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Application of Gain Scheduled H,, Robust
Controllers to a Magnetic Bearing

Fumio Matsumura, Member, IEEE, Toru Namerikawa, Member, IEEE,
Kazuhiko Hagiwara, and Masayuki Fujita, Member, IEEE

Abstract—This paper deals with the problem of an unbalance
vibration zof the magnetic bearing system. We design a control
system achieving the elimination of the unbalance vibration, using
a loop shaping design procedure (LSDP). After the introduction
of our experimental setup, a mathematical model of the magnetic
bearing is shown. Then, the gain scheduled H .. robust controllers
with free parameters are designed, based on the LSDP, so as
to asymptotically reject the disturbances caused by unbalance
on the rotor, even if the rotational speed of the rotor varies.
Finally, several simulation results and experimental results show
the effectiveness of this proposed methodology.

1. INTRODUCTION

HIS PAPER proposes a gain scheduled robust control

scheme for a rotating active magnetic bearing (AMB)
system. By using magnetic bearings, a rotor is supported
without any contact. The technique of contactless support for
rotors has become very important in a variety of industrial
applications.

Imbalance in the rotor mass causes vibration in rotating
machines. Balancing of the rotor is very difficult—there is
often a residual imbalance. However, this imbalance problem
can be conquered by active control. It is well known that there
are two methods for solving the above imbalance problem
of magnetic bearings. The first method is to compensate for
the unbalance forces by generating electro-magnetic forces
that cancel these forces. The other method is to make the
rotor rotate around its axis of inertia (automatic balancing).
In this case no unbalance forces will be produced. There are
several effective methods in the literature to achieve automatic
balancing in the magnetic bearings [1]-[7]. If the magnetic
bearings should be applied to precision machines, however,
the rotor would be expected to rotate around its geometrical
axis, hence the approach taken here is the first method.

This paper is a continuation of the previous research [8],
[9] where we have considered both the problems of the
coupling caused by gyroscopic effect and the problem of
the vibration caused by unbalance on the rotor. In [9], the
control system has been designed by using the loop shaping
design procedure (LSDP) [10], and we have experimentally
demonstrated its attenuating effect on the unbalance vibration.
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Fig. 1. Diagram of experimental machine.

The attenuation was only achieved at a fixed rotor operaiing
speed in [8]. In this paper, we consider the elimination of
the variable unbalance vibration caused by variable rotational
speed. The vibrations caused by unbalance of the rigid rotor
can be modeled as frequency-varying sinusoidal disturbances.
Hence, in this paper, we propose the gain scheduled H
controllers with the free parameter as a function of rotational
speed to eliminate frequency-varying sinusoidal disturbances.
This gain-scheduling approach is very simple and utilizes the
free parameter of the H,., controller [11], [12]. The other
gain-scheduling approaches for H., control are reported in
[13]-[16].

The outline of this paper is as follows. First, we introduce
the magnetic bearing system and derive the mathematical
model of the system [8], [17]. Next, we adopt the H, problem
with boundary constraints to the normalized left coprime
factor robust stabilization H,, problem [12]; the conditions
for existence of controller are derived with LSDP. Third,
we design the controllers that achieve asymptotic disturbance
rejection and robust stability. Finally, we present simulation
and experimental results with the obtained H., controllers,
and indicate the effectiveness of this proposed approach.

II. MODELING

A. Magnetic Bearing System

The magnetic bearing system employed in this research
is a four-axis controlled horizontal shaft magnetic bearing
with symmetric structure. The axial motion is not controlled
actively. The diagram of the experimental machine is shown
in Fig. 1. The diameter of the rotor is 96 mm and its span is
660 mm. A three-phase induction motor (1 kW, four poles)
is located at the center of the rotor. Around the rotor, four
pairs of electromagnets are arranged radially, and four pairs
of eddy-current type gap sensors are located on outside of

1063-6536/96$05.00 © 1996 IEEE
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Fig. 2. Digital control system.

the electromagnets. Further, this system employs a tachometer
in order to measure the rotational speed of the rotor. The
experimental machine is controlled by a digital control system
that consists of a 32-b floating point digital signal processor
(DSP) DSP32C (AT&T), 12-b A/D converters, and 12-b D/A
converters. Using these components, the final discrete-time
controllers including a free parameter are computed on the
DSP. The diagram of digital control system is shown in Fig. 2.

