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GaAs-MISFETs With Insulating Gate Films Formed
by Direct Oxidation and by Oxinitridation of
Recessed GaAs Surfaces

Masahide Takebe, Kazuki Nakamura, Narayan Chandra Paul, Koichi liyama, Member, IEEE, and Saburo Takamiya

Abstract—Direct oxidation by an ultraviolet (UV) and ozone
process and oxinitridation (plasma nitridation after oxidation) of
GaAs surfaces were used to form nanometer-scale gate insulating
layers for depletion-type recessed gate GaAs-MISFETSs. The drain
current—drain voltage characteristics of the oxide gate devices ex-
hibit lower transconductance (max. 40 mS/mm), lower breakdown
voltage and smaller gate capacitance than the oxinitrided gate de-
vices. The presence of hysteresis in the oxide gate devices is also
apparent. The maximum transconductance of the oxinitrided gate
devices is 110 mS/mm and they have a sharper pinch-off, compared
to the oxide gate devices. In addition, no hysteresis is observed in
their current voltage curves. The current gain cutoff frequency of
1.4 pom gate-length FETs for both types is 6 GHz. These results cor-
respond well with results obtained from characterization of these
insulating films.

Index Terms—Field-effect transistors (FET), GaAs, metal-insu-
lator-semiconductor (MIS), nitridation, oxidation.

I. INTRODUCTION

T IS WELL known that for the gate structure of a field-effect

transistor (FET), a metal-oxide—semiconductor (MOS) or
metal-insulator-semiconductor (MIS) is essentially superior to a
Schottky barrier. The availability of enhancement-type devices,
the fact that they can be operated using a single source of power,
the possibility of high temperature operation and the attribute of
scalability, etc. are all features which maintain this superiority.
However, due to complex and unsolved surface/interface related
problems, compound semiconductor MIS gate devices have not
yet been realized commercially. Deposition of insulator mate-
rials and the conversion of semiconductor surfaces into insu-
lating layers have been studied by many researchers in order
to realize a reliable MIS gate compound semiconductor device
with good performance. As for the deposition method, Ga; O3
[1], GasO3(Gd203) [2], wet chemical SiO4 [3], SigNy after the
formation of a Si interface control layer [4], etc. have been re-
ported. These form 10—40-nm-thick insulating layers and good
electrical performance has been reported. In this paper, we have
studied the conversion method, because this method utilizes the
inherent properties of the mother material, and therefore gives
rise to the possibility of realizing an essentially reproducible
process, once an appropriate combination of semiconductor ma-
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terials, gases and process conditions have been found that gives
an insulator with a good insulator/semiconductor (I/S) inter-
face and good performance. However, the flexibility in material
choice and the applicable process techniques of this method are
very limited.

We have reported that an ultraviolet radiation and ozone (UV
and ozone) process forms a nanometer scale GaAs oxide layer
that can suppress leakage current [5]. The thickness of this layer
is proportional to square root of the process period. We also re-
ported that GaAs-MOSFETs and InAlAs/InGaAs-MOSHEMT's
with such oxide layers could be operated even beyond their flat-
band voltage [6]—[8], although dips in transconductance and the
hysteresis were apparent in their current—voltage (I-V) curves.
In order to overcome these problems, we studied the effect of
nitridation upon bare and oxidized GaAs wafers from the points
of view of the crystallographic structure near the interface and
the electrical and photoluminescence performance. Hara et al.
reported improved capacitance—voltage (C—V) characteristics of
an oxidized GaAs-MIS diode by subjecting it to a helicon-wave-
excited Ny plasma treatment [9], although Trivedi et al. reported
on Ny plasma damage of an AlGaAs-InGaAs—GaAs system
[10]. Our experimental results demonstrate that N plasma ni-
tridation after the UV and ozone oxidation forms a good quality
GaAs-insulator interface with very little crystallographic dis-
order and improves both the electrical and the photolumines-
cence performance [11]-[13]. In order to check whether the ben-
eficial effect of the N» plasma nitridation is reproduced in a de-
vice fabrication process, we simultaneously fabricated GaAs-
MOSFETs (oxidation by UV and ozone only) and GaAs-MIS-
FETs (N> plasma after the UV and ozone oxidation) and com-
pared their performance.

