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First, convergence properties in blind source separation
(BSS) of convolutive mixtures are analyzed. A fully recur-
rent network is taken into account. Convergence is highly
dependent on relation among signal source power, trans-
mission gain and delay in a mixing process. Especially,
reverberations degrade separation performance. Second, a
learning algorithm is proposed for this situation. In an un-
mixing block, feedback paths have an FIR filter. The fil-
ter coefficients are updated through the gradient algorithm
starting from zero initial guess. The correction is exponen-
tially scaled along the tap number. In other words, stepsize
is exponentially weighted. Since the filter coefficients with
a long delay are easily affected by the reverberations, their
correction are suppressed. Exponential weighting is auto-
matically adjusted by approximating an envelop of the fil-
ter coefficients in a learning process. Through simulation,
good separation performance, which is the same as in no
reverberations condition, can be achieved by the proposed
method.

1. INTRODUCTION

Signal processing including noise cancelation, echo cance-
lation, equalization of transmission lines, estimation and
restoration of signals have been becoming very important
technology. In some cases, we do not have enough infor-
mation about signals and interference. Furthermore, their
mixing and transmission processes are not well known in
advance. Under these situations, blind source separation
(BSS) technology using statistical property of the signal sources
have become very important [1]-[7],[13],[14].

Since, in many applications, mixing processes are con-
volutive mixtures, FIR or IIR filters are required in unmix-
ing processes. Several methods in a time domain and a fre-
quency domain have been proposed. However, when high-
order filters are required in the feedbacks, a learning process
becomes unstable and separation performance is not enough
[8]–[12]. An approach has been proposed taking some prac-
tical assumption into account [15]. High-order FIR filters
can be used in a unmixing process. Furthermore, reverbera-

tions must be taken into account, which causes severe con-
dition in BSS. No efficient method has been proposed.

In this paper, convergence properties are analyzed for
convolutive mixtures with reverberations. A learning algo-
rithm with an exponentially weighted stepsize is proposed.
The exponential weighting is automatically adjusted in a
learning process. Simulation will be shown to confirm use-
fulness of the proposed method.

2. NETWORK STRUCTURE AND EQUATIONS

Figure 1 shows a fully recurrent BSS model proposed by
Jutten et all [3]. The mixing stage has convolutive struc-
ture. FIR filters are used in feedback circuits of an unmixing
block as shown in Fig.2.
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Fig. 1. Block diagram of recurrent BSS.
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Fig. 2. FIR filter used forC21(z) andC12(z) in feedback.

The signal sourcessi(n), i = 1, 2, · · · , N are combined



through the unknown convolutive mixture block, which has
the impulse responsehji(m), and are sensed atN points,
resulting inxj(n).

xj(n) =
N∑

i=1

Mji−1∑
m=0

hji(m)si(n − m) (1)

The output of the unmixing blockyj(n) is given by

yj(n) = xj(n) −
N∑

k=1�=j

Ljk−1∑
l=0

cjk(l)yk(n − l) (2)

This relation is expressed using vectors and matrices as fol-
lows:

x(n) = HT s(n) (3)

y(n) = x(n) − CT ỹ(n) (4)

s(n) = [sT
1 (n), sT

2 (n), · · · , sT
N (n)]T (5)

si(n) = [si(n), si(n − 1), · · · , si(n − Mi + 1)]T(6)

x(n) = [x1(n), x2(n), · · · , xN (n)]T (7)

y(n) = [y1(n), y2(n), · · · , yN(n)]T (8)

ỹ(n) = [yT
1 (n),yT

2 (n), · · · , yT
N (n)]T (9)

yk(n) = [yk(n), yk(n − 1), · · · , yk(n − Ljk + 1)](10)

H =




h11 h21 . . . hN1

h12 h22 . . . hN2

...
...

. . .
...

h1N h2N . . . hNN


 (11)

hji = [hji(0), hji(1), · · · , hji(Mji − 1)]T (12)

C =




0 c21 . . . cN1

c12 0 . . . cN2

...
...