B. Mathematical Model of the Magnetic Bearing

In this section, we derive the state equation of a magnetic
bearing system with the following assumptions:

1) The rotor is rigid and has no unbalance.

2) All electromagnets are identical.

3) Attractive force of an electromagnet is in proportion to
(electric current/gap length)?.

4) The resistance and the inductance of the electromagnet
coil are constant and independent of the gap length.

5) Small deviations from the equilibrium point are treated.

Based on the above assumptions, a mathematical model of

a magnetic bearing has been derived in [17], and the obtained
result is as follows:

Ty | _ | Ay pAun | |2y
| | —pAuwn  An | |zn
B/U 0 Uy 2 Ev
S| R A C
Yo | _ _OU 0 Ty
=16 Al ®

where the subscripts v and % in the vectors and the matrices
stand for the vertical motion and the horizontal motion of the
magnetic bearing, respectively. In addition, the subscript vh
stands for the coupling term between the vertical motion and
the horizontal motion, and p denotes the rotational speed of
the rotor. Each vector in (1) and (2) can be defined as

Ty = [gll gr1 i1 91 1 irl]T
Th=[g13 Gra (13 Grs i3 irg]T
ue =len en]”, un=les ens]”
esin(pt + k)

T cos(pt + A) 3
e cos(pt + k)

Tsin(pt + A)
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where
9; deviations from the steady gap lengths between
the electromagnets and the rotor;
ij deviations from the steady currents of the elec-
tromagnets;
e; deviations from the steady voltages of the elec-
tromagnets;
€,7,k, A unbalance parameters [5], [17];

(4 =11,71,13,73).
The subscripts [ and r denote the left- and right-hand sides
of the rotor, respectively, and the subscripts “1” and “3”
denote one of the vertical directions and one of the horizontal
directions of the rotor, respectively. Each matrix in (1) and
(2) can be defined as follows:

[ 0 I 0
A'u = A1+A2A4v 0 A2A57j
0 0 —(R/L)I
[ 0 I 0
Ap = [A1+A2Asn 0 AxAs,
L 0 0 —(R/L)I
[0 0 0 0
Ay =10 Az 0|, B,=Bj,:= 0
0 0 0O (1/L)I
C,=Ch:=[I 0 0]
[0 0
Ev = Eh, 5 Eh = Elh
| 0 i 0
(67
A=
R 1 Ll
L=l ) — - =) (=l — —
(ot (= 52) i (G- 552)
1 Il 1 Il
-—-l o ™' m l ——lm s vm
o ) e
LS A 1
i m g, m
St I A 4
m o Jy mJy
Iz -l
Aq =
3 Jy(ll + lr) ‘: lfr‘ _l7}
2 .
Ay = _"V[—/dlag[Fll + Fip, Fry + Fro)
2 ..
Ayp = —Wdlag[Fz?, + Fiy, Fr3 + Fry]

. | Fu  Fip Fn Frz]
As, i =2diag| — + —,
> gl:lll Il2 ]7‘1 -[1'2

. Fl3 Fl4 Fr3 Fr4:|
Asp :=2diag| — + —, —
o g[flg Iu' Trs * Ia

- Jz
-1 ll<1 -7 0 0

Eh, = 3
-1 -, <1 - —“) 0 0
L Jy)
0 0 1 ll( — #

Eyp = 5
LO 0 1 —lT< - —3’-)

Jy
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TABLE 1
PARAMETERS OF EXPERIMENTAL MACHINE
[ Parameter ] Symbol | Value I Unit ]
Mass of the Rotor m 1.39 x 101 kg
Moment of Inertia about X Je 1.348 x 1072 | kg - m?
Moment of Inertia about ¥’ Jy 2326 x 107! | kg m?
Distance between Center of I 1.30 x 107! m
Mass and Left Electromagnet
Distance between Center of I 1.30 x 107! m
Mass and Right Electromagnet
Distance between Center of I 0 m
Mass and Motor
Steady Attractive Force Fiyn 9.09 x 10 N
Fipis 2.20 x 10 N
Fromrs 2.20 x 10 N
Steady Current Inn 6.3 x 1071 A
112~[4 3.1x107? A
Lomra 3.1 x 101 A
Steady Gap w 5.5 x 1074 m
Resistance R 1.07 x 10 Q
Inductance L 2.85 x 1071 H

