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VARIANCE OF CODEWORDS
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Kanazawa University, Kanazawa, Japan

ABSTRACT

Vector quantization for image compression requires expensive
time to find the closest codeword through the codebook.
Codebook design based on empirical data for entropy–
constrained vector quantization (ECVQ) involves a time
consuming training phase in which a Lagrangian cost measure
has to be minimized over the set of codebook vectors. In this
paper, we propose two fast codebook generation methods for
ECVQ. In the first one, we use an appropriate topological
structure of input vectors and codewords to reject many
codewords that are impossible to be candidates for the best
codeword. In the second method, we use the variance test to
increase the ability of the first algorithm to reject more
codewords. These algorithms allow significant acceleration in
the codebook design process. Experimental results are presented
on image block data. These results show that our new algorithms
perform better than the previously known methods.

1. INTRODUCTION 

Vector quantization (VQ) [1] has played an important role in 
numerous data compression systems. It is defined as a mapping

 from a k-dimensional Euclidean space  to a finite set
 of vectors in  called the codebook. A

vector quantization process includes three phases: codebook
design, encoding and decoding. The objective of codebook
design is to construct a codebook C  from a set of training
vectors using clustering algorithms like the generalized Lloyd
algorithm (GLA) [2]. This codebook is used in both the encoder
and the decoder. The encoding phase is equivalent to find the
vector  minimizing the distortion
defined as the Euclidean distance between the vector  and .
The decoding phase is simply a table look-up procedure that uses
the received index i  to deduce the reproduction codeword ,
and then uses  to represent the input vector .

Entropy-constrained vector quantization (ECVQ) [3] employs
a modified cost measure using both the effective distortion of the
signal and the expected length of the transmitted code. We
define the cost function for encoding the vector x by the
codeword  as the Lagrangian function,
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where is a constant called the Lagrange multiplier allowing to 
control the rate-distortion ratio and  is the length of the
codeword .

The computational cost of finding the best suitable codeword
in the codebook design and encoding imposes practical limits on
the codebook size N and the vector dimension k. When N and k
become larger, the computational complexity problem occurs for

full codebook search. This has motivated  developing many fast
nearest neighbor search algorithms [4]-[11]. Many algorithms
concentrate on narrowing the area of the candidate codewords
for which distortion must be calculated. For example, Lee and
Chen [4] introduced one of such algorithms for standard VQ,
which uses the mean and the variance of the vector to reduce the
search area. Cardinal [6] generalized the technique in [4] to
apply it to ECVQ. To constrain the search area, Cardinal method
uses two elimination rules; the first rule utilizes the projection of
the vector on a central line in the signal space, while the second
rule employs the distance between the vector and its projection
point on the central line.

Other algorithms exploit the topological structure of the
codebook to avoid unnecessary codeword matching procedure.
Lee and Chen [9] proposed a fast search algorithm for the
codebook generation of standard VQ based on mean pyramids of
codewords. Pan el al. [10] improved the encoding search process
by adopting variance pyramids in addition to mean pyramids.
Another technique using L -norm pyramids of codewords has
been proposed in [11].
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This paper proposes two methods to reduce the complexity in
the codebook design for ECVQ. The proposed methods are
developed by combing the idea of projection pyramid data
structure with  narrowing the search area by Cardinal method
[6]. In the first method, we derive a multilevel inequality based
on the projection pyramids of codewords. By employing this
inequality, the codebook design process can be speeded up. In 
the second method, we add a variance test to the first algorithm
to reject more codewords and speed up the codebook design
process.  These methods have the same coding quality as the full
search method.

The paper is organized as follows. Section 2 describes the
projection pyramid data structure. Section 3 introduces the
proposed algorithms in detail. Experimental results are shown in
section 4, and concluding remarks are given in section 5.

