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Abstract— This paper discusses a method to accelerate re- AS a concrete example, we consider a simple task
inforcement learning. Firstly defined is a concept that reduces  modified from a Peg-in-Hole task of a manipulator. It is
the state space conserving policy. An algorithm is then given - 555, med that the learning robot does not know beforehand

that calculates the optimal cost-to-go and the optimal policy hat stat . d sufficient for the | -
in the reduced space from those in the original space. Using what state space Is necessary and suflicient for the learning.

the reduced state space, learning convergence is accelerated.|f the dimensions of the state space are high, learning
Its usefulness for both DP (dynamic programing) iteration convergence needs very long time. The proposed method

and Q-learning are compared through a maze example. The reduces the state space and the reinforcement learning may
convergence of the optimal cost-to-go in the original state become applicable.

space needs approximatelyV or more times as long as that
in the reduced state space, whereV is a ratio of the state II. REINFORCEMENTLEARNING
number of the original space to the reduced space. The . .

acceleration effect for Q-learning is more remarkable than A DP Formulation for Learning

that for the DP iteration. The proposed technique is also 1) General DP Problem:The reinforcement learning is
applied to a robot manipulator working for a peg-in-hole associated with the dynamic programming (DP).

task with geometric constraints. The state space reduction G I h di te-ti d . t .
can be considered as a model of the change of observation, enerally, we have a discrete-ime dynamic system in

i.e., one of cognitive actions. The obtained results explain that DP formulations [4]. If we are in staté and we choose
the change of observation is reasonable in terms of learning action or controk:,, we will move to statg with probability

efficiency. pi;(u). Whenp;; (u) of transition toj is dependent on only
current; andu, the system satisfies the Markov property
and is called a Markov decision process (MDP). Time is
Future space projects, e.g., solar power satellites fasccasionally considered as an element of the state. But, the
energy acquisition, will need space robots that work insteaslystems considered here are not obviously dependent upon
of astronauts. Such space robots need to recognize théine.
environments to choose suitable actions and to carry out The controlu depends on the stateand the rule by
tasks autonomously. Therefore, we must study and develaghich we select the controls is called a policy or feedback
intelligent and autonomous robots [1]. For the purpose, thisontrol policy. Simultaneously with a transition froino
study applies the reinforcement learning [2]. However, itj under controlu, we incur a cosy(i, u, j).
often requires so large number of computations that the 2) State, Control, and Policytn a general reinforcement
method cannot apply to real problems. It is necessary tiearning problem, staté, ; and controlu are discrete
accelerate the learning speed. variables that are elements of the finite sets. Therenare
Investigations of skilled human operators point out sstates, denoted by, 2,...,n, plus possibly an additional
change of “observation” [3]. One’s environmental obsertermination state, denoted By At statei, the control must
vation changes to indicate efficient and right action durindpe chosen from a given finite s&{7). At statei, the choice
repeat working,. The change of observation is modeledf a controlu specifies the transition probabilify;; (u) to
as the state space reduction using a formulation of thine next statg.
reinforcement learning. The state-reduction method enable We are interested in policies, i.e., sequence =
to approach to a so-called frame problem by using recodg, i1, - - .}, wherepy, is to map each stateinto a control
nition. k(i) € U(7). Let us denote by, the state at timé. Once
For the modeling, this study uses a dynamical systera policy 7 is fixed, the sequence of statés becomes a
that is a finite Markov decision process (MDP) with Markov chain with transition probabilities:
discrete time. It then proposes a concept of state reduction, P(i — lin = 1) = pi; (1 (3)
where the state space can be reduced conserving the el = It = 0) = Pig et
optimal policy. An algorithm of the state space reduction 3) Problems and CostsWe can distinguish between
is proposed. The method reduces the state space afiite horizon problems, where the cost accumulates over a
accelerates the reinforcement learning. finite number of stage®’, and infinite horizon problems,

