
Reinforcement learning accelerated by using
state transition model with robotic
applications

著者 Senda Kei, Fujii Shinji, Mano Syusuke
journal or
publication title

2004 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS)

volume 4
page range 3732-3737
year 2004-09-01
URL http://hdl.handle.net/2297/1847

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Kanazawa University Repository for Academic Resources

https://core.ac.uk/display/196706355?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Reinforcement Learning Accelerated by Using
State Transition Model with Robotic Applications

Kei Senda
Kanazawa Univ.

2-40-20 Kodatsuno, Kanazawa,
Ishikawa 920-8667, Japan

Email: senda.k@t.kanazawa-u.ac.jp

Shinji Fujii
Kanazawa Univ.

2-40-20 Kodatsuno, Kanazawa,
Ishikawa 920-8667, Japan

Syusuke Mano
Kanazawa Univ.

2-40-20 Kodatsuno, Kanazawa,
Ishikawa 920-8667, Japan

Abstract— This paper discusses a method to accelerate re-
inforcement learning. Firstly defined is a concept that reduces
the state space conserving policy. An algorithm is then given
that calculates the optimal cost-to-go and the optimal policy
in the reduced space from those in the original space. Using
the reduced state space, learning convergence is accelerated.
Its usefulness for both DP (dynamic programing) iteration
and Q-learning are compared through a maze example. The
convergence of the optimal cost-to-go in the original state
space needs approximatelyN or more times as long as that
in the reduced state space, whereN is a ratio of the state
number of the original space to the reduced space. The
acceleration effect for Q-learning is more remarkable than
that for the DP iteration. The proposed technique is also
applied to a robot manipulator working for a peg-in-hole
task with geometric constraints. The state space reduction
can be considered as a model of the change of observation,
i.e., one of cognitive actions. The obtained results explain that
the change of observation is reasonable in terms of learning
efficiency.

I. I NTRODUCTION

Future space projects, e.g., solar power satellites for
energy acquisition, will need space robots that work instead
of astronauts. Such space robots need to recognize their
environments to choose suitable actions and to carry out
tasks autonomously. Therefore, we must study and develop
intelligent and autonomous robots [1]. For the purpose, this
study applies the reinforcement learning [2]. However, it
often requires so large number of computations that the
method cannot apply to real problems. It is necessary to
accelerate the learning speed.

Investigations of skilled human operators point out a
change of “observation” [3]. One’s environmental obser-
vation changes to indicate efficient and right action during
repeat working,. The change of observation is modeled
as the state space reduction using a formulation of the
reinforcement learning. The state-reduction method enable
to approach to a so-called frame problem by using recog-
nition.

For the modeling, this study uses a dynamical system
that is a finite Markov decision process (MDP) with
discrete time. It then proposes a concept of state reduction,
where the state space can be reduced conserving the
optimal policy. An algorithm of the state space reduction
is proposed. The method reduces the state space and
accelerates the reinforcement learning.

As a concrete example, we consider a simple task
modified from a Peg-in-Hole task of a manipulator. It is
assumed that the learning robot does not know beforehand
what state space is necessary and sufficient for the learning.
If the dimensions of the state space are high, learning
convergence needs very long time. The proposed method
reduces the state space and the reinforcement learning may
become applicable.

II. REINFORCEMENTLEARNING

A. DP Formulation for Learning

1) General DP Problem:The reinforcement learning is
associated with the dynamic programming (DP).

Generally, we have a discrete-time dynamic system in
DP formulations [4]. If we are in statei and we choose
action or controlu, we will move to statej with probability
pij(u). Whenpij(u) of transition toj is dependent on only
current i and u, the system satisfies the Markov property
and is called a Markov decision process (MDP). Time is
occasionally considered as an element of the state. But, the
systems considered here are not obviously dependent upon
time.

The controlu depends on the statei and the rule by
which we select the controls is called a policy or feedback
control policy. Simultaneously with a transition fromi to
j under controlu, we incur a costg(i, u, j).

2) State, Control, and Policy:In a general reinforcement
learning problem, statei, j and controlu are discrete
variables that are elements of the finite sets. There aren
states, denoted by1, 2, . . . , n, plus possibly an additional
termination state, denoted by0. At statei, the control must
be chosen from a given finite setU(i). At statei, the choice
of a controlu specifies the transition probabilitypij(u) to
the next statej.

