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ABSTRACT 
 

Vector quantization is the process of encoding vector data as an 
index to a dictionary or codebook of representative vectors. One 
of the most serious problems for vector quantization is the high 
computational complexity involved in searching for the closest 
codeword through the codebook. Entropy-constrained vector 
quantization (ECVQ) codebook design based on empirical data 
involves an expensive training phase in which Lagrangian cost 
measure has to be minimized over the set of codebook vectors. In 
this paper, we describe a new method allowing significant 
acceleration in codebook design process. This method has feature 
of using a suitable hyperplane to partition the codebook and 
image data. Experimental results are presented on image block 
data. These results show that our method performs better than  
previously known methods. 
 

1.  INTRODUCTION 
 

A standard vector quantization (VQ) [1] is an efficient 
compression technique for which many variants [2] are known. It 
is defined as a mapping  from a k-dimensional Euclidean space Q

kR  to a finite set  of vectors in }...,,{ 2 NyyY = ,1 y kR  called the 
codebook. Each representative vector  in the codebook is 
called a codeword. A complete description of vector quantization 
process includes three phases: codebook design, encoding and 
decoding. The objective of codebook design is to construct a 
codebook  from a set of training vectors using clustering 
algorithms like the generalized Lloyd algorithm (GLA) [1]. This 
codebook is used in both the encoder and the decoder. The 
encoding phase is equivalent to finding the vector 

minimizing the distortion d  defined as the 
Euclidean distance between the vector 

iy

(

Y

Y∈yi=)xQ( ), iyx
x  and . The decoding 

phase is simply a table look-up procedure that uses the received 
index  to deduce the reproduction codeword , and then uses 

 to represent the input vector 

iy

iyi
iy x . 
Entropy-constrained vector quantization (ECVQ) [3] uses a 

modified cost measure using both the effective distortion of the 
signal and the expected length of the transmitted code. This length 
is not always equal to log , where  is the codebook size, 
but it is dependent on the expected probability of the codeword. 
The codeword length  of the codeword  is usually taken 
as equal to the bound given by the entropy model, i.e. 

, where the probability  of the 
codeword  is approximated empirically using the training set. 
We define the cost function of the codeword  for encoding the 
vector 
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x  as the Lagrangian function, 
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where  is the Euclidean distance, and d λ  is a constant called the 
Lagrange multiplier allowing to control the rate-distortion ratio. 
Using of this cost measure implies that codewords introducing 
higher degradation may be chosen because of their short 
descriptions. 

The computational cost of finding the best suitable codeword in 
the codebook design and encoding imposes practical limits on the 
codebook size . When  becomes larger, the computational 
complexity problem for full codebook search occurs. To avoid 
such an exhaustive search through the codebook, many fast 
algorithms [4]-[7] for standard VQ and [8]-[10] for ECVQ have 
been proposed. These algorithms reduce the computational 
complexity by performing some simple tests before computing the 
distortion between the training vector and each codeword, and 

then rejecting those codewords that fail in the tests. The better 
known acceleration methods for nearest neighbor search for 
ECVQ are the double annulus method [8] and Cardinal method 
[9]. And the algorithm speeding up the nearest neighbor search 
based on the hyperplane partitioning technique for standard VQ 
has been presented in [11]. 

N N

This paper introduces a new algorithm to reduce the time 
complexity of the codebook search using a hyperplane 
partitioning rule for ECVQ. The idea of the proposed algorithm 
relies on the separation of the codebook and the training vectors 
into two parts, and searching in only one part according to the 
vector feature. Two methods, based on double annulus method [8] 
and Cardinal method [9], are developed by the proposed 
algorithm. The efficiency of the developed methods is compared 
with the basic double annulus method and Cardinal method. 

The paper is organized as follows. Section 2 reviews the double 
annulus method and Cardinal method for ECVQ. Section 3 
describes the hyperplane decision method. Section 4 presents the 
fast algorithm that uses the hyperplane partitioning rule for 
ECVQ. Experimental results are shown in section 5, and 
concluding remarks are given in section 6. 
 