Firstly, in this paper, the effects of nitridation upon oxidized
(100) GaAs surfaces are briefly reviewed, then the structure,
fabrication process, ant the dc and RF characteristics of
GaAs-MISFETs are described and compared with GaAs-MOS-
FETs.

II. EFFECTS OF NITROGEN PLASMA

Nitrogen plasma severely damages the surface properties
when it is applied to a bare GaAs surface, but it improves the
interface properties when applied to an oxidized GaAs surface
(becoming an nitrided oxide surface). The details of this are
described in our previous papers [11]-[13].

Fig. 1 shows a cross-sectional transelectron microscope
(TEM) image at the interface of oxinitrided GaAs, observed

0018-9383/04$20.00 © 2004 IEEE
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Fig. 1. TEM image of an oxinitrided GaAs/(100)n-GaAs structure observed
from the (110) direction.
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Fig. 2. (a) Measured 1/C?2-V characteristics of MIS diodes with insulating
layers formed by oxidation for 8 h and (b) nitridation for 4 h after 8 h oxidation

from (110) direction. This was formed by nitridation for 8
h in a Ny plasma (RF power 250 W, N; flow rate 10 sccm)
after oxidation for 8 h by an UV and ozone process at room
temperature. The insulating layer thickness is about 8 nm.
Very little crystallographic disorder and good interface flat-
ness are observed. These characteristics are very effective in
preventing the development of disorder related interface states
and reducing electron scattering at the interface. The flatness
is mainly realized by the long oxidation time rather than by
the effect of nitridation. The oxidized GaAs layer is composed
of Ga-oxide (mainly GasOg3) which contains an amount of
As-oxide (mainly AsyOs3). The nitridation process drives out
the As and incorporates N in the GaAs-oxide layer changing
it into a GaON layer with GaN especially near the interface.
Moreover, the crystallographic order of the GaAs surface
improves suggesting a decrease in the density of defects near
the I/S interface. This accords well with the increased photo-
luminescence intensity of the oxinitrided surface compared to
a simply oxidized surface. In nitridation of an oxidized GaAs
layer, the Ny plasma energy probably has an effect similar to
annealing on the GaAs layer beneath the interface. The reverse
leakage current of a MIS diode decreases with nitridation.
Nitridation also improves the C-V characteristics of the diodes
in two respects. As these are directly related to a description
of the dc and RF performance of the GaAs-MISFETs, they are
shown in Fig. 2.

The 1/C?-V relationship is generally used to find the bar-
rier height of a Schottky junction rather than a MIS junction.
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Fig. 3. Nitridation period dependence of flatband voltage obtained from
1/C?-V characteristics.

However, as the insulator of our sample is very thin and neg-
ligibly small, compared to the depletion layer in reverse bias,
the relationship holds even for a MIS diode and can be applied
to obtain the flatband voltage. This is found by extrapolating
the linear portion of the 1/C2-V curve and finding the point
at which this intercepts the voltage axis. The curve of a simply
oxidized sample has two bends, one at around —0.5 V and the
other at around +0.2 V. On the basis of the first bend the bar-
rier height or flatband voltage of the oxidized sample is low (0.5
V). After 4 h of nitridation, the first bend completely disappears
and the flatband voltage increases to +1.1 V, which is similar to
previously reported values (0.8—1.1 eV) of Ni/n-GaAs Schottky
barrier heights, suggesting a decrease in the positive I/S inter-
face charge by nitridation. The dependence of flatband voltage
on the nitridation time is shown in Fig. 3. This suggests that the
oxidized samples initially have positive charge (5 x 108 cm™3
in the oxide or 2.8 x 102 cm~3 at the interface [13]) which
is neutralized by nitridation. The second bend, after nitridation,
becomes sharper and shows a somewhat increased capacitance
even at higher frequencies. This reflects the improvement of the
I/S interface as explained by Passlack ef al. [1]. The increase of
the capacitance at high frequencies looks insufficient. However,
as Xie et al. have demonstrated theoretically [14], even if the
high frequency capacitance is increased sufficiently, this may
be due to a parasitic effect of an area (~1 mm, in our MIS diode
samples) between a broad Ohmic contact and the MIS junction
(0.32 mm diameter).

