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Theoretical Proposal for a Unidirectional
Optical Amplifier

Minoru Yamada,Member, IEEE

Abstract—The possibility of achieving a unidirectional optical
amplifier is theoretically predicted with a model in the vacuum
environment. The operation of this amplifier is based on the
transfer of the kinetic energy of an electron beam to an optical
one where both are propagating in the same direction. The optical
beam propagates in a dielectric waveguide where it partly pen-
etrates into the vacuum in the form of an evanescent wave. The
electron beam is emitted from an electron gun and propagates
along the surface of the dielectric waveguide, exciting the optical
beam. The propagation speed of the optical beam is slowed down
with the aid of the dielectric waveguide and is made to coincide
with that of the electron beam. Quantum mechanical analysis of
the interaction between the optical beam and the electron beam is
given, based on the density matrix formalism. At the wavelength
of 0.5 �m, the gain coefficient is calculated to be about 12 cm�1

under the excitation voltage of 64 kV and the electron beam
current of several microamperes.

Index Terms—Dielectric waveguides, electron beams, optical
amplifiers, traveling-wave amplifiers, traveling-wave tube.

I. INTRODUCTION

H ISTORICAL developments in electronics are mostly
caused by inventions of new active devices such as

the vacuum tube, the transistor, and the integrated circuit.
Fundamental features of these active devices are addressed
by both their amplification and unidirectional properties. The
former property not only gives amplification of a weak signal
but also induces many other functions such as oscillation,
modulation, detection, and switching. The latter property is
essential in the cascade connection of these devices to perform
complicated functions. The word unidirectional used in this
paper indicates the characteristic of a signal to propagate in
the forward direction but not in the counter direction.

Conventional vacuum tubes and transistors have the unidi-
rectional property based on carrier transportation phenomena.
Operational speeds of these devices are determined by the
transport time of the carriers and are limited to frequencies
below 10 Hz. In these devices, the length of the interaction
region between the signal and the carrier is required to be
much shorter than the signal wavelength.

The most popular unidirectional active device realized at
shorter wavelengths is the traveling wave tube [1]. The free-
electron laser [2], [3] and the Cherenkov maser (or laser)
[4]–[6], which have been developed for generation of high-
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power electromagnetic (EM) waves at frequencies above mi-
crowaves, also exhibit unidirectional amplification. In these
devices, the kinetic energy of the emitted electron beam is
utilized. Conditions for obtaining amplification of an EM wave
from an electron beam are the following.

1) Energy must be conserved between the electron motion
and the EM wave.

2) Momentum must be conserved between the electron
motion and the EM wave. That is, the phase velocity
of the EM wave should be the same as the velocity of
the electron beam.

3) The electric polarization of the EM wave must have a
component in the direction of the electron motion.

The traveling wave tube utilizes a helix waveguide to
reduce the velocity of the EM wave as well as to give a
polarization component along the electron beam [1]. Since the
fabrication technology of the helix waveguide is limited to
submillimeter size, traveling wave tubes cannot be used at
optical frequencies.

In the case of the free-electron laser, electrons are accel-
erated to energies higher than typically 10 MeV to approach
optical velocity and are forced to undertake periodic vibrations
in the transverse direction with the help of a periodic magnetic
field called the wiggler field [3]. Although the free-electron
laser is able to operate at shorter wavelengths than the optical
ones, this device may not be suitable for application in the
field of electronics, because it requires high voltages and a
strong magnetic field to generate high-power EM waves.

The Cherenkov maser utilizes a dielectric wall in a cylin-
drical waveguide to reduce the velocity of the EM waves
[5], [6]. However, this device may not be suitable for direct
applications in the field of electronics, because investigations
of the device have been performed at voltages larger than
several hundred volts to generate high-power EM waves at
wavelengths longer than 100m.

Other ideas have also been proposed for achieving unidi-
rectional optical amplifiers, but these ideas have not yet been
realized [7]–[9].