We are interested in policies, i.e., sequenceπ =
{µ0, µ1, . . .}, whereµk is to map each statei into a control
µk(i) ∈ U(i). Let us denote byik the state at timek. Once
a policy π is fixed, the sequence of statesik becomes a
Markov chain with transition probabilities:

P (ik+1 = j|ik = i) = pij(µk(i))

3) Problems and Costs:We can distinguish between
finite horizon problems, where the cost accumulates over a
finite number of stagesN , and infinite horizon problems,

0-7803-8463-6/04/$20.00 ©2004 IEEE

where the cost accumulates indefinitely. The problems here
are considered as infinite horizon problems to be solved by
learning. In infinite horizon problems, a cost accumulates
additively over time. At thekth transition, we incur a cost
αkg(i, u, j), whereg is a given function, andα is a scalar
with 0 < α ≤ 1, called the discount factor. The total
expected cost starting from an initial statei and using a
policy π = {µ0, µ1, . . .} is

Jπ(i) = lim
N→∞

E

[
N−1∑

k=0

αkg(ik, µk(ik), ik+1)

∣∣∣∣∣ i0 = i

]

where the expectation is taken with respect to the probabil-
ity distribution of the Markov chain{i0, i1, . . . iN}. This
distribution depends on the initial statei0 and the policyπ,
as discussed earlier. The optimal cost-to-go starting from
statei is denoted byJ∗(i); that is

J∗(i) = min
π

Jπ(i)

We view the costsJ∗(i), i = 1, . . . , n, as the components
of a vectorJ∗ that is referred as the optimal cost-to-go
vector.

4) Stochastic Shortest Path Problem:Most optimal
policies in infinite horizon problems are stationary poli-
cies, which are time-independent policies of the form
π = {µ, µ, . . .}. For brevity, we refer to{µ, µ, . . .} as
the stationary policyµ. The corresponding cost-to-go is
denoted byJµ(i). The vectorJµ that has components
Jµ(i), i = 1, . . . , n, is referred to as the cost-to-go vector
of the stationary policyµ. We say thatµ is optimal if
Jµ(i) = J∗(i) for all statesi. The optimal infinite horizon
cost-to-go satisfies the following form for all statesi

J∗(i) = min
µ

n∑

j=1

pij(µ)(g(i, µ(i), j) + αJ∗(j)) (1)

In this study, the discussed problems can be considered
as stochastic shortest path problems that are a class of the
infinite horizon problems. In the problems below, we assure
that α = 1 but there is an additional state 0, which is a
cost-free termination state. Once the system reaches that
state, it remains there at no further cost.

P00(u) = 1, g(0, u, 0) = 0, ∀u ∈ U(0)

Under those conditions, we minimize the cost-to-goJπ(i).
We are interested in problems where reaching the termi-
nation state is in-evitable, at least under an optimal policy.
Thus, the essence of the problem is how to reach the
termination state with minimum expected cost.

B. Methods To Solve DP Problems

A value iteration and a Q-learning are introduced below
to solve the above DP problems.

1) Value Iteration: For any vector J =
(J(1), . . . , J(n)), we consider the vectorTJ obtained
by applying one iteration of the DP algorithm toJ ; the
components ofTJ are

(TJ)(i) = min
u∈U

n∑

j=0

pij(u)(g(i, u, j) + J(j)) (2)

for i = 1, . . . , n, where we will always use the convention
that J(0) = 0. Note thatT can be viewed as a mapping
that transforms a vectorJ into the vectorTJ . Furthermore,
TJ is the optimal cost-to-go vector for a one-stage problem
that has one-stage costg and terminal costJ .

We will denote byT k the composition of the mapping
T with itself k times; that is, for allk we write

(T kJ)(i) = (T (T k−1J))(i), i = 1, . . . , n

Thus, T kJ is the vector obtained by applying the map-
ping T to the vectorT k−1J . For convenience, we also
write (T 0J)(i) = J(i), i = 1, . . . , n. It can be seen
that (T kJ)(i) is the optimal cost-to-go for thek-stage
stochastic shortest path problem with initial statei, one-
stage costg, and terminal costJ .

Consider the stochastic shortest path problem under
proper assumptions, and we have [4], [5]

lim
k→∞

T kJ = J∗

for every vectorJ . Based on the above equation, the DP
iteration that generates the sequenceT kJ starting from
someJ is called value iteration and is a principal method
for calculating the optimal cost-to-go vectorJ∗.

