微小物体可視化センサLSIの設計

著者	Nakae Satoshi, Kitagawa Akio, Akita Junichi			
雑誌名	映像情報メディア学会技術報告			
巻	29			
号	34			
ページ	13-16			
発行年	2005-06-23			
URL	http://hdl.handle.net/2297/3535			

微小物体可視化センサ LSI の設計

中江 智[†] 北川 章夫[‡] 秋田 純一[‡]

†金沢大学 〒920-1192 石川県金沢市角間町

E-mail: † nakae@merl.ec.t.kanazawa-u.ac.jp, ‡ {kitagawa, akita}@is.t.kanazawa-u.ac.jp

あらまし センサ LSI 上に物体を乗せることにより拡大画像を得る微小物体可視化センサ LSI の設計を行う。可 視化センサのチップ上部にセンサプレートを格子状に配置し、物体との距離を測るのにセンサプレート-物体間で生 まれる容量を用いて各センサプレート上の物体との距離を測定する。得られた容量は発振器の発振周波数に変換さ れ、距離情報として出力される。この原理に基づくセンサ LSI の回路構成を検討し、発振器の配置によって検出精 度が変わること、および得られた容量により発振周波数が変化するのを確認し、微小物体可視化センサ LSI とテス ト回路の設計を行った。

キーワード 微小物体可視化センサ 発振器 センサプレート

The design of the Microscopic Object Visualization Sensor LSI

Satoshi NAKAE^{\dagger} Akio KITAGAWA^{\ddagger} and Junichi AKITA^{\ddagger}

† Kanazawa University Kakuma-machi Kanazawa-shi Ishikawa 920-1192

E-mail: † nakae@merl.ec.t.kanazawa-u.ac.jp, ‡ {kitagawa, akita}@is.t.kanazawa-u.ac.jp

Abstract This paper describes the design of the microscpic object visualization sensor LSI. Electrodes as sensor plates are placed on the surface of the chip in lattice, and distance are measured as the capacitance between the sensor plate and the object. The obtained capacitance is converted to the frequency, and is output as distance information for each sensor plate. We discussed the architecture of the sensory system, and we found that the accuracy of measurement is depend on the arrangement of the oscillator, as well as the oscillator frequency is modulated according to the capacitances. We also designed the sensor plate,

Keyword microscopic object visualization sensor, oscillator, sensor plate

1. まえがき

顕微鏡の中で身近なものに光学顕微鏡が挙げられ るが、装置が大掛かりであり、また精密光学系を必要 とするためにシステムコストが問題となる場面が多い。 本研究では、物体との距離情報に依存する容量情報に 基づく、光学系を必要としない微小物体可視化センサ LSIの検討および開発を行う。このような物体との距 離に依存する容量情報を距離情報に変換するセンサと しては指紋センサに関する研究がある[1][2]が、これら は距離情報を電圧値や出力するまでの時間として表す 点が本研究とは異なる。

2. 微小物体可視化センサの原理

2.1. 動作原理

本研究で設計する微小物体可視化センサはチップ 上に対象となる物体を乗せることにより拡大画像を得 る。そのため、チップ上にはチップとその上部にある 物体との距離を測るためのセンサプレートが敷き詰め られている。本センサの回路の構成を図1に示す。図 中の四角で囲まれた部分はセンサプレートの下に配置 され、センサプレートの数だけ存在する。その他の、

図1 センサのシステム構成

センサプレート選択用のデコーダ、LPF (Low Pass Filter) およびカウンタは、センサシステム全体で1組 のみ配置される。デコーダによってセンサプレートを 順次選択し、選択されたセンサプレートの発振信号を 取り出して LPF に入力する。物体とセンサプレート間 の距離情報は実際にはそれらの間に生まれる容量 C_f として検出される。すなわち検知用発振器 A はセンサ プレートで検出された容量により発振周波数 f₁が変 化することになるが、参照用発振器 B は常に一定の参 照周波数f。で発振しているため、ミキサによってこ れらの周波数の差をとることにより、周波数変化の検 出精度を高めることができる。このミキサの出力に対 して LPF によって不必要な高調波成分を除去し、カウ ンタによって周波数 | f₁ - f₂ | を測定する。この操 作を全セルに対して順次行うことにより、対象物体の 拡大画像を得ることができる。

2.2. 発振器

各センサプレートに配置する発振器にはリングオ シレータを用いる。リングオシレータはインバータを 奇数段並べ、入力と出力をつないだものであり、LC 発振器のように大きな面積が必要な構成要素を必要と しないため、面積を小さくすることができる。このよ うに各センサプレートに発振器を配置する構成により、 発振器の出力が駆動する配線が短くすることができ、 検出感度を高めることができる。すなわち、配線の付 加容量 C₁ はセンサプレートの検出容量に付加される ことになるが、検出用発振器につながる容量 C は C=C₁+C_f

で表されるため、発振器につながる容量の変化の割合 が C_fだけのときよりも少なくなる。表1にセンサプレ ートと発振器を 4mm 離し、配線でつないだ場合(場合 1)とセンサプレート下に発振器を置いた場合(場合 2)の周波数変化のシミュレーション結果を示す。検出 容量 0fF はセンサプレート上に物体が乗っていない状 態であり、46.5fF はセンサプレート上の物体がもっと も近いときである。