. . .
...

c1N c2N . . . 0


 (13)

cjk = [cjk(0), cjk(1), · · · , cjk(Ljk − 1)]T (14)

(15)

LettingSi(z), Xj(z) andYk(z) be z–transform ofsi(n),
xj(n) andyk(n), respectively, they are related as follows:

X(z) = H(z)S(z) (16)

Y (z) = X(z) − C(z)Y (z) (17)

S(z) = [S1(z), S2(z), · · · , SN (z)]T (18)

X(z) = [X1(z),X2(z), · · · , XN(z)]T (19)

Y (z) = [Y1(z), Y2(z), · · · , YN (z)]T (20)

From these expressions, a relation between the signal
sources and the unmixing outputs becomes

Y (z) = (I + C(z))−1X(z)
= (I + C(z))−1H(z)S(z) (21)

In order to evaluate separation performance, the following
matrix is defined.

P (z) = (I + C(z))−1H(z) (22)

If each row and column ofP (z) has only a single non-zero
element, the signal sourcessi(n) are completely separated
at the outputsyk(n). However, since equalization ofH(z)
is not guaranteed, the separated signals have the following
form.

Yj(z) = Pji(z)Si(z) (23)

3. LEARNING ALGORITHM

The learning algorithm proposed for convolutive BSS is briefly
explained here [15]. For simplicity, 2-channel case is taken
into account.

There are two cases, in which possible solutions for per-
fect separation exist, as shown below.

(1) C21(z) =
H21(z)

H11(z)
C12(z) =

H12(z)

H22(z)
(24)

y1(n) = �
T
11�1(n) y2(n) = �

T
22�2(n) (25)

(2) C21(z) =
H22(z)

H12(z)
C12(z) =

H11(z)

H21(z)
(26)

y1(n) = �
T
12�2(n) y2(n) = �

T
21�1(n) (27)

It is assumed that delay time ofH11(z) andH22(z) are
shorter than that ofH21(z) andH12(z). This means that
in Fig.2, the sensor ofX1 is located close tos1(n), and
the sensor ofX2 close tos2(n). From this assumption, the
solutions in the case (1) become causal systems. On the
other hand, the solutions in the case (2) are noncausal.

From Eq.(21), the outputs are expressed as�
Y1(z)
Y2(z)

�
=

1

1 − C12(z)C21(z)

�
1 −C12(z)

−C21(z) 1

�

×
�

H11(z) H12(z)
H21(z) H22(z)

� �
S1(z)
S2(z)

�
(28)

=
1

1 − C12(z)C21(z)

×
�

H11(z) − C12(z)H21(z) H12(z) − C12(z)H22(z)
H21(z) − C21(z)H11(z) H22(z) − C21(z)H12(z)

�

×
�

S1(z)
S2(z)

�
(29)

Since Eq.(26) cannot be realized using causal circuits, the
diagonal elements of Eq.(29) cannot be zero. On the other
hand, the non-diagonal elements can be zero. Therefore, a
cost function can be defined as follows:

Jj(n) = E[q(yj(n))] (30)

q() is an even function with a single minimum point. By
minimizing this cost function,C12(z) andC21(z) can ap-
proach to Eq.(24). Instead ofE[q(yj(n))], the instantaneous



valueq(yj(n)) is used, and the gradient method can be ap-
plied.

Ĵj(n) = q(yj(n)) (31)

The gradient ofĴj(n) becomes

∂Ĵj(n)
∂cjk(l)

=
∂q(yj(n))
∂yj(n)

∂yj(n)
∂cjk(l)

= q̇(yj(n))yk(n − l) (32)

yj(n) = xj(n) −
Ljk−1∑

l=0

cjk(l)yk(n − l) (33)

q̇() is a partial derivative, which is an odd function. Ifk = 1,
thenj = 2, and vice versa. Therefore, the update equation
of cjk(l) is given by

cjk(n + 1, l) = cjk(n, l) + ∆cjk(n, l) (34)

∆cjk(n, l) = µq̇(yj(n))yk(n − l) (35)

The probability density function (pdf) of the signal sources
are assumed to be even functions. Furthermore, the signal
sources are statistically independent to each other. Then,
they satisfy

E[f(s1(n))g(s2(n))] = E[f(s1(n))]E[g(s2(n))](36)

= 0 (37)

f(), g() : odd functions

If a very small stepsizeµ is used in Eq.(35), the correc-
tion term can be regarded asE[q̇(yj(n))yk(n − l)]. Since,
q̇(yj(n)) andyk(n− l) are also odd functions, then Eq.(37)
can be held. This means that as the correction terms are
reduced,y1(n) and y2(n) can approach tohT

11s1(n) and
hT

22s2(n), respectively, .

