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Abstract— Nowadays, the integer prime-factorization problem
finds its application often in modern cryptography. Artificial
Neural Networks (ANNs) have been applied to the integer prime-
factorization problem. A composed number N is applied to the
ANNs, and one of its prime factors p is obtained as the output.
Previously, neural networks dealing with the input and output
data in a decimal format have been proposed. However, accuracy
is not sufficient. In this paper, a neural network following a
binary approach is proposed. The input N as well as the desired
output p were expressed in a binary form. The proposed neural
network is expected to be more stable, i.e. less sensitive to small
errors in the network outputs. Simulations have been performed
and the results are compared with the results reported in the
previous study. The number of required search times for the true
prime number can be well reduced. Furthermore, the probability
density function of the training patterns is investigated and the
need for different data creation and/or selection techniques is
shown.

I. INTRODUCTION

Since ancient times, mathematicians have been fascinated

by the integer prime-factorization problem, also known as

the prime decomposition problem. In mathematics, more

specifically in number theory, the fundamental theorem of

arithmetic [1] states that every positive integer greater than

1 can be written as a product of prime numbers in only one

unique way1. Although it is fairly easy to compute the product

of a number of given primes, it appears to be very difficult

to decompose a given product into its unique primes. Up to

present, there exist no known deterministic or randomized

polynomial-time algorithm for finding the factorization of a

given composed number [2].

Nowadays, the integer factorization problem finds its ap-

plication often in modern cryptography. The computational

security of many cryptographic systems, including the well-

known and widely applied RSA public-key algorithm, re-

lies on the difficulty of factoring large integers. If a fast

method for solving the integer factorization problem would

be found, then several important cryptosystems would become

insecure [2] [3]. Therefore, studies on factoring large integers

are very important for the development of more secure crypto-

systems.

1Ignoring the ordering of the factors

In this paper, first the ability of artificial neural networks

(ANNs) in an attempt to solve the integer factorization prob-

lem is investigated. A binary approach is proposed, expected to

be more stable, i.e. less sensitive to small errors in the network

output compared to the previously used decimal approach.

Simulations have been performed and results are compared

with results reported in the previous independent study. More-

over, instances of larger composites N and consequently larger

primes p are investigated. Finally, the probability density of

the training patterns is examined and the need for a different

way to create or select the training data, in order to solve the

integer factorization problem for numbers composed of larger

primes, is shown.

II. PROBLEM DESCRIPTION

In this paper, artificial neural networks are applied in order

to factor integers N , which are the product of two odd2 primes

p and q, i.e. N = p · q. Throughout the article we will assume

p ≤ q. To factor an integer composed of two prime numbers,

it is enough to find one of the two primes. The other prime

can be obtained though a single division. Here, given N we

focus on obtaining the smaller prime p of the two. In other

words, we try to approximate the mapping N → p.

Although it hasn’t been applied in our research, it

should be mentioned for a later reference that it has been

proved [4] that N can be factored using any multiple of

ϕ(N) = (p − 1)(q − 1).

III. NEURAL NETWORK FOR FACTORIZATION

A. Network Design

The adopted neural networks used in our experiments are

multilayer feed-forward networks with a single hidden layer.

Although we have experimented with various multilayer feed-

forward neural networks, the best results were obtained with

networks having only a single hidden layer.

Networks constructed with neurons having a sinusoidal acti-

vation function in the hidden layer performed better compared

2We have chosen to consider only numbers composed of odd primes for
two reasons. First of all, this allowed us to make a straightforward comparison
with the results reported in the previous study. Secondly, the case where N
is composed of an even prime, resulting in N to be an even number, is trivial
anyway, especially in a binary format.
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to networks composed of neurons having a hyperbolic tangent

activation function in the hidden layer. The network input

and output data was expressed in a binary format. Therefore,

neurons having a hyperbolic tangent activation function were

selected to be used in the output layer.

By setting the binary output target values to ±0.7 instead of

the asymptotic values ±1.0 of the hyperbolic tangent functions

used in the output layer, we removed the tendency of the

network driving its free parameters to infinity [5] and increased

the overall performance.

