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Abstract

Numerical irreversibility due to round-off errors appearing in self-gravitating N-
body systems is investigated by means of molecular dynamics methods. As a typical
self-gravitating system, a closed spherical system consisting of N point-particles,
which are interacting through the Plummer softened potential, is considered. In
order to examine the numerical irreversibility, time-reversible simulations are exe-
cuted: that is, a velocity inversion technique for a time-reversal operation is applied
at a certain time during the evolution of the system. Through the simulations with
various energy states, it is found that, under a restriction of constant initial potential
energy, numerical irreversibility prevails more rapidly with decreasing initial kinetic
energy. In other words, the lower the initial kinetic energy (or the lower the total
energy), the earlier the memory of the initial conditions is lost. Moreover, an influ-
ence of integration step sizes (i.e., time increments At) on numerical irreversibility
is examined. As a result, even a small time increment could not improve reversibility
of the present self-gravitating system, although the small time increment reduces
global errors in total energy.

Key words: Self-gravitating system, Irreversibility, Round-off errors, N-body
simulation
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1 Introduction

N-body systems interacting with ‘long-range potentials’ exhibit several pe-
culiar features, such as negative specific heat, violent relaxation, and non-
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equilibrium nonextensive statistical mechanics [1-9]. Accordingly, investiga-
tion of these features has resulted in a lot of literature on astrophysically-
motivated studies of temporal evolutions of self-gravitating systems (see e.g.,
Refs. [10-12] and references therein). In those studies, numerical simulations
play an important role in investigating /N-body systems, because we cannot
solve such an N-body problem analytically. However, the numerical simula-
tion inherently cannot avoid round-off errors, since floating-point real number
arithmetic is employed. The influence of round-off errors becomes a serious
problem, when we consider a system based on time-reversible laws, such as
Newton’s second law. This is because, even in the time-reversible system, nu-
merical irreversibility arises from round-off errors.

In order to describe numerical irreversibility appearing in N-body simulations,
we first review the work by Orban and Bellemans [13]. Their work is a good
example from which to obtain a good understanding of numerical irreversibil-
ity in the simulation, although they investigated a short-range interacting
system. Orban and Bellemans simulated the Loschmidt reversibility paradox
on time-reversible dynamics, by using a hard-disk molecular dynamics (MD)
method. In their simulation, a system of interactive molecules started from
a non-equilibrium state, in order to observe the evolution of Boltzmann’s H-
function, H(t)= [ f(v)In f(v)dv, where f(v) is a probability distribution for
the particle velocity v at time ¢ [14,15]. They confirmed that, during a cer-
tain time interval 0 < ¢ < t,,, the value of H(t) decreased with time ¢ and
approached the equilibrium state, in accordance with the Boltzmann’s hy-
pothesis. They then suddenly reversed all velocities of the molecules at time
t = tev, forcing the system to return to the initial nonequilibrium state. If the
system is reversible, we can expect the value of H(t) to return to H(0) exactly.
However, they found that the value of H(¢) tended to return to the initial one
but not exactly, i.e., numerical irreversibility due to round-off errors appeared
in their simulation.

In chaotic and unstable systems such as the above N-body one, small noise has
a significant influence on trajectories of all particles, since a small disturbance
grows exponentially with time. Accordingly, the stability of N-body system:s,
which Krylov suggested [16], has been extensively studied; in particular, N-
body systems interacting with ‘short-range potentials’ have been examined
by using MD methods [17-22]. Nevertheless, since the standard MD simula-
tion was not able to avoid round-off errors, the influence of round-off errors
or irreversibility has not been investigated quantitatively [23-25], except for
a few simple models [26-30]. Recently, however, in order to study numerical
irreversibility in N-body systems, the present author [14,15,31] investigated
systems interacting with ‘short-range potentials’, by means of a time-reversible
MD method, i.e., a bit-reversible algorithm [32]. It was demonstrated that nu-
merical irreversibility due to round-off errors correlated with the process of
relaxation and the magnitude of the noise, and that the irreversibility propa-



gated through collisions between particles.