Generally, the method requires an infinite number of iter-
ations. However, under special circumstances, the method
can terminate finitely. A prominent example is the case of
a deterministic shortest path problem. The initial condition
J(i) = ∞ for ∀i should be used when the learning
algorithm starts, where a very large number is practically
enough instead of∞. This initial condition guarantees
that each element of the cost-to-go vector monotonically
decreases and converges to a true value. Moreover, in case
of the value iteration, the cost-to-go vector converges to
the optimalJ∗ within at mostn times iteration [5].

2) Q-Learning: Above-mentionedJ∗ is calculated by
Q-learning [2] that is a typical method of reinforcement
learning. The Q-learning algorithm estimates the optimal
action-value functionQ(i, u) through interactions between
the robot and the environment with trial-and-error pro-
cesses. The robot takes actionu, observes new statej and
costg(i, u, j), and updatesQ as

Q(i, u) ←
(1− γ)Q(i, u) + γ[g(i, u, j) + α min

u′
Q(j, u′)] (3)

whereγ (0 < γ ≤ 1) andα (0 < α ≤ 1) are a learning rate
and a discount rate, respectively. The action-value function
Q generates the cost-to-goJ(i) as

J(i) = min
u

Q(i, u)

It has been shown that the estimatedQ converges to
the optimal if the system is modeled as a finite Markov
decision process and all actions are chosen enough times.
To choose the action appropriately through learning, this
study uses theε-greedy policy [2] where any action is
selected randomly with probabilityε, otherwise the optimal
action is chosen by using the current estimatedQ(i, u).
This initial conditionJ(i) = ∞ for ∀i guarantees that each

z

x

y

1 (y)

11

2

3

0 2
2

3

3

Fig. 1. A maze example for state reduction

ul x+1

x-1

y-1

y+1uu

ud

ur

ub

uf

z+1

z-1

Fig. 2. Motions corresponding to controls

element of the cost-to-go vector monotonically decreases
and converges to a true value as well as the value iteration
case.

III. STATE REDUCTION

A. State Reduction Problem

The change of observation is found in the skill-acquiring
human operators, whose environmental observation change
efficiently as they repeat working. The change of obser-
vation can be modeled by the state reduction as follows,
where minimum observation should be used to achieve the
task.

If the same control input is applied under a policy in
two or more states in state space, it is not necessary to
distinguish those states. Therefore, they can be regarded
as the same state. As a result, we consider that those states
are same and can be reduced into one. We now will discuss
the next problem.

Problem 1: Decide the lower dimensiona state space
that holds the learning convergence and same optimal
policy of the original state space.

B. Maze Problem

For explanation, consider the maze problem illustrated
in Fig. 1 as a stochastic shortest path problem. Sensory
information is available for x, y, z coordinates of the agent
moving inside the maze and we consideri = (ix, iy, iz)T

as its state. Total number of the system states is33 = 27
because three positions of 1, 2, 3 are taken in each x, y, z
component. There are three terminal states, i.e., goal states
iG = (3, 1, iz)T , whereiz is arbitrary. Therefore, there are
n = 27− 3 = 24 states with the exception of the terminal
states. In Q-learning, the agent’s initial state is chosen at

random among the 24 states. Consider 6 kinds of control
input u as {ul, ur, uf , ub, uu, ud} and g(i, u, j) = 1 is
incurred by each control. Fig. 2 shows the resultant motions
by the control when no wall is adjacent to the agent. The
agent cannot move when the moving direction is bordered
by a wall, but is incurred by the control cost. The terminal
states useQ(iG, u) = 0 and J(iG) = 0, and others start
with Q0 = 100 and J0 = 100. The parameters used for
Q-learning are a learning rateγ = 0.6 and a discount rate
α = 1 (with no discount).

C. Policy-Invariant State Reduction

In the above-mentioned problem, we evaluate optimal
cost-to-go vectorJ∗xyz and optimal policy µ∗xyz using
value iteration and Q-learning, respectively. Now,J∗xyz(i)
and µ∗xyz(i) at statei = (ix, iy, iz)T are represented
by J∗xyz(ix, iy, iz) and µ∗xyz(ix, iy, iz), respectively. In
this example, bothJ∗xyz(i) and µ∗xyz(i) are independent
from iz. Therefore, the optimal cost-to-go vectorJ∗xyz

and the optimal policyµ∗xyz, respectively, are given by
matrices whose elements atix-th row and iy-th column
areJ∗xyz(ix, iy, iz) andµ∗xyz(ix, iy, iz) as:

J∗xyz =




6 5 4
7 8 3
0 1 2


 , µ∗xyz =




uf uf ur

ul ub ur

0 ub ub




for ∀iz (4)

The elementJ∗xyz(i) indicates how many steps the optimal
policy will need from statei to the terminal state because
the control cost for a step is1.

