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ABSTRACT s,(n)
This paper proposes double-talk resistant echo canceller with Far_en?: [[]
double filters, one for echo-path estimation and one for echo Speech o
cancellation. An adaptive step-size algorithm based on the AF Echo
cross-correlation between the echo replica and the near-end ri(n)
speech is used for the echo-path identification. The filter co- e(n) r(n) 4.(n)
efficients are copied from the estimation filter to the cancel- D] @+ 2
lation filter only when the cross-correlation is small enough. N;;ég;]d

Computer simulation results show that the proposed algo-
rithm successfully reduces echoes in a double-talk period.
The tracking capability of the proposed algorithm for echo

path changes is almost comparable to that of a previouslynear-end room. The AEC suppress echoes by subtracting
proposed double-filter algorithm with fast transversal filter. echo replicai; (n) from the mixture of the eche, (n) and
the near-end talker speegf(n).
1. INTRODUCTION Assuming anV-tap FIR adaptive filter, the echo replica

71(n) is calculated by
Acoustic echo cancellers (AEC's) are used to reduce echoes

which disturb comfortable conversation [1]. In AEC, adap- #1(n) = w’ (n)x(n). (1)
tation in a double-talk period is an important problem[2],

[3], [4]. As a fast convergence and stable AEC, combined w(n) is an N-th order coefficient vectot(n) is an input
fast adaptive filter (CFAF) algorithm, which uses fast transvessignal vector consists of; (n) - - -s1(n — N + 1), w” (n)
sal filter (FTS) and normalized least mean squares (NLMS)[5]enotes the transpose of the veotofn). The error signal
has been proposed [3], [4]. Though CFAF successfully re- e(n), which is the AEC output, is generated by

duce echoes in a double-talk period, tracking performance

to an echo-path change within a double-talk period is not e(n) =ri(n) + s2(n) — 1(n). &)
enough.

Tr?is paper proposes double-talk resistant AEC with dou- ASSUming a normalized least mean square (NLMS)[5] algo-
ble filters, one for echo-path estimation and one for echo fithm, the filter coefficient vectow (n) is updated by
cancellation. An adaptive step-size algorithm based on the
cross-correlation between the echo replica and the near-end w(n+1) =w(n) + — )
speech is used for the echo-path identification. Section 2 xT (n)x(n)
describes the influence of the cross-correlation on the adap- . . .

; : S . p is a constant known as a step-size, which controls the
tation, followed by a cross-correlation estimation algorithm. adaptation speed and the accuracy
An AEC with double filters is proposed, and its performance )

is shown by computer simulations using real speech signals INNLMS, the filter coefficients are so updated as to min-
y p 9 P 9 imize the mean squared errBfe?(n)]. In double-talk situ-

ations,E[e?(n)] becomes

Fig. 1. Teleconferencing using AEC

pe(n)x(n)

®3)

2. DOUBLE-TALK INECHO CANCELLATION

U - Ble*(n)] = E(ri(n) - 71(n))*]
A teleconferencing using an AEC shown in Fig. 1, the echo oF R
r1(n) is generated by propagation of the far-end speech sig- +2E[(r1(n) — 71(n))s2(n)]
nal s; (n) from the loudspeaker to the microphone in the +E[s%(n)]. 4)
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In (4), the 3rd term of the right-handsideis a constanbe-
causdt is independenof thefilter characteristicsThe 2nd
termwill bezeroif 1 (n) — 71 (n) ands; (n) have nocross-
correlation.In this caseminimizing E[e?(n)] is equivalent
to minimizing the 1stterm. Thusthe adaptve filter canes-
timatetheechopath.

Ontheotherhand the2ndtermwill notbezeroif r1(n)—
71(n) andsy(n) are cross-correlatedUsually, the far-end
speeclr, (n) andthenearendspeects;(n) arestatistically
independent.However, a large step-sizemight resultin a
strongcross-correlatiorbecausef a short-termaveraging
of suchterms.

Minimizing E[e?(n)] in suchasituationmight causea
poor estimateof the echopath. Therefore adaptatiorcon-
trol basedon the crosscorrelationbetweenthe nearend
speectandthefar-endspeechs necessary

3. ESTIMATION OF CROSS-CORRELATION

3.1. Approximation

In actualapplication,it is impossibleto calculatethe cross-

correlationbetweerthenearendspeectandthefar-endspeech.