On the contrary, as for an N-body system interacting with ‘long-range poten-
tials’, R.H. Miller [33-35] examined irreversibility in small stellar dynamical
systems and showed that numerical errors grew exponentially with time. Since
then, Lecar [36], Gurzadyan et al. [37], Kandrup [38,39], Goodman et al. [40]
and many other researchers have investigated instability of self-gravitating sys-
tems [41-57]. For example, a relationship between the time scale for mixing
and the number of particles N was evaluated and discussed in detail [37-40].
However, most of those previous studies examined only the instability of the
system. Therefore, the irreversibility appearing in the self-gravitating N-body
system has not yet been clarified, from the viewpoint of time-reversible dy-
namics. (For instance, in a typical star-rich cluster with a million stars, each
star feels enough of the granularity of the gravitational field of the other stars
that the consequent perturbations lead to a total loss of memory of the initial
conditions of its orbit [11]. However, in the N-body simulations, numerical
fluctuations due to round-off errors could behave as if they were the physical
perturbations.)

In this context, in order to acquire a deeper understanding of the N-body
simulation, we will investigate numerical irreversibility appearing in N-body
systems with long-range interactions [58]. In the present paper, to examine a
fundamental characteristic of the numerical irreversibility, we consider a self-
gravitating N-body system enclosed in a spherical container with a reflecting
wall [2,5,59-64]. In particular, we will investigate not only the influence of
integration step sizes (i.e., time increments At), but also the influence of energy
on the numerical irreversibility. This is because, in a short-range interacting
system, the behavior of the irreversibility depends on the energy of the system
[14]. That is, through this study, we investigate numerical irreversibility in self-
gravitating systems and will attempt to bridge the gap between the short-range
interacting system and the long-range interacting one. So far, the long-range
interacting system such as the self-gravitating one has only been examined
separately from the short-range interacting one.

The present paper is organized as follows. In Section 2, we give a brief review
of MD techniques used for simulating a self-gravitating system enclosed in a
spherical container with a reflecting wall. In Section 3, the initial conditions
for the simulation are defined, and the time-reversal operation is described. In
this section, we also describe several parameters which make a non-equilibrium
behavior visible. In Section 4, the simulation results are presented. We first
give an overview of the relaxation process, through a typical simulation result.
Then, numerical irreversibility appearing in the system with various energy
states is investigated and discussed. Moreover, the influence of the integration
step size (i.e., the time increment At) on numerical irreversibility is examined
as well. Finally, some conclusions are given.



2 Numerical methods

In order to simulate N-body systems with long-range interactions, we consider
a typical problem which is known as the Antonov problem [1]. This is because
it is the most fundamental one and has been extensively investigated in detail
[2,5], especially by numerical simulations [59-64]. For simulating the Antonov
problem, we consider a system consisting of N point-particles enclosed in a
spherical container of radius R with reflecting (adiabatic) walls, as shown in
Fig. 1. Accordingly, the present simulation is carried out under a restriction
of constant energy, i.e., the microcanonical ensemble.

To simulate this system, we integrate the set of classical equations of motion
for the particles interacting through the Plummer softened potential or an
attractive soft Coulomb potential [61-64]. The Plummer softened potential is

given by,
1
d=-—— (1)

72+ 7“37
where r and ry represent the distance between particles, and the soft core
radius, respectively. In order to keep generality of the system, we set units as
G=R=m=1, where GG and m are the gravitational constant and the mass of
a point-particle, respectively. The total energy E of the system is defined as,

E = Exg + Epg = Z——Z (2)

i<j + 7"0

where Exg, Epg and v; represent kinetic energy, potential energy and speed
of the i-th particle, respectively. In order to use the traditional convention for
self-gravitating systems, we define the total rescaled energy ¢ as,

R
g_EKE—i_gPE_Em (3)

Reflecting wall
(adiabatic wall)

Point-particles

Fig. 1. Setup for the Antonov problem.



In the present study, /R3/N is chosen with the unit of time, which is calcu-
lated from both the unit of length R and the unit of velocity 1/ N/R [61].

In order to investigate numerical irreversibility due to round-off errors, we
should avoid any other irreversibility appearing in simulations. That is, the
scheme of the algorithm for the present simulation must be time-reversible.
For this purpose, the set of equations of motion is integrated by using Verlet’s
algorithm (i.e., the leapfrog algorithm);

82 ZT;
ot?

(A = wilt + Af) = 2a;(t) + 2s(t — At) = 3 fi; (1) (At)”, (4)

where f;;(t) is a partial force from the j-th particle on the i-th particle, located
at position x; at time t. It should be noted that, through the present simu-
lations, all interparticle forces are calculated directly at each time step At,
in order to avoid irreversibility due to the simulation procedure. For simulat-
ing the self-gravitating system, a double precision floating point real number
is employed. Nevertheless, we can expect that exact time-reversibility of the
simulation is violated due to round-off errors, i.e., numerical irreversibility will
appear in the simulation [14,15,32].

