
GIMC-based switching control of magnetically
suspended steel plates

著者 Maruyama Hideto, Namerikawa Toru
journal or
publication title

Proceedings of the IEEE International
Conference on Control Applications

page range 728-733
year 2008-01-01
URL http://hdl.handle.net/2297/18709

doi: 10.1109/CACSD-CCA-ISIC.2006.4776736

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Kanazawa University Repository for Academic Resources

https://core.ac.uk/display/196706548?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Proceedings of the 2006 IEEE WeB11.3
International Conference on Control Applications
Munich, Germany, October 4-6, 2006

GIMC-based Switching Control of Magnetically Suspended Steel Plates

Hideto Maruyama and Toru Namerikawa

Abstract- This paper deals with robust control of magneti-
cally suspended steel plates by using a switching control based
on Generalized Internal Model Control (GIMC) structure.
First, we derive a mathematical model for the magnetically
suspended steel plate. The system is a multi-input and multi-
output unstable mechatronic system. Then we design a robust
controller which achieves both of high performance and high
robustness for the magnetically suspended steel plates. GIMC
structure is constructed with a general outer feedback loop
and an inner loop. The outer-loop controller is a nominal high
performance controller and it can be used for the nominal plant.
On the other hand, the inner-loop controller is designed via the
parameterization of a set of stabilizable controllers. Finally,
several experimental results show that the GIMC structure
based switching controller has both of high performance for
the nominal plant and the high robustness for the perturbed
plants compared with a ,u controller.

I. INTRODUCTION

The effectiveness of robust control design techniques such
as X. control, g-synthesis has been shown via plenty of
applications, but almost all robust control design techniques
sacrifice nominal performance, because they are based on the
worst possible scenarios which may occur in a only particular
situation [1], [2]. Robust stability for the worst-case scenario
is still important. Then a desired property for the control
systems should achieve both of high nominal performance
and high robust stability.

It is well-known that general control architecture cannot
achieve both performance and robustness because there exist
a tradeoff between these specifications. Then multiple control
architectures should be used and they should be switched
to adapt condition of the controlled plant. For this prob-
lem, "Generalized Internal Model Control structure" was
proposed by Kemin Zhou [3], [4], where GIMC structure
is one of generalized structure of IMC by introducing outer
feedback controller. This structure can switch controllers
according to a residual information between the plant and its
internal model. This method had been applied to gyroscope
and motor control and the effect for fault-tolerant property
was confirmed[5], [6]. But it has not been applied to strictly
unstable plants yet. An application of multiple free parame-
ters was proposed[7], but this method has not been verified
yet experimentally.

Hence, our goal is to apply the GIMC structure to a strictly
unstable and MIMO magnetically suspended steel plate and
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evaluate its effectiveness via control experiments[8], [9]. The
magnetically suspended steel plate is a four-input and four-
output MIMO system and it is unstable and infinite dimen-
sional system. Here, we consider the multiple suspended
objects and verify that GIMC structure achieves both of high
nominal performance and high robustness.
We design three robust controllers based on the X. mixed

sensitivity problem and they are appropriately switched in
the GIMC structure according to the internal residual signal.
For comparison, we also design a robust single controller
which achieves robust performance condition based on the
structured singular value g.
We show that the conventional g-controller has the robust

performance but the nominal performance is sacrificed for
improving robustness. On the other hand, the proposed
GIMC controller has better nominal performance compared
with the g controller, and also achieves higher robust stability
for multiple plants.

II. GIMC STRUCTURE
A. Definition and Basic Property

Let P(s) be a nominal plant model of LTI plant P(s) and
Ko(s) be a stabilizing controller for P(s). Suppose that Ko
and P have the left coprime factorizations expressed by

P(s) = M(s) - NI(s), Ko (s) = V (s) 'U(s) (1)

It is well known that every stabilizing controller K(s) for
P(s) can be written in (2) and (3) where Q(s) e RH. is a
free-parameter,

K(s) = (V (s)- Q(s)NV(s)) -' (U (s) + Q(s)Al(s)),
det(V(-)-Q(-)N() ) #t0.

(2)
(3)

A typical GIMC structure is shown in Fig. 1. This has an outer
feedback loop(Ko (s) = V (s) -'U(s)) and an internal feedback
loop. This structure is similar to the well-known Internal
Model Control, and is generalized by introducing a dynamic
controller.