Therefore,it should be estimatedusing available signals.
The cross-correlatiortan be approximateddy using «(n)
andg(n) definedoy

Eff1(n)(r1(n) + s2(n))]
Elfi(n)ri(n)] + E[f1(n)sa(n)] - (5)

B(n) = E[Fi(n)). (6)

a(n) =

After the convergenceof the adaptve filter, we canassume

E[Ff(n)] = E[f(n)ri(n)]. (7)

In this case,the differencebetweena(n) and g(n), say
¥(n), leadsusto

v(n) = a(n)—pB(n)

= E[f“l('n)rl

—E[#{(n)]

~ E[F1(n)s2(n)]. (8)

Thuswe canestimateghecross-correlatiobetweertheecho

replicar,(n) andthe nearend speechs,(n). The cross-
correlationnormalizedby the power of the far-endspeech

81(71),

I(n) = E[L”(L)] ©)

will beusedto adaptatiorcontrol.
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3.2. Accurate Estimation and Fast Tracking by Short-
Term and Long-Term Aver ages

In the estimationof the cross-correlationime-aseragingis
usedinsteadof the ensembleaverage. Thuswe have trade-
off betweenthe accurag andthe trackingspeed.To over
comesuchtrade-of, ashort-termandalong-termaveraging
arecombined.

By a lst-orderleaky integrator the estimationby the
short-termaverage,I'; (r), is calculatedby the following
equations.

a(n) = da(n-1)
+ (L=461)r1(n)(ri(n) + s2(n))  (10)
Bln) = &pf(n—1)+(1-6)it(n) (11)
st(n)  (12)

0s,(n) = 8105, (n — 1% + /gl — 1)

Ii(n) = (13)

51 (
41 is aconstanwhich satisfiesl > d; > 0. Thelong-term
averageis calculatedby

whereanotherconstants which satisfiesl > d; > d; > 0
is used.

In the begginning of the double-talkperiods,the cross-
correlationrapidly grows. To track such change,T';(n)
is replacedby T'y(n) when|T'y(n)| > |Ts(n)|. After the
endof the double-talkperiods,I's(n) might keepa larger
value becauseof the long time-constant, of the integra-
tor. Largerestimatecauseslower convergence.Therefore,
|T'2(n)| is replacedoy the maximumvalueof |T'; (n)| in the
pastT; samplesf |T'y(n)| < |T'2(n)| is satisfiedn 77 sam-
ples.

Figure 2 demonstrateshe estimationby the proposed
method. Fasttrackingandstableestimatecanbe achiered
by the combinationof the short-termand long-termaver-
ages.

4. AEC USING DOUBLE FILTERS

4.1. Structure

Figure3 depictsthestructureof the proposeddAEC. Two fil-
ters,AF1 andAF2, areused.Thefilter coeficientsfor AF2
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Fig. 3. AEC usingdoubilefilters

areupdatedby anadaptie step-sizeNLMS algorithm. The
step-sizeof AF2is controlledbasednthecross-correlation
I'y(n). Thefilter coeficientsfor AF1 is transferredfrom
AF2. Eitherthe AF1 outpute; (n) or the AF2 outputes(n)
is usedasthe AEC output.

4.2. Adaptation Control Based on Cross Correlation

The step-sizeu(n) for AF2 is selectedfrom up andpr,
where

1> pg > pr, > 0. (15)

Thelargerstep-size. is selectedvhenthecross-correlation
I's(n) issmallerthanthethreshold, . Thecoeficienttrans-
feris carriedoutwhenboth

[y(n) < 63 (16)
| Toml
E ; si(n —i) > 03 a7

are satisfiedfor T, sampleperiods. 8, is greaterthané,,
thusthe coeficient transferrequiresmore strict condition
thantheadaptation.

4.3. Echo-Path Change Detection

In a double-filterstructure,the performancewould be de-
gradedbetweenan echo-pathchangeand the next coefi-
cienttransfer To overcomethis,anecho-pattthangeletec-
tion is introduced. Both the step-sizeand the AEC output
arecontrolled.