For the notations, as well as the parameter values, see Table I.
In the above equations, a denotes the coefficient of the force
which occurs when the rotor eccentrically deviates, and hence
we set o = 0. The numerical values of these matrices can
easily be obtained with Table I, and the results are in [8].

I. H,, GAIN SCHEDULING

In order to attenuate the unbalance vibration of the rotor,
we design the robust H,, controllers which asymptotically
achieve the sinusoidal disturbance rejection. As is well known,
the controllers must have the imaginary poles at the frequen-
cies corresponding to the rotational speed to possess high
stiffness. For such a control system design, the LSDP based on
the normalized left coprime factor (LCF) robust stabilization
method [10] is employed. Using the free parameter method
which has been proposed in [9], it is possible to obtain the gain
scheduled controllers by the free parameter as the function
of rotational speed. We therefore show the condition for
the existence of controllers, by adopting the control problem
with boundary constraints [11] to the normalized LCF robust
stabilization problem, and we design a robust controller which
satisfies the derived specifications using the LSDP.

Let (N, M) represent a normalized left coprime factoriza-
tion of a plant G. Let these coprime factors be assumed to
have uncertainties Ay, Aps and let Ga represent the plant
with these uncertainties

Ga =M;'Na

=(M+Ay) N+ An) 4

where N and Ma represent a left coprime factorization of
Ga, and

A={[Ay, Aum]€ RH;|[AN, Aumlllo<e}. (5

G a can be written in the form of an upper linear fractional
transformation (ULFT) as follows:

GA:FU(P7A)

=Poy + PorA(I — P11 A) 1Py 6)
where
0 I
_ Py Py M-1 a N
Pyl Poo M-l a

The robust stabilization problem for the perturbed plant G
can be treated as the next H,, control problem

<e li= .

o0

H [ﬂ([ — GE)"'M? (8)

It is known that the solution of this problem and the largest
number of € (= €max 1= Y1, can be obtained by solving two
Riccati equations without iterative procedure. All controllers
K satisfying (8) are given by

K =F(K,,®):= K11 + K129(] — K229) 'Ky, (9)
where
K| Ko
K, = (10)
Kol Koy
[1®]jee <1. (11)

For the calculation of K, and eq.x, see [10]. In order to
eliminate the unbalance vibration of the rotor, which can
be modeled as sinusoidal disturbances [18], the robust con-
troller should be designed to asymptotically achieve sinusoidal
disturbance rejection. In this case, as is well known, the
controller must have the imaginary poles at the frequencies
corresponding to the rotational speed of the rotor [11], [12].
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Hence, for the achievement of sinusoidal disturbance rejection
whose frequency is wq [rad/s], K(s) is required to satisfy

K(+jwy) = 00 & {I — G(jwo) K (£jw)} = 0. (12)

We then derive the conditions, by adopting the H, problem
with boundary constraints [12] shown in the Appendix, to this
problem whereby there exist the controllers satisfying both (8)
and (12). The boundary constraint {L, IT, U} corresponding to
(12) is given by

L=[0 I, T=M(+jw), ¥=0. (13)

The basic constraint {Lg, ¥} in (36) (in the Appendix) is
described by

Lp = Pj5(tjw) = [-G(*jwo) ]

Up = Ph(+iw) Py (£jwo) = M~ (Fjwy).