The amplification mechanism of the proposed amplifier also
utilizes the kinetic energy of the electron beam and is similar
to those in the traveling wave tubes and the Cherenkov masers.
The velocity of the optical beam is effectively reduced and a
polarization component along the electron beam is generated.
However, the remarkable difference between our amplifier and
the traveling wave tube and the Cherenkov maser is the usage
of the dielectric slab waveguide instead of the helix or the
dielectric cylindrical waveguide which makes it possible to
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Fig. 1. Structure of a unidirectional optical amplifier.

fabricate devices in the nanometer size range. The electron
beam is concentrated at the surface of the dielectric slab
waveguide by the applied electric and not magnetic field.

Another feature of this paper is that the theoretical anal-
ysis is given in a quantum mechanical manner to provide a
direct insight into both the amplification mechanism and the
concept of the electron wave, which has not been given in the
theoretical analyses of traveling wave tubes and Cherenkov
masers.

Variation of the optical field is formulated in Section II
based on classical field equations. Dynamics of the electron
are formulated with the density matrix equation to examine the
quantum statistical properties of the electron wave in Section
III. Operating conditions for a given model are determined
in Section IV. Numerical calculations of the amplifier gain
are given in Section V. The gain coefficient based on the
quantum mechanical treatment is compared in Section VI with
that obtained in classical mechanics. Conclusions are given in
Section VII.

II. EQUATION OF THE OPTICAL FIELD

The structure of the proposed unidirectional optical ampli-
fier is illustrated in Fig. 1. The device consists of a dielectric
optical waveguide, an electron gun, and a pair of parallel
electrodes, all in a vacuum. The optical beam propagates
through the dielectric waveguide and partly penetrates the
vacuum region in the form of an evanescent wave. The electron
beam is emitted from the electron gun with an excitation
voltage of and propagates along the surface of the dielectric
waveguide. An external dc voltage is applied to the parallel
electrodes to concentrate the electron beam on the surface of
the waveguide. Then, the optical beam can be amplified by
receiving energy from the electron beam.

Variations of the vector potential of the optical field are
given in terms of the current density under the Lorentz
condition as

(1)

The current density is given in terms of velocity of the
electron, charge unit electron density electron mass
and the vector potential where

(2)

and and should be evaluated in a quantum mechanical
manner, as will be shown later.

We assume that the vector potential consists of forward and
backward components, the amplitudes of which are denoted
by and in the form of

(3)

where is the transverse field distribution function
characterized by

(4)

and normalization in the form of

(5)

Variations of amplitudes and are assumed to be
slower than those of the optical phase . Substitu-
tion of (3) into (1) and multiplication by
gives

(6)

Variables related to the electron charge in the above equation
should be substituted as expectation values obtained by the
quantum mechanical treatment.

Multiplication of the electron density and another quan-
tum mechanical operator or a spatially varying functionis
given by taking the trace together with the density matrix

[10], [11]

(7)

where shows the total electron density covering all possible
energy levels, denotes an energy level, and stands
for the electron wave function given by

(8)

where is the electron wavenumber, is the fluctuating
component of the phase, and is the volume of the electron
given by spreading thickness along width along
(cross-sectional area ), and length as

(9)

Here, is the length of the interaction region in Fig. 1.
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Spatial integration in the transverse cross section changes
(6) to

(10)

where shows the two-dimensional integration over the
cross-sectional area of the electron beam.

The trace operation in this model is done only for excited
energy levels of the electron beam. Therefore, the trace of the
density matrix is not unity, .

III. EQUATION OF THE DENSITY MATRIX

The dynamic motion of the electrons is expressed by the
next equation of the density matrix

(11)

The Hamiltonian includes the interaction between the
optical field and the electrons

(12)

where is the principal Hamiltonian giving an eigen energy
with an eigen state of an electron in the interaction

region

(13)

and in (11) are the thermal equilibrium distribution
functions of the electron, the operator giving the electron re-
laxation, and the operator giving the electron flow, respectively
[11]. These functions and operators are assumed to have only
diagonal elements for the energy eigen stateor

(14)

(15)

(16)

The electron wave function was defined in (8). When the
phase fluctuations are not large the momentum
operator has only diagonal elements in the form of

(17)

The remarkable feature of this analysis is evaluation of the
classical function as an operator in quantum mechanical
calculations because both and the electron wave function

are spatially varying functions. The following notations
are introduced to indicate the relation between the optical field
distribution and the electron wave function:

(18)

(19)

(20)

(21)

where the energy level should differ from because .