III. STRUCTURE AND FABRICATION

GaAs-MISFETs were fabricated on n-/S.I GaAs (100)
wafers, of which the epitaxial layer thickness was 0.4 pm
and the donor density was 3.0 x 1017 cm™—2. After ultrasonic
cleaning with acetone, the native oxide layer was removed by
etching in buffered hydrofluoric acid. The epitaxial layer was
etched down to 0.3 pm in order that the step height of the
mesas in the later stages of the process would be reduced. The
samples were then rinsed in de-ionized water. Drain and the
source electrodes were formed by evaporating AuGe and Ni,
followed by sintering at 360 °C for 2 min in N». After etching
the mesas in a GaAs etchant (HsPO4:Hy0:H202 = 4:90:1),
the wafer was coated with photo-resist which was patterned to
define the gate areas. These areas were thinned to 0.18 pm.
The etchant used to etch this recess was the same as that used
for the mesa etch. Oxidation of the sample was done by an
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Fig. 4. Cross-sectional structure of the a GaAs-MISFET.

(a) (b)

Fig.5. Surface image of the fabricated GaAs-MISFET. (a) The whole area and
(b) the gate portion.

UV and ozone process at 100 °C (SAMCO: UV and Ozone
Cleaner UV-1) and the nitridation was done in an Ny plasma
at room temperature (SANYU: SHR-708). The plasma system
was conditioned such that the RF power was 50 W and the Ny
flow rate was 10 sccm. Consequently, the oxinitrided layer was
formed only in the recessed region. The oxidation period was
fixed at 4 h and various nitridation periods of O h (hereafter
denoted as the 4-Oh sample), 1 h (4-1h sample) and 2 h (4-2h
sample) were carried out depending on the wafers. Al was
deposited and the unwanted parts removed by lift-off to leave
only the gate electrodes. The cross-sectional structure of a
fabricated GaAs-MISFET is shown in Fig. 4 and photographs
of the surface are shown in Fig. 5. The gate width is 80 um (40
pm x 2) and the gate length is 1 pm (designed).

In the above process, the photoresist for the gate pattern was
used to define the area for four successive process steps; these
were the recess etch, the oxidation, the nitridation and the gate
electrode. This minimizes the possibility of contamination, au-
tomatically restricts the influence of the oxinitridation to within
the recessed portion and self-aligns the electrode to the insulator
as shown in Fig. 4. Both of the UV and ozone process and the
Ns plasma process ashes and thins the photo-resist. This, on the
one hand implies that these are clean processes, but on the other
restricts the operating conditions of the oxidation and nitridation
systems so that the resist remains usable for the lift-off process.
The RF power (50 W) of the treatment is much lower than that
(250 W) used in our previous experiment [13].

IV. DC CHARACTERISTICS

The MIS diode characteristics between the gate and the
source of GaAs MISFETs with different nitridation periods
are shown in Fig. 6. The thickness of the insulating layer was
estimated to be 6-8 nm from the oxidation time dependence
of the oxide thickness [5], and it is not significantly altered by
nitridation. The leakage current in the low reverse bias region
is decreased depending on the nitridation time. The leakage

nitridation
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Fig. 6. Measured -V characteristics between the gate and source of
GaAs-MISFETs.
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Fig.7. Normalized dc characteristics of 1 gm GaAs-MISFETs for the (a) 4-Oh
and (b) 4-2h samples.

currents of nitrided samples were suppressed by up to three
orders of magnitude compared to ones with simple oxide gates.
The higher gradient of the reverse leakage current of the 4-2h
sample in the high negative voltage region suggests generation
of an inversion layer due to an improved barrier effect against
holes. On the other hand, the small change in the low forward
voltage region suggests that the barrier height of GaON against
conduction band electrons is not so high. In the high forward
voltage region, the lh-nitridation sample exhibits a smaller
current than the 2h-nitridation sample. This may be due to
poorer Ohmic contact.

Fig. 7 shows the drain current versus drain voltage (/p—Vp)
characteristics of the 1-um gate length (a) 4-Oh and (b) 4-2h
samples measured using a semiconductor parameter analyzer
(Hewlett Packard: HP 4156A). The gate bias was changed from
—21t0 43 Vin 0.5V steps. In the (a) 4-Oh sample , the pinchoff
is not good and a slight decrease in the transconductance is ob-
served around the flatband voltage, similar to the GaAs MOS-
FETs, which we reported in 2002 [8], implying the existence of
interface states. However, in the (b) 4-2h sample, the pinchoff
is improved and a higher transconductance is realized. This in-
dicates that the interface states are significantly reduced by 2 h
of nitridation. Moreover, the drain-source resistance and the sat-
uration voltage are decreased, suggesting that the gate voltage
dependence of the depletion layer is increased partly due to re-
covery of the damaged layer.