Note that the reference signal ref(t) in Fig. 1 enters into
the stabilizing controller K(s), but the transfer function from
y(t) to u(t) is same with K(s) = (V(s) -Q(s)JN'(s))-'(U(s) +
Q(s)M(s)). Hence the stability of the system is same with
K(s). The free-parameter Q(s) e RH. can be chosen to
achieve (3) and K(s) is a set of the stabilizing controllers.
GIMC structure can achieve both high performance and

high robustness because it utilizes both Ko(s) and K(s) based
on an internal residual signal f (s). The residual signal f(s)
can be expressed in (4)[4].

f(s) = Iv(s)u(s)-AM (s)y(s) (4)
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structure with a detector and a switch in the internal loop as
shown in Fig.2. This structure makes the high performance
controller Ko (s) work even if there exists a small perturbation
P(s) -P(s).

In this new structure, a switching timing and its decision
is judged by a residual signal r(s) which is an output of a
function H(s). The signal r(s) is expressed in eq. (6) and
the function H(s) is a filter of the signal f(s) to judge a
switching timing of the controllers.

Fig. 1. GIMC structure

This residual f(s) is an error of an estimated output signal
and an actual output signal. Consider two cases which are

P(s) = P(s) and P(s) P(s) cases.

P(s) P(s):
If there are no model uncertainties, disturbance nor

faults, then f(s) = 0 and q(s) = 0. The control
system is controlled by the high performance con-

troller Ko (s) = V (s) -'U (s).
P(s) P(s):

If there are either model uncertainties or distur-
bance or faults, then inner loop will be active be-
cause q(s) :t 0 nor f(s) :t 0. The feedback system is
controlled by K(s) (V(s)- Q(s)N(s)) -' (U (s) +
Q(s)M(s)).

GIMC structure can switch two controllers Ko(s) and K(s)
by using internal signal f(s) in the above way and this
switching characteristic gives a desired control property to
the control system. The high performance controller Ko(s)
is applied to the nominal plant (f(s) = 0) and the high
robustness controller K(s) is employed for the perturbed
plant(f(s) #t 0).

B. Design Procedure of GIMC Structure
The design procedure of GIMC structure is given by the

following three steps.
Design Procedure[3]
Step 1. Design a high performance controller Ko(s) for the
nominal model P(s).
Step 2. Design a high robust controller K(s) for the perturbed
model P(s).
Step 3. Construct internal controller Q(s) based on the
following equation.

Q(s) = V(s)(K(s) -Ko(s))(A1(s)K(s) +A?[(s)) 1 (5)

The internal controller Q(s) is not used for the nominal
model then the nominal plant is controlled by only KO(s).
The internal controller Q(s) is activated for the perturbed
plant and it is controlled by K(s).

C. Implementation of GIMC-based Multiple Switching Con-
troller

Actually it is impossible to construct a completely accurate
plant model such as P(s) = P(s), then K(s) is applied any-

time even for the nominal plant. Consider a modified GIMC

(6)

A judgment index Jth is a magnitude of the signal r(s) in
(7). This index Jth is utilized to decide one model among the
multiple candidates of the plant models. If r(s) < Jth then
switch is OFF, which means the candidate of the perturbed
plant is selected and if r(s) > Jth then the switch is ON.

Jth = max r(s) |, P = P(1 +A)
A= 0u,d

(7)

The switching control are executed according to the free
parameter Q and this method can be extended to multiple-
controller case by using multiple free parameters Q(s)s as

shown in Fig.2. In this case, we carry out Step 2 and
Step 3 of GIMC design steps twice, and design two robust
controllers K1 (s) and K2 (s), then construct two internal
controllers QI(s) and Q2(s) respectively.

Here two judgment indexes Jthl and Jth2 are necessary

and the switching control law is described as follows.

r(s) < Jthl -> without Q(s) -> Ko(s)
Jthl < r(s) < Jth2 -> Ql (s) -> Ki (S)

Jthl < r(s) ` Q2(S) -> K2(S)

e ref X p

Detector

Fig. 2. Implementation of multiple controllers based on GIMC structure

III. SYSTEM CONFIGURATION AND MODELING
A. System Configuration and Modeling
We have constructed an experimental system for magnetic

suspended steel plates shown in Fig.3. This system has five
electromagnets and four of them are used in the feedback
control where four electromagnets are identical. Each elec-
tromagnet has its own optical gap sensor across the steel
plate as shown in Fig.3.