I. INTRODUCTION
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where the cost accumulates indefinitely. The problems hefer i = 1,...,n, where we will always use the convention
are considered as infinite horizon problems to be solved hhat J(0) = 0. Note thatT' can be viewed as a mapping
learning. In infinite horizon problems, a cost accumulatethat transforms a vectar into the vectorT'J. Furthermore,
additively over time. At thecth transition, we incur a cost T'J is the optimal cost-to-go vector for a one-stage problem
afg(i,u,7), whereg is a given function, and. is a scalar that has one-stage cogtand terminal cost/.

with 0 < a < 1, called the discount factor. The total We will denote byT” the composition of the mapping
expected cost starting from an initial statend using a T with itself k& times; that is, for allk we write

policy m = {yio, pu1, ...} is (TN = (DTG, i=1,....n
N-1
J™(i) = lim F Z o glig, e (in), ins1) | io = i Thus, T*J is the vector obtained by applying the map-
N —oo H k—1 H
F—0 ping T' to the vectorT*~".J. For convenience, we also

where the expectation is taken with respect to the probabiVrte (Zoj)@_ = J(@), i = 1,...,n. It can be seen
ity distribution of the Markov chair{io, i1,...iy}. This that (T"J)(i) is the optimal cost-to-go for thé-stage

distribution depends on the initial stateand the policyr, ~ Stochastic shortest path problem with initial stateone-
as discussed earlier. The optimal cost-to-go starting frorft2ge cosy, and terminal cost.

statei is denoted by/* (i); that is Consider the stochastic shortest path problem under
proper assumptions, and we have [4], [5]
J*(4) = min J” (7)
& lim 7%J = J*
We view the costs/*(i), i = 1,...,n, as the components k=00 .
of a vectorJ* that is referred as the optimal cost-to-gofor every vector.J. Based on the above equation, the DP
vector. iteration that generates the sequeride/ starting from

4) Stochastic Shortest Path ProblenMost optimal some.J is called value iteration and is a principal method
policies in infinite horizon problems are stationary poli-for calculating the optimal cost-to-go vectdr.
cies, which are time-independent policies of the form Generally, the method requires an infinite number of iter-
7 = {p,p,...}. For brevity, we refer to{u,u,...} as ations. However, under special circumstances, the method
the stationary policyu. The corresponding cost-to-go is can terminate finitely. A prominent example is the case of
denoted by.J*(i). The vector.J* that has components a deterministic shortest path problem. The initial condition
J(i),i=1,...,n, is referred to as the cost-to-go vectorJ(i) = oo for Vi should be used when the learning
of the stationary policyu. We say thaty, is optimal if — algorithm starts, where a very large number is practically
JH(i) = J*(i) for all statesi. The optimal infinite horizon enough instead obo. This initial condition guarantees
cost-to-go satisfies the following form for all states that each element of the cost-to-go vector monotonically
n decreases and converges to a true value. Moreover, in case
J*(i) = mianij(M)(g(i7u(i)7j) +aJ*(j)) (1) of the value iteration, the cost-to-go vector converges to
— the optimal J* within at mostn times iteration [5].
In this study, the discussed problems can be considered?) Q-Learming: Above-mentioned/” is calculated by
as stochastic shortest path problems that are a class of fg€aming [2] that is a typical method of reinforcement

infinite horizon problems. In the problems below, we assur@Ming. The Q-learning algorithm estimates the optimal
action-value functiorQ (i, v) through interactions between

that « = 1 but there is an additional state 0, which is a' ) ) ¢
cost-free termination state. Once the system reaches tHif oot and the environment with trial-and-error pro-
state. it remains there at no further cost. cesses. The robot takes actionobserves new stateand

costg(i, u, j), and updates) as
Poo(u) =1, g(0,u,0)=0, “ueU(0)