2.  FAST ALGORITHMS FOR ECVQ  
 

2.1  Double Annulus Method 
 

Johnson et al. [8] introduced an excellent method called the 
double annulus method for ECVQ using two annular constraints 
and tried to search only those codewords lying in their overlapped 
area. The first annulus is centered at the origin that is the first 
reference point. For a given input vector x  of distance ||  from 
the origin, and the current best codeword  with Lagrangian 
distortion , any closer codeword  to 

||x
iy

),( iyxJ jy x  than  in the 
sense of the Lagrangian cost measure will satisfy the following 
relationships: 
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),(||||)(|||| ijj yxJxyRy −>−λ ,  (3) 

 
where is the Euclidean distance of  from the origin, and 

 is the codeword length of . Thus, by the inequalities in 
(2) and (3), only the codewords within the annulus defined by 
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 Figure 1. Geometrical interpretation of double annulus 
                 method in 2-dimensional case. 
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The second annulus is centered at the farthest codeword from 
the origin, which is the second reference point, . By using the 
distance to this codeword, the following inequalities can be 
defined: 

ry

 
),(),()(),( irjjr yxJyxdyRyyd +<+ λ ,  (4) 

and 
),(),()(),( irjjr yxJyxdyRyyd −>− λ . (5) 

 
The inequalities in (2), (3), (4) and (5) constrain distortion 
calculations to those codewords completely contained in the 
search region shown in Fig. 1. 
 
2.2  Cardinal Method 
 

Cardinal [9] introduced the most acceleration method for GLA 
on ECVQ using two elimination rules. In the first elimination 
rule, an unit vector k/)1...,,1,1(=u , where  is the vector 
dimension, on the central line is used as a reference line as shown 
in Fig. 2. For a given input vector 

k

x  and the current best 
codeword  with Lagrangian distortion , any closer 
codeword  to 

iy
jy

)(xJ , iy
x  than  with length  will satisfy the 

following inequalities: 
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,  (6) 
and  

),()( ijj yxJxuyRyu −>− λ .  (7) 
 

The rule in (6) and (7) is very similar to the rule in (2) and (3). 
While the rule in (2) and (3) uses the length of the vectors, the 
rule in (6) and (7) uses the projection of the vectors on . The 
length of the vector is actually its distance to the origin 

u
ο , but its 

projection on  may be seen as its parallel component to . 
From the geometrical interpretation of this method in Fig. 2, for 
any codeword  satisfying (6) and (7), the hypersphere centered 
at  with radius 

u

jy

u

jy )( jyRλ  must be fully contained in the region 
between the two hyperplanes  and  

. 
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In the second elimination rule, the distance between the 
codeword and its projection point on the central line is used as 
follows: for a given input vector x  with its projection point  
on the central line, the closest codeword  with its projection 
point  will satisfy the following inequalities: 

xP
jy
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and 
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By using the constrains of the rule in (6) and (7) and the rule in 
(8) and (9), the search region will be reduced to the two dotted 
squares in Fig. 2. Every codeword whose sphere is not contained 

in this region is eliminated. Cardinal method is considered as the 
generalization of Lee and Chen method [6] to ECVQ. 
 

3.  HYPERPLANE DECISION METHOD 
 

The search region in Fig. 2 is reduced to the two dotted 
squares. The same situation occurs in the Lee and Chen method 
that uses the distortion as the squared Euclidean distance. Lee and 
Chen introduced an elimination method [6], which uses the mean 
and the variance of the vector for two tests to reject the 
codewords. In the mean test, an unit vector u  on the central line 
is used. For a given input vector x  with mean value , and a 
current best codeword  with distance , any 
codeword that is closer to 

xm
), iyxiy (d=mind

x  than  has to be located inside the 
hypersphere centered at 

iy
x  with radius . Two boundary 

points 
mind

)...,,( maxmax mmmL , maxmax= and ,min,min(min mmL =  
can be obtained by projecting the hypersphere on the 

central line, where 
)..., minm

 
kdmm x /minmax += ,   (10) 

and 
kdmm x /minmin −= .   (11) 

 
Thus, by (10) and (11) only the codewords that are bounded by 
the two hyperplanes kdmzuS x

