still an important unmet need for a truly 
non-invasive technique that will allow frequent, convenient 
and safe BGL monitoring. As the search for such a technique 
continues it goes without saying that the gold standard for 
BGL measurement will be based on analysis of a venous 
blood sample obtained by invasive methods. 

In order to obtain physiological variables non-invasively, in 
vivo optical methods using specific parts of the 
electromagnetic spectrum have been studied and applied up 
to now and further methods are still being proposed [3]–[5]. 
We have focused attention on in vivo spectrophotometric 
measurement in living tissues, with analysis to obtain 
parameters related to blood including blood glucose. Among 
our developments, we have recently reported a novel art 
named "Pulse Glucometry", that is based on very high speed 
near infrared spectroscopy for BGL monitoring without any 
invasion [6]–[8]. 

In general, in vivo spectroscopic analysis, including "Pulse 
glucometry", have utilized multivariate calibration models 
that are constructed by simple multiple linear regression 
(MLR) or multiple regression based scheme, such as Partial 
Least Squares Regression (PLS) and Principal Component 
Regression (PCR) [9]. However, through developments in the 
field of multivariate statistical analysis, a kernel-based 
method has come up in the last decade with the emergence of 
the Support Vector Machines (SVMs) including the kernel 
trick [10], [11]. The kernel trick is a method for converting a 
linear classifier algorithm into a non-linear one. The SVMs 
method is currently regarded as one of the strongest methods 
of supervised learning applied to classification and 
regression. 

In this paper, we describe an attempt to apply the SVM 
method to "Pulse glucometry" to obtain a multivariate 
calibration model. This may then be compared with our prior 
use of the PLS method reported previously [6]–[8]  
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II. METHODS 

A. Pulse Glucometry 
The method of "Pulse Glucometry" is based on the 

application of very fast spectrophotometric analysis in a body 
tissue segment. Photoplethysmograms exhibiting 
cardiac-related blood volume pulses are collected for a 
number of narrow-bands of radiation over a broad spectrum. 
In our experimental setup, the measurement system consisted 
of, a light source (halogen lamp: maximum power 150 W), an 
optical fiber of 10-mm diameter for the incident radiation and 
a single fiber of 1.2-mm diameter for collecting the 
transmitted radiation, a spectrometer (polychromator, 
M25-TP; Bunkoh-Keiki Co. Ltd., Japan), a linear, liquid 
nitrogen cooled (−50 to −100 °C), InGaAs photodiode-array 
(multi-photodetector, OMA V: 512-1.7(LN); Princeton 
Instruments Co., USA), and a conventional personal 
computer with an appropriate interface. Using this system, 
optical transmittance spectra in the wavelength range 900 to 
1700 nm can be measured with a resolution of 8 nm and 
16-bit digitization. The maximum spectrum sampling speed 
achievable is 125 spectra per second with this instrument, and 
in this experiment described here we adopted a speed of 100 
spectra per second.  

In this study, transmittance spectra derived from a fingertip 
of an index finger were collected from 27 healthy adult 
volunteers (20 to 43 years old; 24 males and 3 females). 
Informed consent was obtained from each subject prior to the 
experiment. Oral glucose tolerance tests (OGTT) were 
carried out in these subjects in order to create varying BGLs.  
Immediately after obtaining each Transmittance spectrum 
blood samples (about 3 ml) were collected from the cephalic 
vein of the forearm and analyzed chemically to obtain the 
actual BGL. 

From the time series of transmittance spectra obtained by 
this procedure optical density change (differential optical 
density) at wavelength λ (∆ODλ) can be derived, as:. 
{ EMBED Equation.3  }                                                             (1) 

where Iλ(t) is measured radiation intensity at wavelength λ, 
time t. 

In this experiment, to determine timing point during the 
cardiac cycle use was made of the pulsatile component 
superimposed on the transmitted radiation intensity [6], Thus, 
time t1 is arranged to correspond with the diastolic phase and 
t2 should correspond with the systolic phase. Then, 
differential spectra over the wavelength 900 to 1700 nm were 
obtained in each measurement. 
 