As discussed in Refs. [37-40], the time scale for mixing depends on the number
of point-particles N. However, in the present simulation, we focus on a fun-
damental characteristic of numerical irreversibility. Therefore, we consider a
small system consisting of N = 250 point-particles in a spherical container of
radius R =1 [61]. In order to keep the total energy variation within 0.01% of
its initial value, the time increment At is set to be 107>, (Note that, in Section
4.2, At is varied ranging from 10~* to 1079, in order to study an influence of
the time increment.) The soft core radius ry in Eq. 1 is fixed, that is, ro/R
is set to be 5 x 1072, for simulating self-gravitating systems properly. This is
because a variation in the soft core radius has an influence on the stability
of systems [43-47,51]. (For example, as ry is increased, the instability of the
system or the Lyapunov exponent could decrease [45,51].) In the spherical con-
tainer, to mimic the reflecting wall or the adiabatic wall, radial components
of the velocity are reversed if the particle reaches the reflecting wall [63,64].

According to the numerical study by Ispolatov et al. [61], collapse and ex-
plosion energies for the present system are .,y ~ —0.339 and e, ~ 0.267,
respectively, since the soft core radius ry is set to be 5x 1073 R in the simulation
[65]. This means, if the total rescaled energy ¢ of the uniform state becomes
lower than .., the system should undergo a collapse to a core-halo state. On
the other hand, if the energy of the core-halo state becomes higher than e,
the system should undergo an explosion. When the energy of the system is
between e.,; and €4y, the system should be in a stable or metastable state.



In the self-gravitating system, two time scales are typically considered: the
first one is the crossing time 7, corresponding to the free-fall time, and the
second one is the relaxation time 7, which is driven by the two-body encounter.
For example, in our units, we can evaluate them as follows [4,63];

e~ \[Gp = /P, (5)

017, (6)
Tr ~ U. Te s
In N

where p represents the density of the system. Accordingly, in our units, the
crossing and relaxation times of the present system become 7, ~ 0.1 and
T =~ 0.6, respectively. That is, unlike astrophysically motivated studies, the
order of the relaxation time is the same as that of the crossing time, because
we consider a small N-body system.

3 Initial conditions and parameters for simulations

In order to simulate a time evolution of systems, the system is initially set
to be in a highly non-equilibrium state. For this purpose, the initial velocity
distribution is assumed to be one of a non-equilibrium state. Accordingly, for
an initial setup, all the particles are set to have a velocity equal in |vy| but
with a random direction. Thereafter, in order to keep the total momentum and
the total angular momentum as 0, the velocities of the particles are slightly
modified, taking into account the subsequent density profile.

On the other hand, all the particles are initially distributed randomly in the
spherical container, based on a spherically symmetric density profile. For this
purpose, we set the initial density profile as follows: (1) The radial density
profile is initially assumed to be a certain quasi-equilibrium one. In the present
study, the initial density profile was set to be a quasi-equilibrium one for
e ~ —0.3, which was cited in Ispolatov et al. [61]. (2) In order to distribute
the particles in the spherical container of radius R = 1, the container is first
divided into 10 spherical shells in the radial direction r, where the distance
between each inner outer shell is set to be Ar = 0.1. For example, the region
of 0.9 < r < 1.0 is the outermost shell. (3) Based on the radial density profile
described in (1), the particles are distributed randomly in the spherical shells,
taking into account a spherically symmetric profile.

According to these operations, the initial potential energies for the present
simulations were set to be eppg = —1.131 & 0.020, where the error indicates a
68% confidence level in terms of the normal error distribution, by using the
average over 100 simulations each with an identically-prepared initial setup.
In other words, the initial density profiles and initial potential energies are



Table 1
Technical details for the initial setup.