Qi u) —
Under those conditions, we minimize the cost-tofq). . . . C
We are interested in problems where reaching the termi- (1= 7)Qu) +lg( u. J) + QHEDQ(]’U IS

nation state is in-evitable, at least under an optimal p°”CXNhereA/ (0 <~ <1)anda (0 < a < 1) are a learning rate

Thus, the essence of the problem is how to reach thgyq 5 discount rate, respectively. The action-value function
termination state with minimum expected cost. Q generates the cost-to-g(i) as

B. Methods To Solve DP Problems (i) = min Q(i, u)
A value iteration and a Q-learning are introduced below v

to solve the above DP problems. It has been shown that the estimatéd converges to

1) Value lteration: For any vector J — the optimal if the system is modeled as a finite Markov
(J(1),...,J(n)), we consider the vectof'J obtained decision process and all actions are chosen enough times.
by applying one iteration of the DP algorithm tfy the To choose the action appropriately through learning, this
components off'J are study uses the-greedy policy [2] where any action is

n selected randomly with probability otherwise the optimal
(TI)(i) = mianij(u)(g(i7u,j) +J(j)) (2) action is chosen by using the current estimatgd, u).
uel — This initial conditionJ (i) = oo for Vi guarantees that each
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Z random among the 24 states. Consider 6 kinds of control
input w as {ug, uy, uy, up, wy, uq} andg(i, u, j) = 1is
incurred by each control. Fig. 2 shows the resultant motions
by the control when no wall is adjacent to the agent. The
agent cannot move when the moving direction is bordered
by a wall, but is incurred by the control cost. The terminal
states us&)(ig,u) = 0 and J(i¢) = 0, and others start
with Qo = 100 and J, = 100. The parameters used for
Q-learning are a learning rate= 0.6 and a discount rate

a =1 (with no discount).

C. Policy-Invariant State Reduction

Fig. 1. A maze example for state reduction

In the above-mentioned problem, we evaluate optimal
741 cost-to-go vector.J;, . and optimal policy u;, ., using

value iteration and Q-learning, respectively. Noy, . (7)

u u Uy y+l and 7, (i) at statei = (i, iy, i.)" are represented
1<t by Jy,.(ix, 1y, i.) and u;, . (iz, iy, i.), respectively. In
U™ x+1 this example, both];yz(i)‘and Iy (i) are independent
y-1 Up Uqg from i.. Therefore, the optimal cost-to-go vector;, .
21 and the optimal policyuy;, ., respectively, are given by
matrices whose elements at-th row andi,-th column
Fig. 2. Motions corresponding to controls are Jz, (i, iy, i) andpg, . (iz, iy, i.) @St
6 5 4 Up U Uy
element of the cost-to-go vector monotonically decreasedzy- = | 7 8 3 |, Hay. = | w  wp uy
and converges to a true value as well as the value iteration 0 1 2 0w wp
case. forvi, (4)
[Il. STATE REDUCTION The element/;, (i) indicates how many steps the optimal
A. State Reduction Problem policy will need from state to the terminal state because

L . . .. the control cost for a step ik
The change of observation is found in the skill-acquiring . PN .

: . In this problem, becausé&:, . (i) is independent from,,
human operators, whose environmental observation Chan%eere is.J* dependent on o?ﬁl' andi, satisfyin
efficiently as they repeat working. The change of obser- ay 4€P Yo by 9
vation can be modeled by the state reduction as follows, T2 (i, iy, is) = JE, (iy, i) forvi
where minimum observation should be used to achieve the iyz(.x’ A ~Z) _ ﬁy(»x’ .y) for Vi, (5)
task. Payz\tas bys La) = fay bz by lz

If the same control input is applied under a policy i”ConsequentIy, the actions induced by the statei,, i,)”

two or more states in state space, it is not necessary {hd the optimal policyu;,. are the same as those by
distinguish those states. Therefore, they can be regard?:l’ i,)T and i
xy*

as the same state. As a result, we consider that those sta e this situation. we say for the maze problem that “the
are same and can be reduced into one. We now will d'scu%timal pOliCyu’;yz for state(iy, iy, i.)7 is equivalent to

the next problem. the optimal policy,:, for state(i,, i,)7.” We also say

Problem 1: Decide the lower dimensiona state spacgpa: «the state space ¢f,, i,, i.)” can be reduced to that
that holds the learning convergence and same optimgk (iz, i,)T conserving the optimal policy*, _."
) by TYz*

policy of the original state space.