The off-diagonal elements of the vector potential are
written as

(22)
and

(23)

while its diagonal elements should vanish

(24)

The combined matrix elements in the interaction terms of (11)
are

(25)

and

(26)

Equations for the diagonal and the off-diagonal elements of
the density matrix are then given by

(27)

(28)

where
(29)

(30)

These equations are quite similar in form to those in semicon-
ductor lasers [11].

Assuming that and very slow variations of the
diagonal elements and the off-diagonal elements of
the density matrix are obtained as

(31)
and

(32)

Meanwhile, the value of in the first term on the
right-hand side of (10) becomes

(33)

Since is given as a complex function, the first term on
the right-hand side of (10) is complex, while the second term
is purely imaginary. Then, variations of the carried power are
expressed as

(34)
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with the gain coefficient given by

(35)

The backward field component is already dropped in
(34), because the term should be 0 when is non
zero. The condition of keeping the value of the term
corresponds to the wavenumber selection or the momentum
conservation rule.

Gain is realized when the optical frequencycoincides with
the energy difference, . This relation
expresses the energy conservation rule.

Variations of the diagonal elements of the density matrix
become

(36)

A similar equation for is also obtained.

IV. OPERATING CONDITIONS

It is assumed, in this section, that the electrons propagate
along and the wavenumber components alongand
directions are negligibly small, such that

(37)

where is the absolute value of the wavenumber. Then
only the component of the optical field can contribute to
amplification. The component of becomes

(38)

where . The wavenumber selection rule
is represented by this function with , that is,

(39)

Now is assigned as the energy level of the incident electron
beam with an energy of

(40)

corresponding to the electron velocity . Then,
the current density of the electron beam is given by

(41)

We need to take other energy levelsand as final levels in
the upper and the lower sides to account for optical absorption
and emission, respectively, as shown in Fig. 2. Initial settings
of these levels are . The electron can undergo

Fig. 2. Energy diagram of the electron transition. The electron can transit
from upper levelb to lower levela when the energy conservation rule of
Eb�Ea = �h! and the wavenumber selection rule ofkb�ka = � are obeyed,
resulting in optical amplification. However, another transition from levelb to
upper levelc is also possible as optical absorption. A large interaction length
` and precise adjustment of the exciting voltageVb is required to tune to the
optical amplification.

a transition from level to the lower level when the energy
conservation rule and the wavenumber selection
rule are obeyed, resulting in optical amplification.
On the other hand, another transition from levelto the
upper level is also possible, which corresponds to optical
absorption.

If electron scattering is small enough, the relaxation time
could be counted as the time taken in passing through the

interaction length as

(42)

Based on the above assumptions and notations, the gain
of the optical beam is simply rewritten as

(43)

where is the effective refractive index which indicates
slowing down of the optical beam in the form of

(44)

where is the optical wavelength, in (43) is the coupling
coefficient between the optical field and the electron beam,
defined as

(45)

with and representing its components alongand
directions, respectively. is a dispersion function determining
the difference between the optical emission and the
optical absorption as

(46)
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Fig. 3. Calculated example of the optical field distribution. Three-layer
structure of the waveguide withn1 = 2:8; n2 = 3:5; and n3 = 1:4 is
assumed. E.B. is the region where the electron beam propagates, whose range
is assumed ash=� = 0:1. Thicknesses of the layers are examined to give the
maximum value of�x for the Ez component of TM mode under assumed
setting of the refractive indexne� � 2:0. The maximum value of�x = 0:13
was obtained.

In achieving optical amplification, a long interaction length
and precise adjustment of the exciting voltageare required.

The accelerating voltage and the electron velocity are
determined by the condition that the value inside the brackets
in (46) becomes zero such that

(47)

and

(48)

Equations (47) and (48) are obtained when which
does not give the detailed difference between optical emission
and absorption. An exact calculation of (46) is necessary in
determination of the dispersion relations of both the emission
and the absorption, as will be shown in the next section.