2. PROJECTION PYRAMID DATA STRUCTURE 

Image pyramid data structure was originally developed for image
coding by Burt and Adelson [12]. In this data structure, an image
is  represented  hierarchically, with each level corresponding to a
reduced-resolution approximation. Given an image  of size

, its pyramid can be defined as a sequence of matrices
, where an image  in level

 has a size of 2  and is a reduced-resolution
version of . Note that  has only one pixel. A pyramid data
structure can be formed by successively performing appropriate
operations over neighboring pixels in the next lower level.
Therefore, the value of a pixel  in level  can be
obtained by
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,

this completes the proof. From lemma 1 we can obtain the
following corollary:
Corollary 1:

,   (6)

where represents the vector whose components are
absolute differences of two vectors components,
(where ), and  is its projection on

. This corollary can be generalized to the Lagrangian
distortion measure  as in the following corollary:
Corollary 2:
J . (7)

We define another distortion,
, (8)

then .
Let us assume that the current best codeword is  with the

minimum distortion . If the codeword
satisfies the inequality , then
is always guaranteed. Hence  cannot be closer to  than
and can be rejected.

By using the projection pyramid data structure described in
section 2, we can extend Eq. (8) to a general case, where tighter
decision boundaries for eliminating search operations are
obtained in a multilevel. Let us assume that the vector dimension

, and two projection pyramids for  and  are 
and ,

respectively. Then we can redefine Eq. (8) as,

 (9)

where  is a -dimensional unit vector,
and  and Y  represent the values of the (j, h)-th
pixels on  and Y , respectively. Thus, on the top level,

. (10)

From the last definition in Eq. (9) and corollary 2, we can easily
get the following theorem.

Fig. 1 The projection pyramid structure.

where  is an operation function.
There are many different types of image pyramids. The

simplest pyramid data structure is the projection pyramid, which
is formed by successively projecting the corresponding
neighboring pixels on a unit vector  in the -
dimensional signal space. This kind of pyramid structure is
equivalent to the double mean pyramid structure. In the
projection pyramid, the bottom level is the original image itself,
and the top level corresponds to the projection of the whole
image on a unit vector u  in the -
dimensional space. Fig. 1 shows the projection pyramid
structure. The projection pyramid pixel value  in level

is obtained from any lower level l as
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where is a unit vector in -
dimensional space and T denotes transpose.
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3. FAST CODEBOOK DESIGN ALGORITHMS

In this section, we describe two high-speed closest-codeword
search algorithms by deriving a robust inequality for ECVQ
based on the projection pyramids of codewords. This inequality
is used in the first proposed algorithm to reject many codewords
and speed up the search process. In the second algorithm, we
exploit the variance test for rejecting more codewords in the top
level of the projection pyramids.

3.1. Projection Pyramid Algorithm

Before describing the method, we give some definitions and a
lemma. Let  be a k-dimensional vector,

 be a codeword and  be
a k-dimensional unit vector. Define the distortion  for
representing the vector  by the codeword as the Euclidean
distance between  and , that is,
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Lemma 1:
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Proof: For any real values , we have
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Theorem 1:
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With the above theorem in hand, we begin describing the
proposed algorithm. For a training vector  with a current best
codeword  and a current minimum distortion

, the algorithm starts from the top level of the
projection pyramid for any other codeword .  It first calculates
~

, then if , thus codeword  will not 
be the closest one and can be rejected. Otherwise,  on 
the second level is calculated and checked. If
~

from the similar reason as above, the codeword
 can be rejected. If it is not rejected, the third level is tested.

This process is repeated until  is rejected or the bottom level
is reached. If the bottom level is reached, then the distortion

 is calculated and checked. If , the
current minimum distortion  is replaced by  and
the current closest codeword to  is set to be .

It is emphasized that the first test in the top level is equivalent
to the first elimination rule of Cardinal method [6] and this
explains the reason of why we use the projection pyramid data
structure.
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3.2. Projection Pyramid With Variance Test Algorithm

Since the variance of a vector is a simple measure to detect
whether a vector is homogeneous, we add a variance test to the
projection pyramid algorithm at the top level test to reduce the
search area. We define the variance values for the vector  and
the codeword  as,

, (12)
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Lemma 2:

i
.