In this problem, becauseJ∗xyz(i) is independent fromiz,
there isJ∗xy dependent on onlyix and iy satisfying

J∗xyz(ix, iy, iz) = J∗xy(ix, iy) for ∀iz
µ∗xyz(ix, iy, iz) = µ∗xy(ix, iy) for ∀iz (5)

Consequently, the actions induced by the state(ix, iy, iz)T

and the optimal policyµ∗xyz are the same as those by
(ix, iy)T andµ∗xy.

In this situation, we say for the maze problem that “the
optimal policyµ∗xyz for state(ix, iy, iz)T is equivalent to
the optimal policyµ∗xy for state(ix, iy)T .” We also say
that “the state space of(ix, iy, iz)T can be reduced to that
of (ix, iy)T conserving the optimal policyµ∗xyz.”

D. State Reduction by Coordinate Exclusion

Consider a vector space with coordinates for the state
space, e.g., the state(ix, iy, iz)T in the maze example.
In addition, we make a reduced state space by excluding
coordinates from the original state space in the same
manner that the low dimensional state space of(ix, iy)T

is made by excluding z-coordinate from the original state.
As shown in this example, the optimal policyµ∗xy and

the optimal cost-to-goJ∗xy for the reduced state space of
(ix, iy)T are obtained by the following equations when the
original state space can be reduced by excludingiz from

the original state whenJ∗xyz is independent fromiz.

iz = arg min
iz

J∗xyz(ix, iy, iz),

J∗xy(ix, iy) = J∗xyz(ix, iy, iz),
µ∗xy(ix, iy) = µ∗xyz(ix, iy, iz) for ∀ix, ∀iy

(6)

The optimal cost-to-goJ∗xyz is constant along with z-axis,
but the minimum operation with respect toiz is for a later
application.

In the maze example, a control of a deterministic policy
is dependent onix and iy. Hence, we cannot acquire a
proper policy using a low dimensional space withoutix or
iy. No deterministic policy is proper for low dimensional
state spaces(iy, iz)T , (ix, iz)T , (ix), (iy), and (iz).
For those low dimensional state spaces, we can formally
perform calculations similar to Eq. (6), but the results are
not the optimal policy and optimal cost-to-go.

The policy and cost-to-go obtained formally by Eq. (6) is
optimal if the cost-to-go calculated by the policy evaluation
step does not change. Practically, the value iteration with
the obtained policy may be used for the policy evaluation
step.

Remark 1:Suppose that the optimal policyµ∗ and the
optimal cost-to-goJ∗ are independent from a coordinate
in the state space with coordinates. A low order state space
is constructed by excluding the coordinate, and the optimal
policy and the optimal cost-to-go can be calculated as
well as Eq. (6). Therefore, the original state space can be
reduced conserving the optimal policy.

E. Algorithm to Find Low Dimensional State

The following algorithm is considered in order to find a
reduced state space before the learning converges and the
optimal cost-to-go is determined in the original state space.

1) The cost-to-goJxy and the policyµxy for the can-
didate of low dimensional state space are calculated
by Eqs. (6) using the cost-to-goJxyz and the policy
µxyz obtained at the moment. TheJyz, Jzx, . . . , Jz,
etc. are calculated similarly.

2) When a pare among(J∗x , µ∗x), . . . , (J∗xyz, µ∗xyz) is
converge, we evaluate whether the acquired policies
are the optimal. Generically, the acquired policy is
the optimal when it is feasible, and the original state
space can be reduced conserving the optimal policy.

F. Numerical Result

Because of the minimum operation in Eqs. (6),Jxy

converges earlier thanJxyz, or simultaneously at the latest.
In this problem, the state number of(ix, iy, iz) is 3
times as many as those of(ix, iy) since iz has 3 states.
Therefore,J∗xyz takes 3 times as long asJ∗xy takes for
convergence when it uses the value iteration. On the other
hand, the result of Q-learning is shown in Fig. 3. The
vertical axis and the horizontal axis respectively show
numbers of episodes forQxyz and Qxy, whose learning
convergence are judged by the same convergence criteria.
In case of Q-learning,Qxyz takes between 30 and 400
times as long asQxy takes for convergence whereas the
factor of their state numbers is only 3. The average factor of

Fig. 3. Episode numbers of Q-learning by usingQxy andQxyz

200 simulations is about 130. Hence, the proposed method
is especially effective in the Q-learning with trial-and-error
processes.