Etarget € EKE0 EPED

-0.7 —0.700 £ 0.021 0.431 £ 0.002 —1.131 £ 0.020

—-0.3 —0.296 £ 0.021 0.835 £ 0.004 —1.131 £ 0.020
0.2 0.204 £ 0.021 1.335 £ 0.006 —1.131 £ 0.020
0.7 0.700 £ 0.022 1.831 £ 0.008 —1.131 £ 0.020

The target total rescaled energy is represented by €target- The errors indicate a 68%
confidence level in terms of the normal error distribution. Although the magnitude
of the errors of the total rescaled energy depends on that of the initial potential
energy, we have confirmed that these errors do not influence our main results. In
this table, through each simulation, the total energy variation is below 0.01% of its
initial value, and the time increment At is set to be 107°.

fixed. It is well-known that, under identically-prepared initial conditions, each
simulation result is different from the others due to statistical fluctuations.
However, we have confirmed that averaging over approximately 100 simula-
tions is sufficient to see an averaged behavior. Therefore, all the results are
averaged over 100 simulations with identically-prepared initial setups [66]. In
this study, we investigate the averaged behavior of the system. Note that the
initial potential energies are a little smaller than eMf = —0.944, which is
obtained from the Mean Field theory for ¢ = —0.3 [61]. However, we have
confirmed that our main results in the present study are not influenced much
by the initial density profiles. In order to examine the influence of energy, the
total rescaled energy e is varied, ranging from —0.7 to 0.7, under a restric-
tion of constant initial potential energy. Those details for the initial setup are
summarized in Table 1.

Now, to study numerical irreversibility due to round-off errors, we consider a
typical problem which includes a time-reversal operation [14,15]. The system
is initially in a highly non-equilibrium state. During the time evolution of the
system, the time-reversal operation is applied at a certain time: i.e., all the par-
ticles reverse their velocities instantaneously at a certain time t,.,. Therefore,
the system evolves reversibly from then and, if the system is reversible, the
initial state should appear again at 2t,.,. However, if the system contains any
irreversibility, such as the numerical irreversibility, the initial state appears
only incompletely or doesn’t appear.

In the present study, for observing an overview of the non-equilibrium behav-
ior, we define a ratio of velocity moments [61], vin(t), as

vm(t) = % (7)

where < X > represents a mean for X at time ¢ [67]. We can expect that, even
in the system with long-range interactions, the ratio of velocity moments de-
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Fig. 2. Sketch of trajectory distance. The origin of # is the time #,, of the
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creases from the initial value vimy towards a specific value viny;g corresponding
to the Maxwell-Boltzmann velocity distribution. In fact, we have confirmed
that, through the simulations, the ratio of velocity moments is quite consistent
with the non-equilibrium behavior in the present system [68]. In the following,
for simplicity, the ratio of velocity moments is normalized as

vim(t) — vin
VM (1) = ) = Vi, (8)
ViIlg — VIN\B
Accordingly, the normalized ratio of velocity moments VM(t) can be varied
between 1 and 0, where 1 and 0 represents the initial value and the specific
value corresponding to the Maxwell-Boltzmann velocity distribution, respec-
tively.

It is well-known that the irreversible process and the stability of the system
are closely related. Therefore, as shown in Fig. 2, we investigate a distance
between two nearby trajectories, i.e., an original trajectory and a reversed one,
through the time-reversible simulation [14]. The original trajectory is taken as
the trajectory before the time-reversal operation, i.e., from ¢t = 0 to t = t,ey.
On the other hand, the reversed trajectory is taken as the trajectory after
the time-reversal operation, i.e., from ¢t = t,., to t = 2t,,. We can expect
that, due to both round-off errors and instability of the system, the distance
between two nearby trajectories increases with time. Note that, in this study,
we consider a trajectory distance in (velocity) speed space [69]. The trajectory
distance is given by,

(original) (reverse)
A (t/) — \/% Zf\il (Uio ginal) o everse )2
U < U(O) >

: (9)

(original) and (reverse)

; v; are speed of the i-th particle at time t' for the

where v ;



original trajectory and that for the reversed trajectory, respectively. It should
be noted that the origin of ¢’ is the time ¢, of the time-reversal operation, as
shown in Fig. 2. That is, < v(0) > represents the averaged speed at the time
of the time-reversal operation, ¢'=0. We have confirmed that time evolutions
of the trajectory distance defined here are consistent with the nonequilibrium
behavior of the present system.

In the following, we mainly employ the trajectory distance at the final time
t' = tiey, corresponding to t = 2t..,. The final trajectory distance is given by

original reverse
A=At =t ):\/%2?1(%( & )—UZ( ))2
vl — v rev < U(O) >

(10)

t'=trev.

In other words, the final trajectory distance A, represents the trajectory
distance between the original trajectory at the initial time ¢ = 0 and the
reversed one at the final time ¢ = 2¢,.,.