This system can be illustrated in Fig.4 where fmagj:

electromagnetic force at each position, yj: displacement of
each position of sensor, a: distance of working point of
electromagnetic force at x and z axes(j= 1,2,3,4).
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We define motion modes of the plate as in Fig.5 where
y, is a displacement of each mode of motion(n = g, 0, 0, v).
These modes of motion are expressed in eq.(8), (9), (10) and
(11). The transformation of state variable as yo = aO and
y, = ao are used in these equation, where m:mass of steel
plate[kg], g:acceleration of gravity[m/s2], MO = Ix a2 :mass
in yo[kg], MO = Iz/a2:mass in y,[kg], Ix:inertial mass of x
axis[kgm2], Iz:inertial mass of z axis[kgm2], MG:mass of 4th
mode[kg], Cc:damping of 4th mode[Ns/m], Kc:spring of 4th
mode[N/m].

myg = mg- (fmagl + fmag2 + fmag3 + fmag4) (8)
MyO~ = - (fmagl + fmag2- fmag3- fmag4) (9)
MOj30 = -(fmag -fmag2 + fmag3- fmag4) (10)

MGSG + CGG +KAKya =

-(fmagI - fmag2-fmag3 + fmag4) ( 11)

The electromagnetic force is expressed in eq.(12) and it is
linearized into (12) by using Taylor-series expansion, where
Yj:steady gap between electromagnet and steel plate[m],
yj:displacement from the steady gap[m], Ij:steady current of
the electromagnet[A], ij:current from steady current[A], and
k and yoj are coefficients of electromagnets.

Ij + ij(t) )2
fmagj(t) kj j(y =(tJ+y) ) 1,2,3,4

Keq + Ki ij (t)-KyYj (t) (12)
(IN22k1 2k12Keq=k ) Ki= k K 2k/

Keq (y+yo)2' Yy+yo)3
Let us define the coordinate translation matrix T be-

tween each axis(j= 1,2,3,4) and each mode of motion(n
g, 0, 0,y) as

Yi
Y2
Y3

LY4
1 Yg

T YO
Yp

L YGu

TF=
1
1
1
1

I 1 1

1 I -1
-1 -1 IJ

Substitute eq.(12) into (8), (9), (10) and (11) with a
relation of mg = 4Keq at the equilibrium point, then we can
obtain the equations of motion of each mode as in (14), (15),

~I.ecfroin,qanet -[= f = --:-X-:-L:

FIg.3.Magnetically S e Ste Plate SteelPla

Sensor ~ ~ - f~-- ----

Fig. 3. Magnetically Suspended Steel Plate System

A L3

Fig. 4. Axes and forces to the Plate

(a) 1st mode y,

(c)3d /-mode

(c) 3rd mode y,

(b) 2nd mode y4

(d)4th- mod

(d3 4th mode Ya

Fig. 5. Motion Modes of the Plate

(16) and (17) by using the matrix T.

3;g(t)

3o (t)

§o (t)

ycg (t)

4Ky yg (t) _ 4Ki ig (t)m yg(t)-mig(t)
4K ~ 4K-

YO (t)- ' io (t)
4K ~ 4K-

C,. (t4K- KKG
MG MG /

(14)

(15)

(16)

4Ki .

mGlu (17)

B. Definition of Multiple Plants
Let us define multiple plants shown in Fig.6. The nominal

suspended object is constructed with a steel plate with two
aluminum plates on it and its corresponding mathematical
model is defined as P(s). The perturbed object 1 is also
constructed with a steel plate with one aluminum plate
on it and its mathematical model is defined as P1 (s) and
perturbed object 2 is a steel plate itself and its mathematical
model is defined as P2(s). A mass of a steel plate is 1.877[kg]
and a mass of an aluminum plate is 0.333[kg]. The physical
parameters for P(s), Pi (s) and P2(s) are also shown in Table
I.

IV. CONTROL SYSTEM DESIGN
The controller is designed for each mode(n =g, 0, ,)

based on the design procedure described above. First, a nom-
inal high performance controller Ko (s) for P(s) is designed in
Stepi, then the robust controllers Kj (s) and K2(s) for Pi (s),
P2(s) are also designed in Step2.1 and 2.2, respectively. X.
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where (A,B) and (Ak,Bk) are controllable, (C,A) and (Ck,Ak)
are observable. The coprime factorizations of P(s) and Ko(s)
are given by (19) and (20), respectively. Note that L and Lk
stabilize A + LC and Ak + LkCk, respectively.