IV. M ANIPULATOR PROBLEM

A. Problem Definition

As shown in Fig. 4, we consider a task where a 3-link
SCARA type manipulator places a circular component into
a hole. This is simplified from the Peg-in-Hole task and no
friction is contained for simplicity.

It is reasonable to use the state variables of the equations
of motion of the robot manipulator with the geometric
endpoint constraint as:

i = (x, y, α, ẋ, ẏ, α̇, fx, fy, nz)T (7)

where the elements arex, y positions,α = θ1 + θ2 + θ3

direction of the hand with component, their velocities, and
applied forces inx, y, α directions from the environment,
respectively. They all are measured from the sensors. The
initial state isx = 0.28, y = 0.28, fx = 0, and fy = 0.
The terminal state isxd = 0.40, yd = 0.40, fxd = 0, and
fyd = 0. The x and y coordinates are descretized every
0.03[m], α every10[deg], andfx andfy every0.7[N]. A
state is then described by a set of integers. For example, it
expressesx = 0.03(ix− 1)+0.28, ix = 1, 2, . . . , 9 andix
is considered asx. Other states are also descretized. The
ẋ, ẏ, α̇, andnz are always zeros in this particular example.

The following controller is used to generate actions:

τ = −JT KP (y − yr)−KDθ̇ (8)

whereτ is control input to the manipulator,J = ∂y/∂qT

Jacobian matrix,y = [x, y, α]T manipulation variable
vector,yr reference ofy, θ joint variable vector,KP and
KD feedback gain matrices, respectively. For the reference
manipulation variabley(k)

r at timek, y
(k+1)
r is given by

y(k+1)
r = y(k)

r + δy(k)
r (9)

Control at timek is considered as theδy(k)
r . The δy

(k)
r is

constant during the period from timek to timek+1. Fig. 5

y

x
1 3 82 64 5 7 9

1

3
2

6

4
5

Fig. 4. Simplified Peg-in-Hole

2
91

6

3
4

5
10

7
8

x+1
y+1

x+1

x+1
y-1

x-1
y-1

+1x-1

y-1

x-1
y+1

y+1

-1

Fig. 5. Hand motions correspond to controls

shows the ten kinds of control that the manipulator can use.
For each control, costg(i, u, j) = 1 is incurred evenif the
hand with component cannot move against the walls. When
a reference valueyr goes out of state space, it remains at
the previous position and a large cost is incurred.

For example, state and the reference are(x, y, α,

fx, fy)T = (8, 2, 1, 2, 2)T andy
(k)
r = (8, 2, 1)T in timek.

The state will become(x, y, α, fx, fy)T = (8, 2, 1, 3, 3)T

at timek + 1 if y
(k+1)
r = (9, 3, 1)T .

The terminal state isiG = (5, 5, α, 1, 1, 1, 2, 2, 1)
and α is arbitrary. The terminal stats useQ(iG, u) = 0,
J(iG) = 0 and others start withQ0 = 20, J0 = 20. The
parameters used for Q-learning are taken as a learning rate
γ = 0.9 and a discount rateα = 1 (with no discount).

B. State Reduction

The optimal cost-to-go vector and the optimal policy are
expressed asJ∗9 andµ∗9 for the original 9-dimensional state
space. TheJ∗9 and µ∗9 are evaluated by using Q-learning.
The original state space is reduced conserving the optimal
policy by using the same algorithm as the previous section.

There areJ∗4−1 and µ∗4−1 dependent on onlyx, y, fx,
andfy becauseJ∗9 (i) is independent fromα, and ẋ, ẏ, α̇,
andnz are constant in this particular example. Therefore,
the following equations hold:

J∗4−1(x, y, fx, fy) = J∗9 (x, y, α, ẋ, ẏ, α̇, fx, fy, nz)
for ∀α

µ∗4−1(x, y, fx, fy) = µ∗9(x, y, α, ẋ, ẏ, α̇, fx, fy, nz)
for ∀α

(10)

Fig. 6. Cost distribution ofJ∗4−1(x, y, fx, fy)

0.1

-0.1

0

0.2

0.3

0.4

0.5

0.1 0.60 0.2 0.3 0.4 0.5

[m]

[m] x

y

Fig. 7. Acquired motion started from(0.28, 0.28)

We say for this problem that the optimal policyµ∗9 is
equivalent to the optimal policyµ∗4−1. We also say that the
9-dimensional state space can be reduced to 4-dimensional
state space conserving the optimal policyµ∗9.