The Resilient Back-Propagation (RPROP) [6] learning al-

gorithm was used in order to train the different networks. Its

parameters were set to its default, previously proposed values.

Standard Back Propagation (BP) [7] tested with a broad range

of different parameter settings including some of its variants,

e.g. BP with a momentum term and BP operating in batch

mode, showed to be incapable of obtaining any satisfactory

results.

Weight initialization took place on a so-called fan-in

basis [5]. All connection weights and biases were uniformly

distributed inside the range [− 2.4
Fi

, 2.4
Fi

], where Fi is the fan-in,

i.e. the total number of the inputs of the neuron i in the net-

work. This weight initialization method resulted in a slightly

better performance of the network compared to networks

using a random weight initialization method where weights

were randomly initialised within the interval [−0.2, 0.2] or

[−1.0, 1.0].
We have experimented with single neural networks (SNNs)

as well as multi-model neural networks (MNNs), where sev-

eral neural networks do the precision in parallel and the final

decision is made by averaging over all outputs. Here, multi-

model networks are composed of three independent neural

networks and its outputs are decided by taking the average

of the outputs of the three single neural networks.

B. Training and Test Data

This being our first study related to the integer factorization

problem, we dealt with relatively small composed integers,

restricted by an upper bound, and consequently small prime

numbers. This enabled us to generate and use all possible

patterns N → p within the limitation N < M . A certain

percentage of the data set was used for training, while the

remaining part was used to test the performance of the network

after learning had converged.

Both the input N and the desired output p were represented

in a binary form. During evaluation, any output of an output

neuron greater than or equal to zero was considered as an

upper bit, while any output less than zero was considered as

a lower bit.

IV. PERFORMANCE MEASURE

A. Measures for Bit Errors

To evaluate the network performance, two different mea-

sures are considered. The first measure, which we call the

binary complete measure and denoted by β0, indicates the

percentage of the data for which the network produces the

exact desired output. The second measure, which we call the

binary near measure and denoted by βi where i ≥ 1, indicates

the percentage of the data for which at most i bits are incorrect

in the output produced by the network.

We felt the need for this second measure. Whenever the

network is unable to produce the exact desired output for a

certain input, it does not necessary mean that the network

output is useless. If the network output contains just a small

number of bit errors, the exact target value can still be found

within a predetermined number of trial and error procedures. It

is very easy to verify if a certain value is the target value, i.e.

a factor of N , because a division of N by the number should

result in another whole number with no remainders. Therefore,

this second measure, which gives an indication of the distance

to the exact desired output, provides a better understanding of

the real network performance rather than relying on the binary

complete measure alone.

B. Number of Searches for True Prime Number

Assuming k bits are incorrect in a certain output, then by

trying all combinations of “flipping” k bits in the incorrect

output, the exact target output is sure to be found. The number

of existing combinations can be given by:

c(k) =

(

b

k

)

=
b!

k!(b − k)!
(1)

where b is the number of output bits. Therefore, the near binary

measure βi for i ≥ 1 indicates the percentage of data for

which the correct output can be found within Sβi
trial and

error procedures, defined by:

Sβi
=

i
∑

l=1

c(l) (2)

However, it can be known that the least significant bit of p

will always be equal to one, because N is a product of two

odd primes. Also in all our performed experiments the ANNs

always correctly output this least significant bit. Taking this

knowledge into consideration, c(k) given in Eq. (1) can be

replaced by:

c′(k) =

(

b − 1

k

)

=
(b − 1)!

k!(b − 1 − k)!
(3)

Analogously, the maximum number of required trial and error

procedures in order to obtain the correct output for data within

βi can be defined by:

S′

βi
=

i
∑

l=1

c′(l) (4)

V. SIMULATIONS

The neural networks used in our simulations have been

developed using the Java Object-Oriented Neural Engine

(JOONE), an open source neural net framework implemented

in Java [8].
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Results are reported for single neural networks (SNNs) and

multi-modal neural networks (MNNs) consisting of three in-

dependent neural networks. All presented results are averaged

over 10 independent runs for each problem instance.