B. Maze Problem D. State Reduction by Coordinate Exclusion

For explanation, consider the maze problem illustrated Consider a vector space with coordinates for the state
in Fig. 1 as a stochastic shortest path problem. Sensospace, e.g., the staté,, i,, i.)” in the maze example.
information is available for x, y, z coordinates of the agentn addition, we make a reduced state space by excluding
moving inside the maze and we consider (i., i, i,)”  coordinates from the original state space in the same
as its state. Total number of the system state¥’is- 27  manner that the low dimensional state spacgiof i,)”
because three positions of 1, 2, 3 are taken in each ¥, y,ig made by excluding z-coordinate from the original state.
component. There are three terminal states, i.e., goal statesAs shown in this example, the optimal poligy,, and
ic = (3, 1,i.)T, wherei, is arbitrary. Therefore, there are the optimal cost-to-go/;, for the reduced state space of
n = 27 — 3 = 24 states with the exception of the terminal (i., i,)” are obtained by the following equations when the
states. In Q-learning, the agent’s initial state is chosen aftiginal state space can be reduced by excludinfrom
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i * e 5 9000 T I
the original state when';, . is independent fromi, . [@ = 400 Q xy| /lo = 130 Q xy|

. . . . . 8000 i

i, = argminJy,  (iz, iy, i2), d ': ot ol

e e = 6 7000 he 4

ny(lﬁfv Zy) = nyz(zmv Ty, Zi)v ( ) 6000

Wy (s By) = py, (i, Gy, 15) FON Vi, Vi, . o

¥ s000 .
The optimal cost-to-gao’;, . is constant along with z-axis, X .
but the minimum operation with respectipis for a later ~ @ 4000 Q = 30 Qxy]|
application. 3000
In the maze example, a control of a deterministic policy .,
is dependent ori, andi,. Hence, we cannot acquire a -
proper policy using a low dimensional space withoubr 1000 ] I'-‘eam'"g C‘°””t" 200
iy. NO deterministic policy is proper for low dimensional 0
0 50 100 150 200

state spacegi,, i.)”, (iz, i.)7, (iz), (iy), and (i,).

For those low dimensional state spaces, we can formally

perform calculations similar to Eg. (6), but the results are

not the optimal policy and optimal cost-to-go. Fig. 3. Episode numbers of Q-learning by usifig, andQay-
The policy and cost-to-go obtained formally by Eq. (6) is

optimal if the cost-to-go calculated by the policy evaluation imulati ) h hod
step does not change. Practically, the value iteration Witﬁ00 simulations is about 130. Hence, the proposed metho

the obtained policy may be used for the policy evaluation® especially effective in the Q-learning with trial-and-error
step processes.

Remark 1:Suppose that the optimal poligy* and the IV. M ANIPULATOR PROBLEM
optimal cost-to-go/* are independent from a coordinate 5  proplem Definition
in the state space with coordinates. A low order state space N . :
As shown in Fig. 4, we consider a task where a 3-link

is constructed by excluding the coordinate, and the optim CARA t - ulator ol ireul tint
policy and the optimal cost-to-go can be calculated a yPe manipu'ator places a circiar component into
hole. This is simplified from the Peg-in-Hole task and no

well as Eqg. (6). Therefore, the original state space can [0

reduced conserving the optimal policy. friction is contained for simplicity.
It is reasonable to use the state variables of the equations

E. Algorithm to Find Low Dimensional State of motion of the robot manipulator with the geometric

The following algorithm is considered in order to find a€ndpoint constraint as:
reduced state space before the learning converges and the
optimal cost-to-go is determined in the original state space.