C. Simulation Result

For Q-learning, the same algorithm as the maze problem
achieves state reduction. The distribution of the cost-to-
go J∗4−1(x, y, fx, fy) is shown in Fig. 6. TheJ∗9 takes
about 30 or more times as long asJ∗4−1 takes for con-
vergence. The reduced state space enable to converge
Q-learning and obtained optimal manipulator actions are
shown in Figs. 7 and 8. Fig. 7 is the optimal action
from state(x, y, fx, fy) = (1, 1, 2, 2) to terminal state
(x, y, fx, fy) = (5, 5, 2, 2), where the manipulator reaches
terminal state in 6 steps. Fig. 8 is the optimal action from
state(x, y, fx, fy) = (8, 1, 2, 2), and it reaches terminal
state in 5 steps.

0.1

-0.1

0

0.2

0.3

0.4

0.5

0.1 0.60 0.2 0.3 0.4 0.5

[m]

[m] x

y

Fig. 8. Acquired motion started from(0.49, 0.28)

V. CONCLUDING REMARKS

The concept has been defined that the state space can
be reduced conserving the optimal policy. For the case that
the reduced state space can be constructed by coordinates
exclusion, the algorithm has been given that the optimal
cost-to-go and the optimal policy of the reduced space is
calculated from those of the original space. Its usefulness
for DP iteration and Q-learning has been compared. For DP
iteration, the convergence of the optimal cost-to-go in the
original state space has needed approximatelyN times as
long as that in the reduced state space, whereN is a ratio
of the number of the original states to the reduced. On the
other hand, numerical examples for Q-learning has shown
that the one in the original state space needs for more than
N times as long as that in the reduced state space. Hence,
the proposed state space reduction method can accelerate
those learning methods. The acceleration effect for Q-
learning has been more remarkable than that for the DP
iteration. The state space reduction can be considered as a
model of the change of observation. The obtained results
have explained that the change of observation is reasonable
in terms of learning efficiency. The significance of the
proposed concepts has been clarified simultaneously.

There remain some subjects for autonomous space
robots. The approach to the autonomy and/or intelligence is
the biggest subject to realize useful space robots. This study
has approached this issue by the reinforcement learning
algorithm, whereas there remain many research subjects.
Refer to [1] for the details of the subjects.

A part of this work was financially supported by a Grant-
in-Aid for Scientific Research from Research Foundation
for the Electrotechnology of Chubu and Ministry of Edu-
cation, Science, Culture and Sports of Japan.

REFERENCES

[1] Senda, K., Matumoto, T., Okano, Y., and Mano, S., “A Study
toward An Autonomous Space Robot”,Proceedings of International

Symposium on Artificial Intelligence, Robotics and Automation in
Space, May 19–23, 2003, Nara, Japan, AS-9, pp. 1–8.

[2] Sutton, R. S. and Barto, A.,Reinforcement Learning, MIT Press,
Cambridge, MA, 1998.

[3] Sawaragi, T., “Proficient Skills Embedded with in Human, Machine
and Environment,”J. Society of Instrument and Control Engineers,
vol. 37, no. 7, pp. 471-476, 1998. (in Japanese)

[4] Bertsekas, D. P. and Tsitsiklis, J. N.,Neuro-Dynamic Programming,
Athena Scientific, Belmont, 1996.

[5] Bertsekas, D. P.,Nonlinear Programming, Athena Scientific, Bel-
mont, MA, 1995.

	Previous Document
	Print
	Search this CD-ROM

	TL1:
	0:
	03330340992052783: Proceedings of 2004 IEEE/RSJ International Conference on

	TL2:
	0:
	3229803069715427: Intelligent Robots and Systems

	TL3:
	0:
	6161629188845477: September 28 - October 2, 2004, Sendai, Japan

	FileNameBL:
	0:
	2501946969430211:

	IROS04PageNumber:
	0:
	7921302015714196: 3732
	01470510247717044: 3733
	30888928947591077: 3734
	039397840471484924: 3735
	4330850334486003: 3736
	938403057297392: 3737