Tables I and II show the results of networks trained on the

problem instances N < 1000 and N < 10000, respectively.

Here, 66% of the data set was used for training. This allowed

us to make a straightforward comparison with the results

reported in the previous study [9].

TABLE I

RESULTS FOR NETWORKS TRAINED WITH 66% OF THE DATA SET WITH

N = p · q ≤ 1000

Topology Epochs β0 β1 β2 β3 Data

10-6-5
1000

61% 93% 100% 100% Train

SNN 24% 48% 84% 100% Test

10-6-5 3000 68% 95% 100% 100% Train

MNN-3 (3 · 1000) 26% 50% 89% 100% Test

TABLE II

RESULTS FOR NETWORKS TRAINED WITH 66% OF THE DATA SET WITH

N = p · q ≤ 10000

Topology Epochs β0 β1 β2 β3 Data

14-20-7
5000

64% 81% 93% 98% Train

SNN 53% 69% 83% 94% Test

14-20-7 15000 72% 85% 95% 99% Train

MNN-3 (3 · 5000) 62% 73% 85% 94% Test

For larger problem instances where N ≤ 100000, the neural

networks are still able to obtain satisfactory results as shown

in Table III.

TABLE III

RESULTS FOR NETWORKS TRAINED WITH 66% OF THE DATA SET WITH

N = p · q ≤ 100000

Topology Epochs β0 β1 β2 β3 β4 Data

17-50-9
10000

49% 63% 77% 89% 97% Train

SNN 45% 58% 72% 86% 95% Test

17-50-9 30000 55% 66% 79% 90% 97% Train

MNN-3 (3 · 10000) 51% 61% 73% 86% 96% Test

Trying smaller training sets, the networks maintain the

ability to adapt to the training data and generalize on the test

data. This is illustrated in Table IV where neural networks

were trained with 33% of the data set, while the remaining

part was used for validation.

Finally, the results for the problem instance N < 1000000,

where only 10% of the data set was used for training, are

shown in Table V.

TABLE IV

RESULTS FOR NETWORKS TRAINED WITH 33% OF THE DATA SET WITH

N = p · q ≤ 100000

Topology Epochs β0 β1 β2 β3 β4 Data

17-50-9
10000

51% 66% 81% 92% 98% Train

SNN 44% 57% 72% 86% 95% Test

17-50-9 30000 59% 72% 84% 94% 99% Train

MNN-3 (3 · 10000) 52% 62% 74% 86% 95% Test

TABLE V

RESULTS FOR NETWORKS TRAINED WITH 10% OF THE DATA SET WITH

N = p · q ≤ 1000000

Topology Epochs β0 β1 β2 β3 β4 Data

20-100-10
15000

33% 50% 68% 84% 93% Train

SNN 28% 42% 60% 77% 89% Test

20-100-10 45000 41% 54% 71% 85% 94% Train

MNN-3 (3 · 15000) 37% 47% 62% 78% 90% Test

VI. COMPARISON BETWEEN PREVIOUS APPROACH AND

CURRENT STUDY

A. Differences in Approach

Previously Meletiou et al. investigated the ability of ANNs

to factor integers and reported promising results [9]. Here we

address the same problem, however two major differences exist

between their study and ours. The differences occur in the ap-

proach of solving the integer factorization problem by ANNs,

more specifically the differences are in the representation of

the data and the function to approximate.

Meletiou et al. dealt with the data in decimal form, where

the input data N < M was normalized to the space

S = [−1, 1] by splitting it up in M sub-spaces. The network

output was transformed again into an integer number within

the interval [0, M ] using the inverse operation. According to

their paper, this normalization step played a crucial role in

the whole procedure aiming to transform the data in such a

way that the network will find it easier to adapt to. However,

in our opinion this normalization step might lead to problems

as the problem space, i.e. the upper bound M of N starts

to grow. Whenever larger problem instances are considered,

the network output range, restricted to [−1, 1], will be divided

into more, but smaller sub-spaces during the normalization

step. Then, even very small differences in the network output

might lead to values far removed from the desired target output

after denormalization.