4 Results

4.1 Effects of the total rescaled energy

By means of the MD simulation, we can now study numerical irreversibility
in the self-gravitating system. Before proceeding further, however, it is appro-
priate to describe the relaxation process commonly observed in the present
simulation. To this end, we first observe time evolutions of density, with-
out the time-reversal operation. As a typical result, time evolutions of the
shell-averaged density for ¢ = —0.3 are shown in Fig. 3. In this figure, for in-
stance, the curve with ‘r = 0.05” represents the shell-averaged density between
r = 0.00 and r = 0.10, where r = 0.00 represents the center of the spherical
container shown in Fig. 1.

As shown in Fig. 3, each shell-averaged density varies quickly within the cross-
ing time 7, & 0.1, and thereafter the density seems to approach a certain
quasi-steady state gradually. As mentioned previously, the initial density pro-
file is set to be a certain quasi-equilibrium one, corresponding to ¢ ~ —0.3.
Nevertheless, since initial velocity distributions are in one of non-equilibrium
states, the density profiles vary quickly, and gradually return to a quasi steady
state for e = —0.3. (Note that we observe an early stage of the relaxation pro-
cess.) Next, we will focus on a peak of each curve, as designated by a dotted
line with the arrow in Fig. 3. As a result, we can confirm that the peak of
density propagates outward; i.e., from the inner region (r = 0.05) to the outer
region (r = 0.95).



104

r=0.05
P ) 70.15
3 F
10° ¢ =0.25

TN
I r=0.35 r=0.45 r=0.55 r=0.65 r=0.75 r=0.85

102 L]
- =
NS S —
—~1=0.95
10] I T T RO R R R R B R S R
0 0.1 0.2 0.3 0.4 0.5
t
Fig. 3. Time evolutions of shell-averaged density for each shell, for e = —0.3, without

the time-reversal operation. Here, the r value is the mid-point radius within the shell
(see the text).

Now, to observe numerical irreversibility in the present self-gravitating system,
we will investigate time evolutions of normalized ratio of velocity moments,
through the time-reversal operation. For this purpose, time evolutions of VM
for ¢ = —0.3 are shown in Fig. 4. In this figure, the time-reversal opera-
tion is executed at the times designated by a, b, ¢, d and e; i.e., t = .o
= 0.1,0.2,0.3,0.4, 0.5, respectively. As shown in Fig. 4, each VM decreases
rapidly within the crossing time 7, ~ 0.1, and it gradually approaches a cer-
tain value before the times of the time-reversal operation t.,. These results
are quite consistent with the relaxation process shown in Fig. 3. However,
before t,,, the value of VM oscillates slightly because of the influence of the
spherical reflecting wall, etc., and the value doesn’t become 0. This means the
velocity distribution is not completely the Maxwell-Boltzmann one. (From a
dynamical or a statistical viewpoint, B.N. Miller et al. have carefully investi-
gated a similar relaxation process in one-dimensional self-gravitating systems,
through a velocity distribution, a time correlation function, etc. [52-57].)

After the times of the time-reversal operation t,.,, in any case, VM doesn’t go
back to the initial state completely at 2¢..,; i.e., numerical irreversibility ap-
pears in the present simulation. According to Refs. [14,15], in order to measure
these results quantitatively, a recovery rate of VM is newly-defined by

_ VM(2trev) - VM (trev)
= NA(0) — VM () _

The recovery rate Ry is a measure for the loss of reversibility in the system:
that is, the smaller the recovery rate is, the more irreversible the system is.
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Fig. 5. Recovery rate Rp for various rescaled energies . The total rescaled energy
is varied ranging from —0.7 to 0.7. Note that, in order to avoid confusion, the
error bars for ¢ = —0.3 are shown as the typical ones. The error bars indicate the
reliability of 68% confidence level in terms of the normal error distribution.

Using the recovery rate Rpg, the results shown in Fig. 4 are re-plotted as closed-
circles (o) in Fig. 5. As shown in Fig. 5, we can confirm that the recovery rate
for e = —0.3 becomes worse with increasing t,.,. This result is consistent with
the system with short-range interactions [13-15].