The proof of lemma 2 is given in [4]. Also, Lemma 2 can be
extended to the Lagrangian distortion measure as in the
following corollary:
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Now we turn to describe the proposed algorithm. For a
training vector  with a current minimum distortion , and
any codeword , the algorithm checks the top projection
pyramid test. If ,  will be rejected.
Otherwise, it calculates , then if , thus
codeword will not be the closest codeword and can be
rejected. Otherwise, it continues the projection pyramid
procedure from the second level until finding the closest
codeword  to .

x
y

x

minJ

minJ

i

min
0 ),(

~
JyxJ i ≥
),( iv yxJ

iy
Jv ),( yx i ≥

iy

iy
Actually, using the variance test at the top level is equivalent

to the second elimination rule of Cardinal method [6].

4. EXPERIMENTAL RESULTS 

Experiments were carried on vectors taken from the USC
grayscale image set. We used two images, Lena and Baboon with
size  and 256 gray levels. Each image is divided into

blocks, thereby each block becomes a 16-dimensional
vector  and . The tested methods are Cardinal
(CARD), which is known as the fastest existing method for
ECVQ, the projection pyramid (PP) and the projection pyramid
with variance test (PPV).

Figs. 2 and 3 present the execution time (in seconds) of the
three methods with various codebook sizes at = 0.5 for Lena
and Baboon, respectively. The timings were made on Pentium III 
(866 MHZ). We can see that both PP and PPV methods
significantly accelerate the codebook design  more than the
CARD method. In case of Lena, PP and PPV reduce the time by
average ratios 37.1% and 40.6%, respectively. But in case of
Baboon, they reduce the execution time by average ratios 39.4%
and 42.9%, respectively. It can be seen that as the codebook size
increases, the efficiency of the proposed algorithms becomes
better than the CARD method. This is an important merit of our
algorithms, because design of a larger codebook size requires
more intensive computation.

Figs. 4 and 5 compare the rejection ratio of the codewords in
each iteration compared to the FS method at N = 256 and =
0.5 for both Lena and Baboon, respectively. The average
rejection ratios are 95.3% for CARD, 96.5% for PP, and 96.9%
for PPV in case of Lena, while they are 79.9%, 86.5% and
88.2% for baboon, respectively. We can see that the rejection
ratio at iteration 1 is smaller than the ratios at other iterations.
The main reason is that the tested methods employ a random best
codeword for each training vector  at the first iteration, while
in any other iterations, they use the best codeword obtained for

 in the previous iteration.

512512 ×

16( =k
44 ×

)2=m

λ

λ

x

x
Improvement of rejection ratio in the intermediate level for

Baboon image is larger than that of Lena image. This difference
can be explained from the statistics of the used test images in the
following. For a given input vector x, the first elimination rule of
the CARD method, which is also employed in the top level test
of both the PP and the PPV methods, constrains the search area
between two parallel hyperplanes normal to the central line[6].
The  width  of  this  search  area is determined by the Lagrangian
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distortion , where  is the current best codeword.
This search area is affected by the distribution of codewords,
which is also related to that of input vectors. For instance, when
the codeword distribution is dense like in Lena image,
will be small and the width of the search area becomes narrow.
Then, most of codewords will be rejected at the top level test,
and there is less chance to reject more codewords in the other
levels as in Fig. 4. While in Baboon image, the codeword
distribution is not so dense as in Lena image, then may
be larger and more codewords are contained in the search area at
the top level. Then, there is a chance to reject more codewords in
the other levels of the proposed methods as in Fig. 5. As a result,
the proposed projection pyramid algorithm is more effective for
difficult images of which coding efficiency is low.

),( byxJ by

),( byxJ

), by(xJ

5. CONCLUSIONS

In this paper, we have presented two fast search algorithms for
ECVQ. The first algorithm uses the projection pyramids of
codewords to reject many unmatched codewords, thus drastically
speeding up the search process in ECVQ codebook design. In
the second algorithm, the variance test was added to the
projection pyramid method to reject more codewords in the
search process. Simulation results show that the complexity of
the proposed algorithms is significantly reduced while the
coding quality remains the same as of the exhaustive search
algorithm.
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Fig. 4 Comparison of rejection ratio in each iteration at
           codebook size 256 and  = 0.5 for Lena.

Fig. 5 Comparison of rejection ratio in each iteration at
           codebook size 256 and  = 0.5 for Baboon.λ
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