Betweertheecho-patithangeandthecoeficienttrans-
fer, AF2 errores(n) is expectedto be smallerthanAF1 er
ror e (n). In thedouble-talkperiods however, e (n) could
becomesmallerbecausef thenearendspeecttancellation
causedy the cross-correlationSincethe durationof such
nearend speechcancellationis not so long, the averaged
errorpower P;(n) (i = 1, 2) definedby

(18)
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canbe usedto echo-pathchangedetection. The echo-path
changeis detectedvhen

is truefor Tz sampleperiods.

If the echo-pathchangeoccursin single-talk periods,
it is desirableto usea large step-sizeandto usere,(n) as
the AEC outputfor the fasttracking. On the other hand,
the stability is moreimportantwithin double-talkperiods.
Therefore,if an echo-pathchangeis detectedn a single-
talk period,i.e.,

Tz(n) < 64 (20)

04 < 0y (21)

thene,(n) is usedasthe AEC output. The maximumstep-
size

pu(n) = paree = 1 (22)
is used.The AEC returnsto the normaloperationif

If anecho-pathchanges detectedn a double-talkperiod,
the AEC worksasusual.

4.4. Computational Costs

For N-tapFIR filters, theproposedstructureequires) (3N )
operations:N for AF1 and2N for AF2. Even for multi-
processolimplementation,no coeficient copy operations
arenecessaryBy preparingtwo coeficient buffersandby
switchingonefromtwo, copyoperationcanbereplacedy
switchingfrom a buffer to another In multi-processocase,
AF1 andAF2 aredivided into cascadedubsectionsEach
processoperformscomputatiorfor for both AF1 andAF2
which shareghe samecoeficients.

5. COMPUTER SIMULATIONS

Simulationshave beencarriedout to shov the performance
of theproposedAEC. The proposedhlgorithmis compared
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with the NLMS algorithm. As a structurewith multiple fil-
ters, The CFAF algorithmwhich usesFTF and NLMS[3],
[4] is alsocompared.

Figure4 depictsthefar-endspeects; (n) andthe near
endspeechss(n). Recordedeal speechsignalshave been
used. The echopathis a Butteworth low-passfilter whose
cut-off frequeny is 0.4. As AF1 andAF2, 64-tapFIR filters
areused.

Parameterfiave beensoselectedsto achiezethesmall-
estcoeficienterrornorm. Normalizedcoeficienterrornorm
definedby

[h— w(n)[?

D(n) = 10log TE

(24)

is used,whereh is the echo-pathimpulseresponse.For

the proposedalgorithm,d; = 0.9, o = 0.998, T} = 150,

Ty, = 64,175 = 64, T, = 100, T4 = 4000, 75 = 200,

61 =0.1,0, = 0.002, 63 = 0.05,64 = 0.05 uy = 0.3 and
pr. = 0.01 have beenused. For the NLMS, i = 0.03 has
beenchosen.Bothin the proposedandthe NLMS, adapta-
tion is not carriedoutif |x(n)|? < 1000 to avoid thedegra-
dationwhenthe far-endspeechs too small[d. Figure5

demonstratethe performancen double-talkperiods. The
coeficient errorsfor the NLMS, AF1 and AF2 are com-
pared.TheNLMS is unstable.Thoughthe coeficienterror
for AF2 are degradedwithin somecritical periodsshavn

by the circles,AF1 which generateshe AEC outputworks
fine.
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The tracking performanceor echo-pathchangeswith
and without the detectionare comparedby Fig. 6. The
arron shavstheecho-pattchange Thetrackingspeedwith
thedetectionis twice asfastasthatwithout the detection.

Figure7 compareshe performancef theproposedand
CFAF. The proposedalgorithmachiezes 20dB higherper
formancebetween! 50000 and 200000 samples.Thetime-
delaybetweersecondchangeandthetrackingstartfor the
proposedalgorithmis almost1/4 comparedwith that for
CFAF. Notethatthecomputationatostsfor CFAF, O(9N),
is threetimeslargerthanthatfor the proposedalgorithm.

6. CONCLUSION

A double-talkresistanechocancellemwith doublefilters has
beenproposed.The adaptationis controlledby the cross-
correlatiorbetweertheechoreplicaandthenearendspeech.
Computersimulationresultsshav that the proposedalgo-
rithm successfullyreducesechoesn a double-talkperiod.
Thetrackingcapability of the proposedalgorithmfor echo
pathchangess almostcomparableo that of a previously
proposediouble-filteralgorithmwith fasttrans\ersalfilter.
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