(14)
as)

It is obvious that {L,II, ¥} is satisfying condition (b) in
Theorem A, and the extended boundary constraint {L, ¥} in
(37) (in the Appendix) is given by
s [=G(Hjwy) 1 i
L_{ 0 2t ¥ = ol (16)

After some straightforward calculation, we have

Y& (N(£jwo)) > 1 arn

where

B [ F(G(jwe)
F(N (£jwo)) = <i+_52<c(i75>

7 (e): the maximum singular value

from condition ¢) of Theorem A.
If we choose free parameter ®(s) such that

®(Ljwo) = Koy (Fjwo) (18)

under the conditions (11) and (17), it can be seen that we
obtain the controller with the imaginary poles at +jwg from
(9). Based on this, we design the control system using the
LSDP [10]. The procedure is briefly outlined below.

Loop Shaping Design Procedure (LSDP):

Step I—Loop Shaping: Selecting shaping function W, and
W, the singular values of the nominal plant G are shaped to
have a desired open-loop shape. Let G'g represent this shaped
plant

Gs = WaGW;. (19)

W1 and W, should be selected such that G has no hidden
unstable modes.
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Step 2—Robust Stabilization: The maximum stability mar-
gin €may 18 calculated. If €, < 1, return to Step 1, then Wy
and Wy should be selected again. Otherwise, v is appropriately
selected as ¥ > Ymin = e;éx and K, is calculated. The free
parameter P is selected as in (18) under these conditions, then
the H,, controller K, (s) is synthesized for G5 from (9).

Step 3—Final Controller: The final controller K can be
obtained by the combination of Wi, Wy, and K,

K=W K Ws. 0)
In this procedure, €,,,x is treated as a design indicator rather
than the maximum stability margin of Gg. Thus, we can
design the robust controllers achieving sinusoidal disturbance
rejection asymptotically using the LSDP. Moreover, utilizing
the free parameter for such design, it is possible to obtain the
gain scheduled controllers, by scheduling the free parameter as
the function of rotational speed of the rotor, which achieve the
elimination of the unbalance vibration even if the rotational
speed of the rotor varies.

The H,, controller K..(s) with the free parameter ¢ is
shown as follows:

Ko = FL(K,., ®) @n
where
Ax, LBKal By .2 As Co’
Ka= |01 Dxk.i Drazfr ®= B De
Ck,2 Dk,21 Dk.22

Hence (22), as shown at the bottom of the page, where

Xo =(I — DoDxg,22) 'Cs, Yy = Bas(I — D, 22Ds)""
Zy=(I = DgDkg,22) ' Dsp.

Therefore the final H,, controller K is as
K =W K, W
where we define the weighting functions W and Wy as
Awn Cw1
Bw1 Dy

W,: diagonal constant matrix

Wy =

(23)

then (24), as shown at the bottom of the next page. The block
diagram of this final controller is shown in Fig. 3.

Ax.1n Ax,12 | Br
Ko = | Ak Ax 22 Bk_.2
Ck.1 Cx.» ‘ Dk,
Ak, + Bk,220Ck 2 Bre,2Xo ' Br,1+ Bk,2Z0Dxg, 21
= YoCk,2 Ap + Yy D, 220y YoDg, 21 (22)
Cx.1+ Di,1220Ck,2 Dk, 12X0 ‘ D11+ D, 12Z0Dk, 21
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v
Q

Fig. 3. The gain scheduled H, controller with the free parameter ®.

IV. CONTROLLER DESIGN

In this section, the feedback controllers are designed with
the LSDP. We assume rotational speed p = 0 in the nominal
plant G. In this case, we can see that there is no coupling
between the vertical motion and horizontal motion in (1).
Therefore, the plant model can be separated into the vertical
plant G,(s) := Cy(sl — A,) !B, and the horizontal plant
Gp(s) := Cy(sI — Ap) 1By, respectively

o=[% 2]

0 Gy 25

Then, two controllers will be designed for each plant, respec-
tively. The final controller K for the entire plant G will be
constructed with a combination of these controllers

K = [K 0 } (26)

0 K

where K, denotes the controller for the vertical plant and K,
denotes the controller for the horizontal plant. The shaping
functions and the design parameters are selected as follows:
(v) Design for vertical motion:

Wh)(S) =

1300(1 + s/(27 - 5))(1 + s/(27 - 35))(1 + /(27 - 50))
(1+ /(27 - 0.01))(1 + /(27 - T00))(1 + s/(27 - 1200))