T /: min1 +=  and 
kdmzuS x

T /: min2 −=  will be searched. 
In the variance test, the squared root of variance of the vector 

x , , is used as the distance d  between xv ),( xLx x  and its 
projection point  on the central line. The closest codeword  
with squared root of variance  will satisfy the following 
inequality: 

xL jy
jyv

 
2
min

2)( dvv
jyx <− .   (12) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

u

1z

3z

2z

cx

px

H

o

maxL

minL
xL

xv

mind iy

2S

1S
x

ο

Central line 

xP

x

Ο 1z

2z

u

jy

2L

1L

iy
),( iyxJ

)( jyRλ

o
•

•

 Figure 3. Geometrical interpretation of hyperplane 
                 decision method in 3-dimensional case. 

 
 However, if the two search areas that are shown by the two 

dotted cubes in Fig. 3 are separated, the search area will be 
reduced to one dotted cube only, and the computation complexity 
may be reduced to around half. Fig. 3 does not show search areas 
in 3-dimensional case correctly, but it is used to depict the basic 
idea of search areas for easily understanding, as the extension of 
2-dimensional case in Fig. 2. We introduced a technique for 
separating the codebook and searching in one side area according 
to the input vector feature for Lee and Chen method in [11]. This 
method succeed to reduce the time complexity with almost same 
performance of Lee and Chen method. Figure 2. Geometrical interpretation of Cardinal 

                 method in 2-dimensional case. The nearest codeword for an input vector belongs to one of two 
search areas shown in Fig. 3. If this relation is known before the 
codeword searching, the search area can be reduced. Although a 
perfect identification of the search area for all input vectors is 
difficult, a probable and reasonable separation is possible when 
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the codebook size is relatively large and codewords distribution in 
the signal space is smooth. 

The chosen hyperplane , which separates the codebook into 
two parts, contains the origin 

H
ο , the centroid of the input vectors  

 and the projection point of the centroid on 
the central line , where 

)...,,,( 21 ckccc xxxx =
(px = ),1 pkp xx ...,,2px

 
       ∑ ===== k

i cipkpp xkxxx 121 /1... . 
 

This hyperplane is expressed as 
 

0: =TzhH ,   (13) 
 

where  is the normal vector to the hyperplane . The 
hyperplane  is used as a decision function that discriminates to 
which half-space a given vector 

h H
H

x  belongs using the following 
conditions: 
 
• If  , then 0<Txh x  belongs to the lower half-space 

separated by . H
0≥Txh• If   , then x  belongs to the upper half-space. 

 
H  is not adequate for this method to be applied directly to 

Cardinal method for ECVQ, because the training vectors and 
codewords are densely distributed close to the central line. In this 
case, the hypersphere centered at the input vector x  with radius 

 may cross the central line, then the best codeword 
searching will fail because of larger possibility for the closest 
codeword to be in the other half space. 

)iJ ,( yx

 
4.  FAST ALGORITHM FOR ECVQ USING     

HYPERPLANE PARTITIONING RULE 
 

We will change the hyperplane  described in the last section 
to be perpendicular to the central line as shown in Fig. 4. This 
hyperplane containing the centroid of the training vectors, , on 
it can be expressed as 

H

cx

 
       cx

k
i ci

T
c

T Mmkxkxuzu
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==== ∑ =1/1:G . (14) 
 
The hyperplane  discriminates to which half-space a given 
vector 

G
x  belongs  by the following  conditions: 

 
• If   c

k
i i

T Mxkxu <= ∑ =1/1 ,   (15) 
xthen  belongs to the lower half-space. 

• If   c
k
i i

T Mxkxu ≥= ∑ =1/1 ,   (16) 
xthen  belongs to the upper half-space. 

 
 From the distribution of the training vectors and codewords, 

only a small number of vectors will be near to the chosen 
hyperplane, then the possibility of the hypersphere centered at the 
input vector crossing over this hyperplane is reduced. As a result, 
failure in best codeword searching becomes to be less.  