Next, we examine the influence of the total rescaled energy on the recovery

rate Rg. For this purpose, Fig. 5 also depicts the results for various total
rescaled energies, ranging from ¢ = —0.7 to ¢ = 0.7. As shown in Fig. 5, the

11
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error distribution, by means of approximately 100 simulations.

irreversibility prevails rapidly with decreasing the total rescaled energy . As
a matter of fact, as shown in Table 1, low total rescaled energy corresponds to
low initial kinetic energy, since initial potential energy is fixed in the present
study. Therefore, we can translate the result as follows. The lower the total
rescaled energy is or the lower the initial kinetic energy is, the faster the
influence of round-off errors prevails. Note that this characteristic is in contrast
to that in the system interacting with the repulsive Lennard-Jones potential
[14]. In that system, numerical irreversibility prevails rapidly with increasing
initial kinetic energy, since numerical fluctuation propagates through collisions
between particles.

Now, in order to examine this irreversible behavior from another viewpoint, we
will investigate the final trajectory distance defined by Eq. 10. Figure 6 shows
the final trajectory distance A, for various total rescaled energies. As we
expected, the final trajectory distance increases with increasing t,.,. Moreover,
the final trajectory distance increases with decreasing €. Accordingly, these
results are consistent with the ones obtained from the recovery rate Rr shown
in Fig. 5. Through the simulations, we can confirm that not only the recovery
rate but also the final trajectory distance is able to measure the irreversibility
of the system.

As shown in Fig. 5 and 6, numerical irreversibility prevails rapidly with de-
creasing the total rescaled energy. In order to illustrate this, the following dis-
cussion based on a phase diagram of the system will be useful. In the present
self-gravitating system, collapse and explosion energies are €.,; =~ —0.339 and

12



Eexpl & 0.267, respectively. Accordingly, we can expect the following: (1) The
systems for ¢=0.7 and 0.2 could be in the relatively uniform state, (2) As
for e=—0.3, a density contrast between the inner and outer regions could be
lower than that of a core-halo state, (3) Since the system for e=—0.7 should
undergo a collapse to a core-halo state, density and velocity at the core could
increase quickly. (In fact, we have confirmed that the above three guesses are
quite consistent with our simulation results.) Therefore, as for e=—0.7, an in-
fluence of round-off errors prevails rapidly because of these many high-speed
particles in the core. Note that, although the small N-body system for e=—0.3
could collapse after a finite lifetime of metastable states [61,70,71], our sim-
ulation time, t ~ 1, is sufficiently shorter than the present lifetime, which is
approximately 300 in our units.

In order to observe the behavior of numerical irreversibility more clearly and
universally, we consider a propagation-time of numerical irreversibility for the
present self-gravitating system. For example, as for the system interacting
with the repulsive Lennard-Jones potential, the behavior of the irreversibility
appearing in the system correlates with the mean collision time [14]. Similarly,
the behavior of the irreversibility appearing in the self-gravitating system may
correlate with the propagation-time of numerical irreversibility 7,,. To this aim,
we define 7, as

Tp = tvm=0.75, (12)
where tyy—o.75 represents the time required for VM = 0.75. Therefore, the
propagation-time defined here depends on the above value, which is arbitrarily
assigned. However, we have confirmed that our main result is qualitatively
universal, even if the value is set to be other ones, e.g., tyvy—o.80. Moreover, in
the present study, the propagation-time 7, is nearly proportional to the initial
kinetic energy cxgo or the total rescaled energy e.

Using the propagation-time 7,, we will investigate the behavior of numerical
irreversibility shown in Fig. 5 and 6. To this aim, we first re-plot the recovery
rate Rp against t../7,, as shown in Fig. 7. In this figure, to observe the
behavior of numerical irreversibility more universally, the time of the time-
reversal operation ¢, is divided by the propagation-time 7,; i.e., the horizontal
axis represents the time normalized by 7,. As mentioned previously, in this
study, 7, is nearly proportional to exgg or €. As a result, as shown in Fig. 7, all
the results for various energies agree well with each other. Similarly, as shown
in Fig. 8, when we re-plot the final trajectory distance A, against te,/7p, all
the results agree with each other. (It should be noted that, in Fig. 7 and 8,
the results for e=—0.7 are slightly different from the others.) This means that,
in the present self-gravitating system, the behavior of numerical irreversibility
depends on the propagation-time. Moreover, for t.,/7, £ 120, the simulated
trajectory completely forgets its initial conditions. This time should correlate
with the dynamical memory time t,, suggested by Norman et al. [29], where t,,
is related to both fluctuation of energy AE and K-entropy (or the Lyapunov
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Fig. 7. Influence of the total rescaled energy on the recovery rate Rg. The results
shown in Fig. 5 are re-plotted. In this figure, the elapsed time is normalized by the
propagation-time 7;,. For the details, see the caption of Fig. 5.
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Fig. 8. Influence of the total rescaled energy on the final trajectory distance A¢.
The results shown in Fig. 6 are re-plotted against the time normalized by 7,. For
the details, see the caption of Fig. 6.