10 . . ;
2 o Horizontal
D]O ............................................... >
n .
= Vertical
> 1
A"
<10
.
)
9 2
210
w2
10-3 ] ] 1
-1 0 1 2
10 10 10 10 103 104
FREQUENCY [Hz]
Fig. 4. Magnitude of yo(Ng).
1 0
Wan(s) =10000| o (28)

€o_max =0.19944, ' =+, =5.25. (29)

(h) Design for horizontal motion:
Win(s) =

1100(1 4 /(27 - 5))(1 + 8/(27 - 25))(1 + s /(27 - 40))
(14 s/(27 - 0.01))(1 + s/(27 - 700))(1 + s/(27 - 1200))

1 0
]
10
th(S)ZIOOOO{O 1} (31
€h_max = 0.27432, ¢, =, = 3.75. (32)

In this design, verifying the condition (17), it can be seen
from Fig. 4 that it is possible to design the controllers below
wo = 324.63 [rad/s] (p = 3100 [r/min]). Hence we design
the controllers within the above bound. In order to satisfy the
condition (11), the free parameters are selected as

i ) )
P4(s) = Coa(s] — Aza)” Baa (33)
[Aw1 BwiCk,.1 BwiCk,2 Bw1Dg  Wo
0 Ar. 11 Ar 12 Bg_1W,
K=\ 9 Ax. 21 Axk. 22 By oWs
LCw1 DwiCr,1 DwiCre 1 Dw1Dg W2
[Aw1  Bwi1(Ck.1+ Dr,1220Cxk,2)  Bwi1Dk, 12Xo Bw1(Dg,11+ Dx,21 729Dk, 21) W2
0 Ak, + Bk, 2Z0Cr 2 Bg,2Xo (Br,1+ Br.2Z0Dk,21)Ws
=10 YoCk,2 Ap + YDk, 22Cs YoDk,21Wa 24
LCw1  Dwi1(Cr,1+ Dk,12%0Ck,2)  DwiDg,12X0 ‘ Dw1(Dx,11 + Dk, 12Z0Drc,01)Wo
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TABLE II
PARAMETERS a4, by OF FREE PARAMETERS
Rotational speed (rpm) ay b, ay, by,
1000 ~ 1600 9800 8 280 8
1600 ~ 2200 16 0 16
2200 ~ 2600 25 27
2600 ~ 2900 2500 . 2500 36
2900 ~ 3100 3 40
3
10 T T . .
10° B s Horizontal
RN Ny :‘:e,//
g 10 ¢ RN ]
[ ) 33
410 ,/ ................................. SRy i
> " e
-4 10' [ Vertical Sl ]
< ~<
a2 >~
510°F N
@] 3 N
Z10 k A\ ]
ZENN N\
10 ¢ 1
-5
10 1 1 1 I
-1 0 1 2 3 4
10 10 10 10 10 10

FREQUENCY [Hz]

Fig. 5. Open-loop transfer functions GK [—] and the shaped plant G5 [- -].

where

. —Qd 0 _ I
A@d—[ 0 _bd:|7 Bea = [I}

Coq =[Cp14  Ca2d)
(ag + i)

wo(aq — ba)

A{woR(K b (jwo)) + baS(K 395(dwo)) }
(b7 + wd)

wo(bg — ag)

A{woR(K goy (1w0)) + aS(Koq(w0))}

(d=w,r).

Furthermore, in order to satisfy the condition (11), the param-
eters ay and by of Agpg and Cgy are, respectively, adjusted
as shown in Table II. When we obtain the shaped plants, a
model reduction technique has been employed. The procedure
of the model reduction is the nominal plant model reduction
procedure as shown in [10, Procedure 5.5]. The order of each
of the shaped plants has been reduced from 12 states to 8.
As a consequence, the final controller has 36 states. As an
example, we show the frequency response of the designed
controller, which is denoted by Kjgzpg, With wo = 136.14
[rad/s](p = 1300 [r/min]). The singular values of the shaped
plants and the open loop transfer functions are shown in
Fig. 5, and Fig. 6 shows the singular values of the sensitivity
functions. From these figures, we can see that sensitivity
approaches zero at the frequency wo.