Now we depict the proposed algorithm that uses the hyperplane 
 to separate the training vectors and the codebook. The 

proposed algorithm divides the training vectors into two sub-
groups  and , which contain the vectors that satisfy (15) 
and (16), respectively. Also it divides the codebook into two sub-
codebooks  and  by the same equations. The training 
vectors in the sub-group T  will be searched in the sub-codebook 

, and the training vectors in the sub-group T  will be 
searched in the sub-codebook Y . Hence, the proposed algorithm 
can reduce the search area and speed up the search process. 

G
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lwT upT

lwY upY
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The application of the proposed algorithm to Cardinal method 
may be easily understood with the geometrical interpretation for 
3-dimensional case in Fig. 4. This figure is the extension of 2-
dimensional case in Fig. 2 and includes the proposed hyperplane 

. The hyperplane  divides the signal space into two half-
spaces, and each half-space has its own training vectors and 
codewords. 

G G

 Actually, the time needed by the search in each half-space is 
related to the computation of , the distortion associating 

with the best codeword , so the choice of the first codeword to 
be tested is the very serious issue of the search process. We can 
use the following idea: after applying the first iteration of the 
algorithm, the training vectors will be clustered with the initial 
codebook. Then the improved codebook will be generated by 
calculating the centroid of the training vectors of each cluster. 
However, for a training vector 

),( iyxJ

iy

x , if it is grouped to index i  in 
the previous iteration,  will be a small value even if  is 
a new codeword in the current iteration. At this stage, we should 
have a way to choose a better initial codeword . This method 
was experimented with success in [12]. 
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5.  EXPERIMENTAL RESULTS 

 
Experiments were carried on vectors taken from the USC 
grayscale image set. We used two images, Lena and Baboon with 
size 512 × 512  and 256 gray levels. Each image is divided into 
4 × 4 blocks, so the training set contains 16384 blocks. The tested 
methods are Cardinal method, double annulus method, and the 
proposed method applied to the double annulus method (AI) and 
Cardinal method (AII). The PSNR of the proposed method (AII) 
and its comparison to Cardinal method are shown in Figs. 5 and 6, 
respectively, for different codebook sizes, , at various values of N
λ  = 0.5, 2, 4 and 8 with Lena image. We want to insist on the 
fact that the search based on our method in AI is strictly 
equivalent to AII search. This means the outputs are exactly the 
same. The proposed method has almost the same performance of 
Cardinal method at higher codebook size. For example, the 
degradation of our method is only 0.073 dB more than Cardinal 
method at codebook size 256 with λ  = 0.5, and this value 
decreases by increasing the codebook size. There is small 
degradation for smaller codebook size, for example, our method 
has 0.141 dB less than Cardinal method at codebook size 32 with 
λ  = 0.5. This is because the proposed method is not equivalent to 
Cardinal method completely, and the best codeword happens to be 
in the other half-space and is missed to be searched out. However, 
there may be a small failure possibility in the case of large 
codebook size and smooth codebook distribution. Figs. 7 and 8 
present the time execution for the four methods with various 
codebook sizes at λ  = 0.5 for Lena and Baboon, respectively. 
The timings were made on Pentium III (866 MHZ). We can see 
that our new methods AI and AII significantly accelerate the 
codebook design for double annulus method and Cardinal method. 
Compared to the double annulus method, AI reduces the time by 
20% to 43.6% for Lena and 12.7% to 31.7% for Baboon. And 
compared to the Cardinal method, AII reduces the time by 16.7% 
to 37.9% for Lena and 10.8% to 27.9% for Baboon. As we know, 
the total number of distortion calculations is a dominant figure of 

Figure 4. Geometrical interpretation of the proposed 
                 method in 3-dimensional case. 
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the computational complexity. AI reduces this number by 23.2% 
to 44.5% for Lena and 14.3% to 32.7% for Baboon than the 
double annulus method. Also, AII reduces this number by 17.5% 
to 38.2% for Lena and 11.7% to 28.4% for Baboon than Cardinal 
method. From the last results, AI and AII are faster at a large 
codebook than a small codebook. 

 

 

 
6.  CONCLUSIONS 

 
In this paper, we have presented a new algorithm of 

accelerating the codebook design for ECVQ. The proposed 
algorithm uses a hyperplane decision technique for separating the 
training vectors and the codebook into two groups, and employs 
searching in one group according to the vector feature. By 
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