1) The cost-to-goJ,, and the policys,, for the can- Where the elements ag y positions,a = 0y + 0 + 0

didate of low dimensional state space are calculatedirection of the hand with component, their velocities, and
by Egs. (6) using the cost-to-gh,,.. and the policy applled_forces inz, y, o directions from the environment,
/izy- Obtained at the moment. Thg,., J.,, J respectively. They all are measured from the sensors. The

77 initial state isz = 0.28,y = 0.28, f, = 0, and f, = 0.
2) When a pare amongJs, ut),. .., (Ji,., ihy.) i The terminal state is;y = 0.40,ya = 0.40, foa = 0, and
converge, we evaluate whether the acquired policiefs = 0- The z andy coordinates are descretized every
are the optimal. Generically, the acquired policy is)-03[m], @ every10ldeg], and f, and f, every0.7[N]. A
the optimal when it is feasible, and the original stateState is then described by a set of integers. For example, it

space can be reduced conserving the optimal policyXPresses = 0.03(i; —1)+0.28, i, = 1,2,...,9 andi,
Is considered ag. Other states are also descretized. The

F. Numerical Result &, 7, &, andn, are always zeros in this particular example.
Because of the minimum operation in Egs. (6),

converges earlier tha#,,., or simultaneously at the latest. ~ The following controller is used to generate actions:

In this problem, the state number &f,, i,, i.) is 3 _ 4T _ _ ;

times as many as those 6f,, i,) sincei, has 3 states. T=-J Krly-y,)— Kpb ®)

Therefore, J;,. takes 3 times as long ag;, takes for ~WwhereT is control input to the manipulatod = dy/0q"

convergence when it uses the value iteration. On the othéacobian matrix,y = [z,y,o]” manipulation variable

hand, the result of Q-learning is shown in Fig. 3. Thevector,y, reference ofy, 6 joint variable vectorK » and

vertical axis and the horizontal axis respectively showK p feedback gain matrices, respectively. For the reference

numbers of episodes faR,,. and Q.,, whose learning manipulation variabla;;ff“) at timek, y£k+1) is given by

convergence are judged by the same convergence criteria. YD) = () 4 5y (k) )

In case of Q-learning(,,. takes between 30 and 400 T r T

times as long ag€),, takes for convergence whereas theControl at timek is considered as th@yﬁk). The éyﬁk) is

factor of their state numbers is only 3. The average factor afonstant during the period from tinieto time k+1. Fig. 5

Q_xy

i:(I7y7aaiay7d7fmafyanz)T (7)

etc. are calculated similarly.

3735



A
6 b b b
et REb R S s °
5[ 1 1 P Lo )
B e S
4 1 1 A 1 1 ;
I I I I I I
S
ZA AU /0 I N
NPT ,
1234567829
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Fig. 5. Hand motions correspond to controls 0.4
0.3
shows the ten kinds of control that the manipulator can ust 0.2
For each control, cosf(i, u, j) = 1 is incurred evenif the
hand with component cannot move against the walls. Whe 0.1
a reference valug, goes out of state space, it remains af
the previous position and a large cost is incurred. 0
For example, state and the reference (arey, «,
T _ T (k) _ T i s -0.1
fo fu)' =(8,2,1,2,2)" andy,’ = (8,2,1)" intimek.

The state will becoméz, y, «, f., fy)T =(8,2,1,3, 3)T 0 01 02 03 04 05 0.6 [m] X
attimek + 1 if y*™ = (9, 3, 1)7.

The terminal state is¢ = (5, 5, o, 1, 1, 1, 2, 2, 1)
and « is arbitrary. The terminal stats usg(ig,u) = 0,
J(i¢) = 0 and others start witl®, = 20, Jo = 20. The
parameters used for Q-learning are taken as a learning r
~v = 0.9 and a discount rate. = 1 (with no discount).