	発振器の周波数変化		
センサ検出容量	0fF	46.5fF	周波数差
場合1	480MHz	476MHz	4MHz
場合 2	683MHz	646MHz	37MHz

表1 発振器を置く位置による周波数変化の違い

このようにセンサプレート下に発振器を置いたときと 比べ、センサプレートと発振器を離したほうが、周波 数変化が小さくなり、距離の検出精度が低下すること がわかる。

また、センサプレート下に発振器を置くことにより、

発振器からセンサプレートの配列外にある LPFまでの 長い配線には発振器の振幅が送られることになる。配 線の付加容量は周波数の変化に影響を与えないので周 波数を正確に送ることを可能にする。

図2はセンサプレートの検出容量に対する発振周波 数の変化である。リングオシレータはセンサプレート 上に物体が乗っていない状態 683MHz で発振するもの を用いた。センサプレートサイズは 38.5 µ m×38.5 µ m

仮定をしている。この結果から、検出容量に対する周 波数変化はこのようにほぼ線形とみなすことができる ことがわかる。

図3は物体-チップ間の距離に対する周波数変化で ある。物体-チップ間の距離が離れているときはほとん ど周波数が変化しないが近づくにつれ変化が大きくな っていくことがわかる。

図3 物体-チップ間の距離に対する周波数変化

物体-チップ間の距離に対する感度をシミュレーションした結果を図4に示す。物体-チップ間の距離が小 さくなるほど感度が高くなり、一番近いところでは6.2 ×10⁻¹²m/Hz となる。これは 1 MH z あたり 0.0062 μ m となる。

図5に検出容量および発振器の周波数変化とテクノ ロジの関係を示す。加工寸法が縮小すると微細化が進 み、センサプレートのサイズが小さくなり検出容量が 小さくなり、検出できる距離が短くなるが、寄生容量 の減少により発振器の発振周波数差は大きくなる。ま た、拡大倍率はセンサプレートサイズに依存するので、 微細化が進むほど拡大倍率を高くすることができる。

図5 検出容量、周波数変化とテクノロジの関係

2.3. ミキサ、LPF

ミキサは一般の無線用などの RF 回路で使用するミ キサのように高精度を要求されないため、センサプレ ート下に配置できるようにトランジスタ1つで構成す る。

ローパスフィルタは発振器の周波数とミキサの出 力である2つの差の周波数に大きな差があるため、複 雑なものは使用せずに1次のものを使用することにす る。

3. シミュレーション結果

図7、図8に、ミキサおよびLPFの動作をHSPICEを 用いてシミュレーションした結果を示す。図6はシミ ュレーション回路図である。図7は検出容量が0fFで チップ上に物体がのっていない場合であり、検知用発 振器の周波数は 683MHz、参照発振器の周波数は

776MHz、LPF後の周波数は93MHz となった。図8は 検出容量が46.5fFでチップ上の物体がもっともセンサ プレートと近い場合であり、このときの検知用発振器 の周波数は644MHz、参照発振器の周波数は776MHz、 LPF後の周波数は132MHz となった。このようにチッ プ上の物体との距離が変わるとその変化が周波数の変 化として読み取れることを確認した。

4. レイアウト設計

ローム CMOS0.35 μ m プロセスで回路設計を行った (注)。図9が可視化センサ LSI、図10が要素回路の テスト回路のチップ写真である。可視化センサ回路は 電源電圧 3.3V、チップサイズ $4.9mm \times 4.9mm$ 、センサ エリア $3.6mm \times 3.6mm$ 、センサプレートサイズ 38.5μ m× 38.5μ m、センサプレート数 80×80 となっている。 テスト回路は電源電圧 3.3V、チップサイズ $2.4mm \times$ 2.4mm で、発振器の発振周波数を変えたときの感度の 変化、ばらつきを調べる回路、電源投入時の過渡特性 を調べる回路、スペクトル測定用回路からなる。これ らの測定結果は直ちに実行する予定である。

図9 可視化センサチップ写真

図10 TEG チップ写真

5.むすび

インピーダンスを検知し、周波数に変換し物体チッ プ間の距離情報を伝える微小物体可視化センサのシス テムを考案した。発振器をセンサプレート下に置く必 要性を確認し、発振器の発振周波数が検知された容量 によって変化するのを確かめた。ローム CMOS0.35 μ m プロセスで可視化センサ回路と TEG を作成した。チ ップの測定と評価は今後の課題である。

6. 文献

[1]Jeong-Woo, Dong-Jin Min, Jiyoun Kim, and Wonchan Kim:"A 600-dpi Capacitive Fingerprint Sensor Chip and Image-Synthesis Technique", IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL.34, NO.4, APRIL 1999, pp469-475

[2]Hiroki Morimura, Satoshi Shigematsu, Toshishige Shimamura, Katsuyuki Machida and Hakaru Kyuragi:"A Pixel-Level Automatic Calibration Circuit Scheme for Capacitive Fingerprint Sensor LSIs" IEEE JOURNAL OF SOLID-STATE CIRCUITS. VOL.37, NO.10, OCTOBER 2002,pp1300-1306

(注)「本チップ試作は東京大学大規模集積システム 設計教育研究センターを通し ローム(株)および凸版 印刷(株)の協力で行われたものである。」

"The VLSI chip in this study has been fabricated in the chip fabrication program of VLSI Design and Education Center(VDEC), the University of Tokyo in collaboration with Rohm Corporation and Toppan Printing Corporation."