Fig. 8 shows Ip-Vp characteristics of 1-um gate length
GaAs-MISFETs (different samples from those shown in Fig. 7)
during the drain voltage swing-up and swing-down processes.
The simply oxidized sample has large hysteresis loops. In the
negative gate bias region, the change in the gate voltage by
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Fig. 8. Hysteresis curves of 1-pm GaAs-MISFETs for the (a) 4-Oh and (b)
4-2h samples.
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Fig. 9. Measured breakdown drain voltages
GaAs-MISFET at Vg = —2 V.

of 3-um gate length

hysteresis is comparable to the flatband voltage improvement
of 0.6 V by nitridation (Fig. 3). This results in an inaccurate
transconductance when it is taken from the dc curves such as
those in Fig. 7(a). On the other hand, the nitrided sample shows
no hysteresis loops. This also implies that the former has a
high density of traps and/or mobile ions near the interface or
in the oxide layer, and that these are drastically reduced by
nitridation.

Fig. 9 shows the measured drain breakdown voltages of 3-um
gate length GaAs-MISFETs at a gate bias of —2 V. The break-
down voltage of the 4-Oh sample is about 6 V and that of the
4-2h sample is 10 V. This improvement may also be due to the
reduced crystallographic disorder brought about by nitridation.

The gate voltage dependence of the transconductance of the 1
pm GaAs-MISFETs with different nitridation times, at a drain
voltage Vp of 5 V are shown in Fig. 10. It is quite obvious that
the peak value of the transconductance increases with nitrida-
tion and that the pinch-off voltage is clear. One h of nitridation
is insufficient and 2 h is not quite sufficient to minimize the in-
terface problem. This agrees well with the previous experiment
(Fig. 3) in spite of the different radio frequency (RF) powers.
The simply oxidized sample has a maximum transconductance
of 60 mS/mm, however this is not an accurate measurement due
to the above mentioned hysteresis, and the data suggests that the
actual transconductance is about 40 mS/mm with the base line
shifted up by about 20 mS/mm due to hysteresis. The sample
nitrided for 2 h has a peak transconductance of 110 mS/mm at
a gate voltage Vi of 1.1 V, which coincides with the flatband
voltage obtained in Fig. 3. This coincidence is very important,
because it implies that the device has no extra charge, neither in
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Fig. 11. RF characteristics of 1-um GaAs-MISFETs for the (a) 4-Oh and (b)

4-2h samples.

the insulator nor at the interface. On this point, the 4-2h sample
has an ideal I/S interface.

V. RF CHARACTERISTICS

S parameters of the samples from 500 MHz to 40 GHz were
measured with a network analyzer (Hewlett Packard: 8§722D).
The frequency dependence of the maximum available gain
(MAG), the maximum stable gain (MSG), the unilateral gain
(U), the square of the absolute value of hy; and the stability
factor K, all obtained from the S parameters, are shown in
Fig. 11. The bias voltages are Vp = 45V, Vg = +1 V. The
current gain cutoff frequency fr and the maximum oscillation
frequency faax are estimated to be fr = 6 GHz, faiax = 10
GHz for both samples. The gate voltage dependence of fr and
the transconductance of the 1-pum gate length (measured value
1.4 pm) GaAs-MISFET 4-2h sample are shown in Fig. 12. The
maximum fr is observed at the peak transconductance.