4. A LEARNING ALGORITHM FOR
CONVOLUTIVE BSS WITH REVERBERATIONS

4.1. Convergence Analysis

When reverberations occur, the assumption on the trans-
mission delay in the mixing process cannot be held. A
model including reverberations is shown in Fig.3.H ′

11(z)
andH ′

22(z) express transfer functions caused by reverber-
ation, which has a long transmission delay.H ′

12(z) and
H ′

21(z) are not shown here for simplicity. By using the
learning algorithm described in the previous section, the fol-
lowing two terms can be reduced atX1.

H ′
11(z)S1(z) − C12(z)H21(z)S1(z) → 0 (38)

C12(z) → H ′
11(z)

H21(z)
(39)

H12(z)S2(z) − C12(z)H22(z)S2(z) → 0 (40)

C12(z) → H12(z)
H22(z)

(41)
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Fig. 3. Convolutive BSS model with reverberationsH ′
11(z)

andH ′
22(z).

H ′
11(z)/H21(z) can be alos causal. In other words, not only

theS2(z) component but also theS1(z) component can be
cancelled by the signal through the path of−C12(z). How-
ever, the optimum forms ofC12(z) for cancelingS2(z) and
S1(z) are different.

In the same manner, atX2,

H ′
22(z)S2(z) − C21(z)H12(z)S2(z) → 0 (42)

C21(z) → H ′
22(z)

H12(z)
(43)

H21(z)S1(z) − C21(z)H11(z)S1(z) → 0 (44)

C21(z) → H21(z)
H11(z)

(45)

Eqs.(41) and (45) are the ideal solutions. However,C12(z)
andC21(z) cannot approach to these solutions due to the
reverberations given by Eqs.(39) and (43).

4.2. A Learning Algorithm with Exponential Scaling

Reverberations have a long delay, and from Eqs.(39) and
(43), effects of reverberations appear at the latter part of the
impulse responses. For this reason, the correction in the
latter part is suppressed. This can be done by controlling
the stepsizeµ exponentially along a delay line in the FIR
filters. The update equation is modified as follows:

cjk(n + 1, l) = cjk(n, l)
+ µ(l)f(yj(n))g(yk(n − l)) (46)

µ(l) = µ0r
l, 0 < r < 1 (47)

µ(l) should be proportional to the ideal solution. However,
it is not known beforehand. Therefore, the exponential scal-
ing is proposed here.µ0 is the initial stepsize andrl is an
exponential part.



5. ADAPTIVE EXPONENTIAL WEIGHTING

The exponentially weighted stepsize was proposed for NLMS
adaptive filters [16]. However, in this method, the geometric
ratior should be estimated in advance taking room impulse
responses into account. Therefore, this method is not prac-
tical. In this paper, an adaptive method is proposed. The
exponentially weighted stepsize is automatically adjusted
by approximating an envelop of the filter coefficients in the
learning process.

Let µ(n, l) be the stepsize at the sampling pointn and
the tap numberl. The stepsize and the filter coefficients are
transferred as follows:

log µ(n, l) = log µ0(n) + l log r(n)
= x1(n) + lx2(n) (48)

b(n, l) = log |cjk(n, l)| (49)

b(n, l) is approximated usingx1(n) + lx2(n) by the least
squares method.

x1(n) + lx2(n) = b(n, l) (50)

l = lmax ∼ Ljk − 1
Ax(n) = b(n) (51)

A =




1 lmax

1 lmax + 1
...

...
1 Ljk − 1


 (52)

x(n) =
[

x1(n)
x2(n)

]
(53)

b(n) =




b(n, lmax)
b(n, lmax + 1)

...
b(n, Ljk − 1)


 (54)

lmax means the tap number, where the peak of the filter co-
efficients appears. The least square solution is given by

x(n) = A+b(n) (55)

A+ = (AT A)−1AT (56)

Using these results,r(n), µ0(n) and the stepsizeµ(n, l) are
given by

µ0(n) = ex1 (57)

r(n) = ex2 (58)

r̂(n) = αr(n) + (1 − α)r̂(n − 1) (59)

0 < α � 1
µ(n, l) = µ0(n)r̂(n)l (60)

The geometric ratio is gradually updated. The initial geuss
of r̂(n) is 1.