In this design, we ignored the interference terms, which
express the gyroscopic effect, as p = 0. We therefore verify the
robust stability of this system against changes in the rotational

Cs14

Cp2d =
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10 T v :
1%2)
5
0
- L
<r110
>
é Vertical
8 1 0"1 Horizontal
Z.
7
10'2 L . L .
-1 0 1 2 3 4
10 10 10 10 10 10
FREQUENCY [Hz]
Fig. 6. o((I — GK)™1).
3
10 . .
Horizontal
-4
%10 ﬁ ]
j . Vertical ’
>10 ¢ PR
Y Lol N
5.6 et
Dlo /.: :'/
= -7
«l0 ¢
10" : ‘ :
0 -1 0 )| 2 3 4
10 10 10 10 10 10

FREQUENCY [Hz]

Fig. 7. 1/o(K(I — GEK)™1) [—] and o(4p) [- - -]

speed of the rotor. Let the perturbed plant (p # 0) be denoted
by G, and the additive perturbation A, from G is as follows:

A, =Gp—G. (34)
Then the robust stability is guaranteed within the the following
inequality:

_ 1
)< ST oK)y

(35)
In Fig. 7, the singular values 1/0(K(I —GK)™') and o(A,)
at wy = 1675.5 [rad/s] (p = 16 000 [r/min]) are plotted. From
this analysis, we can see the closed-loop system is stable at
wp < 1675.5 [rad/s].

V. SIMULATION RESULTS

The simulation results based on the derived nominal mathe-
matical model, which are carried out by using SIMULINK
[19], are shown in Figs. 8 and 9. These figures show the
displacement on the left side of the rotor when the rotational
speed is varied at the rate of 2 r/min/s.

For the comparison, the linear time invariant H, controller
K300 was employed, where the controller K309 has the fixed
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10°
23
=4
=3
e
41
S0
=R
<-2
23
7]
= -4
B . . .
0 25 50 75 100
TIME [s]
1200 1250 1300 1350 1400
ROTATIONAL SPEED [rpm]
Vertical case
(@)
10°
— st
E g4
o
=3
o2
41
S50
8-1
<-2
-3
7]
-4
g . J ‘
0 25 50 75 100
TIME [s]
1200 1250 1300 1350 1400
ROTATIONAL SPEED [rpm]
Horizontal case
(b
Fig. 8. Displacement versus rotational speed with the controller K'13¢0. (a)

Vertical case. (b) Horizontal case.

pole at fy = 1300/60 = 21.7 Hz and no gain-scheduling is
adopted.

The results with the time-invariant H, controller K3¢q are
shown in Fig. 8(a) and (b), which indicate the response of the
rotor when the rotational speed is varied from 1200 to 1400
r/min. The corresponding results with the gain scheduled H.,
controller K are shown in Fig. 9(a) and (b), respectively.

Figs. 8(a) and 9(a) show the vertical rotor displacement with
the variable rotating speed, and Figs. 8(b) and 9(b) show the
horizontal rotor displacement. From these simulation results,
it can be seen that even if the rotational speed of the rotor
varies, the unbalance vibration of the rotor is eliminated by
the proposed gain scheduled H, robust controllers.

VI. EXPERIMENTAL RESULTS

We have carried out experiments using the experimental
machine shown in Fig. 1. In order to evaluate the practical
effect of this proposed approach, the experimental tests were
run within the limits of the rotational speed from 1000 to
1600 r/min (see Table II).

The designed continuous-time controllers, K13gg and gain
scheduled H,, controller are discretized via the well-known
Tustin transform at the sampling rates of 252 and 415 pus,
respectively.

-5
<x 10
E 4 .
= 3t p
e 2 1
g I
S0
S
< -2
B3 ]
24t 4
B . .
0 25 50 75 100
TIME [s]
1200 1250 1300 1350 1400
ROTATIONAL SPEED [rpm]
Vertical case
(a)
-5
5% 10
E 4
o
& 3
= 2
Z
S0
SIS §
2o ]
= -3f
a4l
i . . .
0 25 50 75 100
TIME [s]
1200 1400

1250 1300 1350
ROTATIONAL SPEED [rpm]
Horizontal case
(®)

Fig. 9. Displacement versus rotational speed with the gain scheduled Hoo
controller. (a) Vertical case. (b) Horizontal case.