Fig. 7. Acquired motion started frort0.28, 0.28)

f\l}\?e say for this problem that the optimal poligy; is
equivalent to the optimal policy;_,. We also say that the
9-dimensional state space can be reduced to 4-dimensional
state space conserving the optimal poljcy
The optimal cost-to-go vector and the optimal policy are
expressed ag; andpg for the original 9-dimensional state C. Simulation Result
space. TheJs and i are evaluated by using Q-learning. . .
TFr)le originalgstate gSace is reduced cgnservging the opti?nal Ff” Q-learning, the same algo”.thm as the maze problem
policy by using the same algorithm as the previous sectior"f‘.Ch'e*Ves state reduc_:t|on. The .d'Str'bUt'on of t*h e cost-to-
There areJ;_; and u}_, dependent on only:, vy, f., 90 Ji 1(%,y, fo; fy) i shown in Fig. 6. TheJs takes

and f,, becauseJg (i) is independent fromy, and, g, &, SSPUt 30 or more times as long &, takes for con-
gence. The reduced state space enable to converge

andn, are constant in this particular example. Therefore . ) . . .
. . i Q-learning and obtained optimal manipulator actions are
the following equations hold: L2 ; . . .
shown in Figs. 7 and 8. Fig. 7 is the optimal action

B. State Reduction

Ti (@, 4, fur fy) = Jo (2,9, 0, 8,9, &, fu, fysnz) from state(z, y, f», fy) = (1, 1, 2, 2) to terminal state
for Vo (z,y, fur fy) = (5, 5,2, 2), where the manipulator reaches

w1 (2, y, foy fy) = 18 (2,9, 0, 2,9, &, fu, fyn2) terminal state in 6 steps. Fig. 8 is the optimal action from
for Vo state(z, y, fz, fy) = (8, 1, 2, 2), and it reaches terminal

(10) state in 5 steps.
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Fig. 8. Acquired motion started frort0.49, 0.28)

V. CONCLUDING REMARKS

The concept has been defined that the state space can

be reduced conserving the optimal policy. For the case that

Symposium on Artificial Intelligence, Robotics and Automation in
Space May 19-23, 2003, Nara, Japan, AS-9, pp. 1-8.

Sutton, R. S. and Barto, AReinforcement LearningMIT Press,
Cambridge, MA, 1998.

Sawaragi, T., “Proficient Skills Embedded with in Human, Machine
and Environment,"J. Society of Instrument and Control Engineers
vol. 37, no. 7, pp. 471-476, 1998. (in Japanese)

Bertsekas, D. P. and Tsitsiklis, J. NNeuro-Dynamic Programming
Athena Scientific, Belmont, 1996.

Bertsekas, D. P.Nonlinear Programming Athena Scientific, Bel-
mont, MA, 1995.

the reduced state space can be constructed by coordinates

exclusion, the algorithm has been given that the optimal
cost-to-go and the optimal policy of the reduced space is
calculated from those of the original space. Its usefulness
for DP iteration and Q-learning has been compared. For DP
iteration, the convergence of the optimal cost-to-go in the
original state space has needed approximakéltimes as
long as that in the reduced state space, whérns a ratio

of the number of the original states to the reduced. On the
other hand, numerical examples for Q-learning has shown
that the one in the original state space needs for more than

N times as long as that in the reduced state space. Hence,

the proposed state space reduction method can accelerate

those learning methods. The acceleration effect for Q-
learning has been more remarkable than that for the DP

iteration. The state space reduction can be considered as a

model of the change of observation. The obtained results

have explained that the change of observation is reasonable

in terms of learning efficiency. The significance of the
proposed concepts has been clarified simultaneously.

There remain some subjects for autonomous space
robots. The approach to the autonomy and/or intelligence is
the biggest subject to realize useful space robots. This study
has approached this issue by the reinforcement learning
algorithm, whereas there remain many research subjects.
Refer to [1] for the details of the subjects.
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