B. Construction of calibration model using support vector 
machines 
Regression by support vector machines was attempted to 

create a multivariate calibration model to relate differential 
optical density spectra to measured BGL employed as the 
teaching data. To implement the procedure, the software "R" 
version 2.3.1 and the kernlab module version 08-2 for "R" 

were used on a conventional personal computer (Dimension 
9100 with a CPU Pentium D 830 and 2GB memory, DELL 
Inc.) [12], [13]. Before calculations to obtain a calibration 
model were performed the differential optical spectra were 
normalized, in a manner already reported [6]. Then spectra 
with artifact were separated by observation, and rejected from 
the data set. In order to obtain the resultant calibration model, 
parameters on calculations were searched repeatedly. For 
finding the resultant parameters, any sophisticated search 
algorithm was not applied. 

III. RESULT AND DISCUSSIONS 
183 sets of data for the differential optical density spectra 

and the measured BGLs over the range of 89.0-219 mg/dl 
(4.94-12.2 mmol/l) were obtained and used as the data set to 
create a calibration model. Fig 1 shows an example of 
obtained differential optical density spectra. The calibration 
models were evaluated by 10-fold cross-validation. Finally, 
resultant parameters were obtained as follows: the kernel 
function applied in training and predicting is ANOVA RBF 
(Radial Basis Function) kernel and ε in the insensitive-loss 
function is 0.01. The resulting estimated BGLs versus 
measured BGLs are plotted on a Clarke error grid shown in 
Fig.1. As an be seen in Fig.2, all data points are within 
clinically acceptable regions: the region A and B (region A: 
93%, region B: 7%: A+B=100%) [14]. Therefore, it might 
reasonably be suggested that SVMR can be used for 
constructing multivariate calibration models as part of the 
procedure of implementing "Pulse Glucometry." 

Despite this result, the superiority of regression by SVM 
over conventional methods (MLR, PLS and PCR) is still 
unclear. A significant problem in MLR is multi-colinearity, 
but PLS and PCR are generally felt to be methods to solve 
problems arising from multi-colinearity. Therefore, these 
methods (especially PLS) are widely employed in 
chemometrics that can have a data set with a large dimension. 
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Fig. 1.  An example of the differential optical density spectrum that was 
obtained from a subject with BGL level 116.5 [mg/dl]. The optical 
density spectrum was used as a part of data set for constructing multi 
vitiate calibration models. 
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However, these methods assume a linear model. If nonlinear 
elements are present in a system then even PLS and PCR 
based calibrations cannot avoid errors originating from 
nonlinearity, at least in principle. Meanwhile, in theory, the 
kernel trick included in the SVM method provides a linear 
classification in the new space equivalent to non-linear 
classification in the original space. Such a mapping can solve 
problems of multi-colinearity and also non-linear problems. 
Thissen et al. attempted to compare the performance of SVMs 
with conventional PLS for spectral regression applications in 
the chemometrics field and reported superiority of SVM over 
PLS [15]. Therefore, it might be expected that the regression 
performance of SVM would be superior to conventional 
methods even in the implementation of "Pulse glucometry". 

IV. CONCLUSION 
A recently proposed non-invasive in vivo BGL optical 

measurement technique named "Pulse Glucometry" was 
combined with support vector machines regression to 
construct a multivariate calibration model instead of a 
conventional PLS-based calibration. Using this SVMR 
approach with 183 measured differential optical density 
spectra from fingertips of adult humans whose blood glucose 
levels were in the range of 89.0-219 mg/dl (4.94-12.2 
mmol/l) yielded good results. When subjected to evaluation 
by a Clarke error grid analysis all estimated BGL data points 
were within clinically acceptable regions (region A: 93%, 
region B: 7%). The result obtained suggests that support 
vector machines regression can provide a suitable calibration 
model for "Pulse Glucometry." 
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Fig. 2.  A scatter diagram showing comparison of the predicted and
measured BGL values by Clarke error-grid analysis. Only values in 
regions A and B are clinically acceptable. As a result, region A: 93%,
region B: 7%: (A+B=100%), region C, D and E: 0%. Regression
formula is Predicted BG =0.56*Measured BG + 69 [mg/dl] (r=0.76).
 

4563


	MAIN MENU
	Go to Previous Document
	CD-ROM Help
	Search CD-ROM
	Search Results
	Print