The controller Ki300 is a linear invariant dynamical con-
troller, hence the computing burden for real-time calculation
of control input is only matrix multiplication and addition.

On the other hand, for the implementation of the gain
scheduled H, controller K(®), we have to renew K(®)
every sampling period by using (24). After this has been
obtained, the control input u is calculated; it takes longer for
the implementation of K (®).

All through the experiments, a small weight (20 g) is
attached at the left side of the rotor in Fig. 1 to increase the
residual unbalance.

We have measured the orbits of the center of the rotor
for a period of 0.5 s under several conditions. Fig. 10(a)—(c)
shows the results with K309, and Fig. 10(d)—(f) shows the
results with gain scheduled H, controller, at 1100, 1300, and
1500 r/min, respectively. Comparing the gain scheduled H,,
controller K with K300, the results with gain scheduled H,
controller K indicate better performance than those with K300
in the elimination of the unbalance vibration, except at 1300
r/min.

However, it is well known that direct switching and inter-
polation between the controllers does not capture the dynamic
effects and may lead to instability, even if the controllers
can stabilize the closed-loop system for each frozen value in
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the parameter space. This is especially true if the scheduled
parameter changes rapidly.

By the numerical simulation, we have confirmed that the
closed-loop system is stable when the rotational speed changes
at the rate of 2 r/min/s or less (see Figs. 8 and 9). If the
rotational speed changes more than 2 r/min/s, the system
becomes unstable.

While the rotor speed should be-able to vary, for many
applications it does not need to vary quickly. For this rotor,
limited power and the safety of the induction motor dictate
that the rotational speed can not be changed rapidly.

From a theoretical point of view, gain scheduled H,
controller should completely attenuate the unbalance vibration
even if the rotational speed of the rotor varies. However, this
level of performance has not been achieved experimentally.
This performance deterioration may be due to the measurement
precision of the rotating speed. Gain scheduled H, controller
very strongly relies on the accuracy of the rotational speed.
Since the notch in the sensitivity function is very narrow,
error in the measurement of rotational speed may significantly
deteriorate performance.

Further investigation and experiments examining the effects
of rotational speed and the scheduled parameter’s changing
rate will be made in the future.

VII. CONCLUSION

In this paper, we proposed a gain scheduled H, robust
control scheme with free parameters for the elimination of
unbalance vibration in a magnetic bearing supported rotor. We
treated the changing unbalance vibration caused by varying
rotational speed as a known frequency-varying disturbance,
and adjusted the controller gain according to the rotational
speed of the rotor using the free parameter ® of the H
controller. The obtained controller K has high gain at the
operating frequency.

First, the dynamics of the AMB system was considered and
a nominal mathematical model for the system was derived.
Next, the conditions for the existence of controllers were
derived, and we designed the gain scheduled H, robust con-
trollers using LSDP, which rejected the sinusoidal disturbance
of the varying rotor speed.

Finally, simulations and experimental results showed the
effectiveness of this proposed method.

APPENDIX
* Definition A: “H ., problem with boundary constraints.”
Find the K(s) satisfying

(s1) K(s) stabilizes F;(P,0)
(s2) NPl < &7t i=1y
(83) LP.,(jw)ll =T

where P,,, = Fr(P, K).
* Definition B: “Basic constraints”

Lp = P(jw), Vp:= Pps(jw)Pu(jw) (36)

where Pj5(s)Pia(s) = 0.
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* Definition C: “Extended constraints”

X L R Il
L::{f}, \p::{g } (37)

where [, and U are row full rank.

Theorem A: H,, problem with boundary constraints
{L,II, ¥} is solvable, iff the following three conditions hold:

a) The H. problem is solvable.
b) Rank [7 %] = rank [%7].
¢) LL* >~2U(IT*11)~ 10
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