Steel Plate

Fig. 6. Nominal Suspended Object [V U]

[A+LC B+LD L (19)

[Ak+LkCk Lk Bk+LkDk
Ck I Dk

TABLE I
MODEL PARAMETERS

[ ]g P(s) Pi(s) P2(s)
m[kg] 2.543 2.210 1.877

I,[kgM2]| 5.087x10-2 4.512x10-2 3.937x10-2
I,[kgM2i 5.087x10-2 4.512x10-2 3.937x10-2
Y[m] 5 x 10-
I[A] 0.431 0.402 0.370

k[Nm2/A2] 12.340x10-4
ya[m] 1.044 x Io-'
Mc[kg] 6.511[kg] 5.775[kg] 5.040[kg]
Ca [Ns/m] 10
Ka[N/m] 5 x104

mixed sensitivity problem is used for the controller design.
The designed controllers Ko is shown in Fig.7, K1 and K2 are

omitted. From these three figures, we can see that the gain
curves of Ko, K1 and K2 are on the decrease in this order.
Therefore, performance of Ko, K1 and K2 are better in that
order. On the other hand, robustness of K2, K1 and Ko are

on the increase.

120

100

80
X 60

20-40

201-40

-0 10 I- 10° O1I 1Fr2 103 104

Frequency [Hz]

400

300

200

100

-100 L

10
Frequency [Hz]

Fig. 7. Bode Diagram of Controller Ko

Finally, we construct the internal controller Ql (s) and
Q2(s) by using Ko(s), K1 (s) and K2(s) based on Step 3. In
order to construct the internal controller in (5), the coprime
factorizations of P(s) and Ko(s) are required. Suppose that
state space representations of Ko (s) and P(s) are given as

P B], Ko [Ak Bk (18)

For comparison, we designed a t-synthesis controller and
the bode plot of the controller Kg1 is shown in Fig.8. The
gain characteristic of K.1 is similar to a gain curve of K2.
The structured singular value with the Kg1 is less than one.

Therefore, Kg1 achieves the robust performance condition.

120
100 _
80
60
40 -

20 -

0O

-20
-40 -

-60
102 10 -I 10° 10l

Frequency [Hz]

102 103 104

600

104
Frequency[Hz]

Fig. 8. Bode Diagram of Controller Kg

V. EXPERIMENTAL EVALUATION

A. Evaluation ofperformance and robustness

Impulse disturbance responses are shown in Fig.9 and
Fig.10. The magnitude of the disturbance is about 12[N]
upward impulse force from under the steel plate. From the
result of disturbance responses, GIMC structure shows worse

response in (c)-case but shows better responses in (a) and
(b)-cases. The t-controller K11 does not show big change
in all cases. However, a response of K11 in Fig.10(c) is
vibrating in a steady state which means this condition is
almost robust stability limit. GIMC in Fig.9(c) does not
show any vibration in a steady state after l[s] which shows
robustness of the GIMC structure. A response of GIMC
in Fig.9(a) shows better response than K11 which means

GIMC has a better nominal performance. From these results,
K1, achieves performance and robustness, but can't achieve
high performance in nominal case and high robustness in
the perturbed case. On the other hand, GIMC structure
achieves both of high performance in nominal case and high
robustness in perturbed case.
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B. Evaluation of controller switching
We remove one aluminum plate from the nominal plant

at 10[s] and remove another aluminum plate at 30[s]. The
resulting time responses in the change of the suspended
plates are shown in Fig. 11. The response of GIMC structure
does not change in steady state, but the response of K,u
change and its vibration is getting larger after 30[s] for P2.
The GIMC structure changes the magnitude of the control
input by controller switching according to the plant variation,
but the magnitude of the control input of K,u is almost
invariant for all three plants. The internal signal r which
is an output of the filter H(s) in these situations is shown
in Fig. 12. It can be seen that GIMC structure can detect a
perturbation of plant by using this internal signal. In this
case, threshold values of judgment functions are selected as
Jthl = 0.7 X 10-4 and Jth2 = 2.5 x 10 4.

VI. CONCLUSION
This paper dealt with an application of GIMC-based

switching control to a magnetically suspended steel plate
system. We considered the multiple suspended objects and
verify that GIMC structure achieved both of high perfor-
mance for the nominal plant and high robustness for the
perturbed plants by controller switching. We designed three
robust controllers and they were appropriately switched
in the GIMC structure according to the internal residual
signal. A robust single controller which achieved the ro-
bust performance condition based on the structured singular
value g was designed for comparison. We showed that the
conventional g-controller had the robust performance but
the nominal performance was sacrificed for robustness. On
the other hand, the proposed GIMC controller had better
nominal performance compared with the g controller, and
also achieved higher robust stability for multiple plants.
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