exponent). However, the propagation time and dynamical memory time are
different from each other, in the sense that the former is nearly proportional
to the total rescaled energy or the initial kinetic energy in the present study.
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4.2 Effects of the time increment At

In this subsection, to examine an influence of the time increment, At is varied
ranging from 10~ to 10~°, for ¢ = —0.7 and t,,=0.1. The other specifications
are the same as those in Section 4.1. As a result, as shown in Fig. 9, the relative
deviation of total energy Ae/e (i.e., global error in total energy) decreases with
decreasing At. Here Ae represents the standard deviation of the total rescaled
energy, in terms of the normal error distribution. This result is well-known:
e.g., see a textbook on molecular dynamics simulations [72] or Ref. [73].

On the other hand, as for the recovery rate Ry, the error bars for Ry are
significantly large in the simulation (Note that this error represents statistical
fluctuations.). However, it seems at least that a small time increment could not
improve time-reversibility of the present self-gravitating system. Similarly, as
for the final trajectory distance A, it seems that A, is not influenced much
by the time increment. This is an unexpected result, since we expected the
small time increment could improve the reversibility of the system.

In order to investigate the influence of the time increment more clearly, we will
examine time evolutions of the trajectory distance A, (#'). As shown in Fig. 10,
the initial values of the trajectory distance are the common one at the first time
step (i.e., at ¢’ =1At), although the first times are different from each other.
After the first time step, all the curves increase gradually with time (¢ g 1072),

1.0 5 10°
0 o o— At g A
] vf
0.8 T 4102
Ry RR\ i,10_4
06 ¢ 2% Ae
04 J106 ¢
. A .
02 T o o 3 10%
0.0 —— 010
106 10-3 104
At
Fig. 9. (Color online) Influence of the time increment for ¢ = —0.7 and t,=0.1.

The closed circles, the open squares and the open triangles represent the recovery
rate Rp, the final trajectory distance A,s and the relative deviation of total energy
Ace/e, respectively. In order to compute Ae/e, ¢ was output every 5.0 x 1075 time
step, through the simulations except for At=10"4.
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Fig. 10. Time evolutions of the trajectory distance A,(t') with various time incre-
ments, for ¢ = —0.7 and t,,=0.1. The origin of ¢’ is the time #,e, of the time-reversal
operation. The horizontal axis, ¢, is indicated by a logarithmic axis, in order to ob-
serve a difference between the curves clearly. The trajectory distance was plotted
every 10At steps.

and they increase exponentially (1072 < ¢’ < 0.5 x 107'). Thereafter, the
trajectory distance A, (t') increases slowly and becomes saturated. Moreover,
the slope of the curves, which corresponds to instability of the system, is
comparable to each other. That is, after the first time step, the time evolutions
of the trajectory distance are comparable to each other, since instability of the
systems is almost equivalent. Therefore, the final trajectory distance shown in
Fig. 9 is not influenced much by the time increment, even though the small
time increment reduces the relative deviation of total energy.

5 Conclusions

It is well-known that, although numerical irreversibility due to round-off errors
may behave as if it were a physical one, it is not a physical one. Therefore, in
order to study such numerical irreversibility appearing in self-gravitating N-
body systems, we investigated a closed spherical system consisting of N=250
particles, by means of molecular dynamics methods. In the present study, to
examine the numerical irreversibility, a time-reversal operation was applied
at a certain time during the evolution of the system. Through the present
simulation, we demonstrated that the normalized ratio of velocity moments
was consistent with an early stage of the relaxation process. We found that,
under a restriction of constant initial potential energy, the numerical irre-
versibility prevailed rapidly with decreasing an initial kinetic energy or total
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energy. In other words, the lower the initial kinetic energy or the lower the
total energy, the earlier the memory of the initial conditions is lost. The be-
havior of numerical irreversibility depends on a propagation-time proposed in
the present study. Moreover, we examined an influence of the time increment
At on numerical irreversibility. As a result, the small time increment could
not improve reversibility of the present self-gravitating system, even though
it reduces global errors in total energy.
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