6. SIMULATION

6.1. Simulation Conditions

Two channel blind separation of speech signals was simu-
lated. The following nonlinear functions are used.

f(y) = tanh(2.5y) g(y) = tanh(0.5y) (61)

The separation performance is evaluated by the following
SNR, defined by usingP (z) in Eq.(22)

σ2
s =

2∑
i=1

1
2π

∫ π

−π

|Pii(ejωT )|2dωT (62)

σ2
c =

∑
j �=i

1
2π

∫ π

−π

|Pji(ejωT )|2dωT (63)

SNR = 10 log
σ2

s

σ2
c

[dB] (64)

σ2
s expresses power of the selected signals andσ2

c is that of
the cross components.

Convolutive mixing process with reverberations are shown
below.

H11 = 1 − 0.4z−T + 0.18z−2T

H12 = 0.5z−6T + 0.175z−7T + 0.03z−8T

H21 = 0.5z−6T + 0.135z−7T + 0.01z−8T

H22 = 1 + 0.4z−T − 0.2z−2T

H ′
11 = 0.1z−10T (1 − 0.35z−T + 0.02z−2T )

H ′
12 = 0.1z−10T (1 + 0.38z−T + 0.02z−2T )

H ′
21 = 0.1z−10T (1 + 0.32z−T + 0.03z−2T )

H ′
22 = 0.1z−10T (1 + 0.33z−T + 0.01z−2T )

40 taps, which can cover the impulse response of the ideal
solutions are assigned to bothC12(z) andC21(z).

6.2. Separation Performance with Fixed Stepsizes

SNR are shown in Fig.4, which are obtained by using a
constant stepsizeµ = 0.005, an inversely controlled step-
size µ = 0.02/l and the exponential stepsize withµ0 =
0.025 andr = 0.83. µ andr are is obtained by approxi-
mating an envelop of the ideal impulse response. Further-
more,SNR obtained without the reverberations and with a
constant stepsizeµ = 0.005 is also shown for comparison.
From this figure, the reverberations significantly degrade the
separation performance with a constant stepsize. The ex-
ponentially weighted stepsize can achieve almost the same
SNR as under no reverberation condition. Thus, degrada-
tion due to the reverberation can be improved by using the
exponential stepsize.

6.3. Separation Performance with Adaptive Stepsize

Figure 5 shows the adjusting process of the geometric ra-
tios r12(n) andr21(n) used in updatingc12(n) andc21(n),
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Fig. 4. SNR using constant stepsize and two kinds of vari-
able step sizes.

respectively. They are adjusted around the optimum value
r = 0.83. Thus, it is confirmed that the learning of the
geometric ratios is successful.
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Fig. 5. Adjusting process of geometric ratiosr12(n) and
r21(n) used in updatingc12(n) andc21(n), respectively.

The final stepsize of the proposed method and the ref-
erence stepsize, which is obtained by approximating the en-
velop of the ideal filter coefficients in the least squares sense,
are shown in Fig.6. They are almost the same. Thus, the
proposed adaptive stepsize can reach the envelop of the ideal
filter coefficients.

The separation performance is shown in Fig.7. The ref-
erence stepsize and the adaptive stepsize are used. Their
separation performance are almost the same. In the pro-
posed method, it is not neccessary to estimate the envelop
of the ideal filter coefficients in advance. This is a very im-
portant point in practical applications.

Figure 8 shows the ideal filter coefficients and the final
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Fig. 6. Final stepsize of the proposed method and reference
stepsize, which is obtained by approximating the ideal filter
coefficients.
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Fig. 7. Separation performance using adaptive stepsize and
reference stepsize.



filter coefficients obtained by the proposed method forc12

andc21.
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Fig. 8. Ideal and trained filter coefficientsc12 andc21.

7. CONCLUSIONS

Convergence properties have been analyzed in convolutive
BSS with reverberations. Due to the reverberations, the fil-
ters used in the unmixing block deviate from the ideal. The
effects appear in the latter part of the impulse responses. A
learning algorithm using the exponentially weighted step-
size has been proposed. The geometric ratio of the stepsize
is automatically adjusted. From the simulation results for 2
channel BSS, the proposed method can achieve good sepa-
ration as in BSS without reverberations.
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