V. NUMERICAL EXAMPLE

The dielectric waveguide is assumed to consist of a three-
layer structure with refractive indices
and . The optical field distribution is analyzed by
the conventional F-matrix method. The spreading range of
the electron beam is indicated by E.B. and is assumed to be

in this example, where is the spreading thickness
of the electron beam along. Thicknesses of the waveguide
layers are adjusted to get the maximum value of the coupling
coefficient for the component of the TM mode under an
assumed setting of the refractive index . Calculated
field distributions and are shown in Fig. 3. The region
denoted by (0) is vacuum space, while regions denoted by
(1)–(3) are made of the dielectric materials. The resulting
thicknesses of the layers are and

. The coupling coefficient is .
The voltage applied to the parallel electrodes is deter-

mined to confine the electron beam in the narrow region of
the E.B. in Fig. 3. The electrons may have the kinetic energy

Fig. 4. Variation of the dispersion function with the excitation voltage. State
of the optical absorption and the optical emission varies sensitively withVb
when the interacting length̀ is long enough.

for transverse motion along where is the cathode
temperature in the electron gun. Then, the potential should be
larger than the kinetic energy at the boundary .
The kinetic energy is eV at K. When
the thickness of the E.B. region and the gap distance
of the parallel electrodes are assumed to be nm with

m and m respectively, V
is required.

An example of the calculated dispersion function is
shown in Fig. 4 against the accelerating voltageat

m. As can be seen, the optical emission and the absorption
are exchanged if the acceleration voltage is varied by only a
few volts around its mean value of 63 954 V. A rather long
interaction length of cm is required to obtain .
However, much longer distances are not suitable because
is required to be set very accurately.

By supposing m mm,
and A/m the gain coeffi-

cient becomes cm . This value is sufficiently large,
giving the amplification factor of

. The emission current is A when
the beam width along is m.

VI. COMPARISON WITH CLASSICAL TREATMENT

Amplification of the EM wave by the electron beam has
been also analyzed by the classical treatment of coupled
mode theory [7]. Two types offast and slow electron beams
are introduced with corresponding plasma frequencies of the
electron motion. Both amplification and absorption are derived
in terms of the dispersion relation of the EM wave on the
plasma frequencies. The introduction of the fast and the slow
electron beams may correspond to the energy levelsand

for optical emission and to the levelsand for optical
absorption.

One remarkable difference between the classical treatment
and the quantum treatment is that the latter includes the
Planck’s constant while the former does not. In this regard,
(43) and (46) are rewritten to removeunder the condition
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. The first variable in (46) is rewritten as

(49)

Here, we put

(50)

The square value of the function is also approximated for
small variations of as

(51)

The other function with a variable of
is similarly

approximated. Then, the part including in the gain
coefficient expressed by (43) becomes

(52)

where is counted to be the propagation time defined in (42),
and is the dispersion function obtained by Yariv and
Shih as [7]

(53)

Then, the gain coefficient reduces to

(54)

The gain derived by Yariv and Shih in [7] corresponds to
the term . Trivial differences between their equation and
our results originated from parameters of different geometrical
waveguides and the fact that they took into account relativistic
effects.

Our density matrix formalism is an analytical method which
includes quantum statistical properties and is advantageous to
the analysis based on classical mechanics, as clarified in the
following. Since the energy levels contributing to amplification
are explicitly represented, we can choose suitable materials
to fabricate the device. The analysis is applicable to the
case where is comparable to such as the electron
emission in a solid material. Effects of electron scattering can
be investigated by returning to the original equation of the
gain coefficient in (35) from (43) without the assumption of
(42). Saturation and other nonlinear effects can be analyzed by
applying the perturbation expansion to the dynamic equation
of the density matrix of (11) similar to what has been done
in the analysis of semiconductor lasers [11]. The amplifier
noise can be also evaluated by adding quantum mechanical
fluctuations to (11).

Detailed analysis of the operational characteristics men-
tioned above are expected after experimental realization of
the proposed amplifier.

VII. CONCLUSIONS

The possibility of achieving a unidirectional optical ampli-
fier was discussed. The density matrix formalism was applied
to analyze the interaction between the electron beam and the
optical field in a quantum mechanical manner. The amplifi-
cation mechanism was shown to be the transfer of energy
from the electron beam to the optical field, conserving both
the energy and the momentum. The condition for achieving
this amplification is to increase the momentum of the optical
field, that is, to reduce the phase velocity. Utilization of the
evanescent wave propagating along the dielectric waveguide
was proposed in reduction of the phase velocity. Sufficient am-
plification of the optical field was confirmed through numerical
calculations.
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