The 4-0h and the 4-2h samples showed nearly equal RF per-
formance despite the increase in the transconductance after ni-
tridation. This suggests that nitridation causes an increase in the
capacitance, because the current gain cutoff frequency is given
by the transconductance divided by 27 and the gate-to-source
capacitance. The capacitances calculated from measured S1;
parameters at 10 GHz with the bias condition of Vp = +5V
are shown in Fig. 13. The 4-2h sample has 2-3 times larger ca-
pacitance than the 4-Oh sample. This is in contrast to the results
shown in Fig. 2, where the capacitance of the nitrided MIS diode
is nearly equal to that of the simply oxidized MIS diode in the
high-frequency region (1 MHz). However, this contradiction is
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Fig. 13. Gate voltage dependence of the capacitances of 1-pum gate length
GaAs-MISFETs from the S;; parameters.

explained by the theory developed by Xie et al. [14]; the para-
sitic effect of the area between the MIS junction and the Ohmic
contact of the MISFET is very small compared to that of the
MIS diode (~1 mm), and thus the increase in capacitance by
nitridation is observed directly in the FET. Nitridation increases
both the transconductance and the capacitance, but the fr re-
mains unchanged. As shown in Fig. 14(a), the total capacitance
of the gate MIS junction of the 4-Oh sample consists of the in-
sulator capacitance C;, the depletion layer capacitance Cy, the
deteriorated layer capacitance C'p and the interface state capac-
itance C, where the resistance R, in combination with C, de-
termines the time constant of the charge/discharge process of
the interface states.

Fig. 15 shows an energy band diagram across the MIS por-
tion of the 4-Oh sample. The deteriorated layer may be like an
O doped semi-insulating semiconductor and contains positive
charges as suggested by the first bend in the 1/C?-V curves
[13]. The increase in drain current in the positive gate voltage
region far beyond the flatband voltage [Fig. 7(a)] suggests the
existence of a high potential energy layer beneath the gate in-
sulator only, outside of which the whole n-layer is normal. Ob-
viously, the latter limits the maximum available drain current.
Remarkably, although not perfectly, nitridation converts the de-
teriorated layer into a normal layer and increases C'p, but de-
creases Cs and R as shown in Fig. 14(b). This is the main
reason for the increased capacitance as well as the increase in
the transconductance. An additional reason may be the increase
in the dielectric constant of the insulator. Nitridation increases
C; by changing the GaAs-oxide into GaON, a similar effect to
that of changing SiOs (e, = 3.8) to SizNy (&, = 7.8) in silicon

Insulator —_— C;

Deteriorated layer

Depletion-layer

(a) (b)

Fig. 14. (a) Equivalent MIS capacitance with an oxidized interface and (b) an
oxinitrided interface.

insulator depletion layer
V| e
+
+
2%227 ty
metal
—
deteriorated neutral
layer semiconductor
Fig. 15. Energy band diagram across the MIS portion of the simply oxidized
sample.

technology. Since C; does not respond at microwave frequen-
cies, only the changes of Cp and C}; are observed in Sy;. Thus,
the capacitance at 10 GHz, especially in the forward bias region,
is increased by nitridation, reflecting the increase of C'p and C;.

VI. CONCLUSION

We have demonstrated GaAs-MISFETs with an oxinitrided
gate insulating layer formed by a combination of UV and
ozone oxidation process and a Ny plasma nitridation process in
order to solve the problems associated with GaAs-MOSFETs
reported in [8]. The oxinitrided gate device (GaAs-MISFET)
exhibited smaller leakage current than the simple oxide gate
device. Furthermore, it showed good pinch-off, no hysteresis,
higher breakdown voltage and higher transconductance (110
mS/mm) with no dip at the flatband voltage, suggesting the
existence of very little interface charge. This concurs with
previous investigates of the structural and electrical properties
of the oxinitrided n-GaAs layers. However, the GaAs-MISFET
and GaAs-MOSFET showed a nearly equal current gain cutoff
frequency of 6 GHz and a maximum oscillation frequency of
10 GHz. This is due to the increased capacitance.

In this experiment, in order to minimize thinning of the photo-
resist, an RF power of 50 W was used for exciting the N plasma,
which is much lower than that used in our previous experiment
[13]. The authors have not yet found the optimum nitridation
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period under such low power conditions. However, the coinci-
dence between the gate voltage for the maximum transconduc-
tance (Fig. 10) and the flatband voltage suggests that a period of
2 h is not far from the optimum. When a plasma is applied to a
wafer that is covered with a thin insulator, the insulator buffers
the radical bombarding effect of the plasma and partly changes
the effect into an annealing effect. The former causes deteriora-
tion of a semiconductor surface, but the latter possibly improves
it. This deterioration/improvement ratio may depend on the in-
sulator thickness and the plasma power; i.e., a lower power is
preferable for the case of a thin insulator.
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