This problem is already shortly addressed in their work

by introducing a second performance measure besides the

complete measure. The complete measure, denoted by µ0,

indicates the percentage of the data for which the network is

able to compute the exact target value. The second measure,

called the near measure and denoted by µ±k, indicates the

percentage of the data for which the difference between the
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desired and actual output does not exceed ±k of the real target.

However, introducing this second measure does not solve the

problem and is more an admittance of the existence of the

problem. As long as the network output is within a small

distance from the desired output, this approach is acceptable.

However, we believe that as the problem size will start to grow

it might be very difficult to maintain this approach.

Therefore, in our research we have chosen to deal with the

data in a binary form, expecting that this approach leads to

a more stable network. It is our assumption that by applying

a binary approach, the danger where small differences in the

network output might lead to values far removed from the

desired output is greatly reduced, because the restricted output

[−1.0, 1.0] of the network output neurons is divided into only

two large sub-spaces opposite to M very small sub-spaces as

is in the decimal approach.

From a different point of view, applying ANNs dealing

with the data in a binary form, the problem can be seen as

a classification problem instead of a function approximation

problem, where every output neuron has to decide to which

class the input belongs.

The second difference is related to the function to approx-

imate. Meletiou et al. focused on approximating the mapping

N → ϕ(N), while we tried to approximate the mapping

N → p. Both realizations of these mappings enable one to

factor integers. However, the possible output range for N → p

is much smaller than for N → ϕ(N) when N is bounded by a

certain upper value. Secondly, it takes less work to verify the

validity of the network output and to compute the complete

factorization of N after obtaining p than after obtaining ϕ(N).
One more difference worth to mention is that Meletiou et

al. used two interesting, but hard to use non-straightforward

techniques, the so-called deflection technique [10] and function

“stretching” [11] method, to overcome convergence to local

minima. We were able to obtain satisfactory results without

the use of these kinds of techniques.

B. Comparison of Results

In Tables VI and VII the results reported by Meletiou et

al. are shown for the problem instances N ≤ 1000 and N ≤

10000 respectively, where 66% of the data set was used for

training.

TABLE VI

RESULTS REPORTED BY MELETIOU ET AL. FOR NETWORKS TRAINED

WITH 66% OF THE DATA SET WITH N = p · q ≤ 1000

Topology Epochs µ0 µ±2 µ±5 µ±10 µ±20 Data

1-3-5-1 60000
5% 20% 40% 60% 80% Train

5% 20% 40% 50% 80% Test

1-7-8-1 50000
6% 20% 50% 70% 100% Train

5% 20% 50% 70% 90% Test

Comparing those results with the results reported in Tables

II and II, it can be easily noticed that our proposed neural

TABLE VII

RESULTS REPORTED BY MELETIOU ET AL. FOR NETWORKS TRAINED

WITH 66% OF THE DATA SET WITH N = p · q ≤ 10000

Topology Epochs µ0 µ±2 µ±5 µ±10 µ±20 Data

1-5-5-1 80000
3% 15% 35% 65% 90% Train

5% 20% 40% 60% 90% Test

networks outperform the networks proposed in the study of

Meletiou et al.

First of all, by observing the results for N ≤ 10000, the

values for the (binary) complete measure, that is 64% and 53%

for the training data and the test data respectively in case of

single neural networks are much higher than the percentages

3% and 5% for the training data and test data respectively

reported in the study of Meletiou et al.

Moreover, in an attempt to make a fair comparison of

the overall performance of the two different networks, the

average number of required trial and error procedures in order

to obtain the true prime number for the reported test data

will be taking into consideration. Regarding the test data

for N ≤ 10000, Meletiou et al. reported for the successive

measures µ±0 and µ±2 5% and 20% respectively. This means

that 20%− 5% = 15% of the data is within µ±2 and not

within µ±0. Furthermore, for that 15% of the data the true

prime is sure to be found within 4 trial and error procedures3.

Therefore, we will assume that it takes 2 trial and error

procedures on average. By accumulating the average number

of trial and error procedures for each data set proportional to

their size, it is possible to calculate the average number of trail

and error procedures for all the reported data:

15 · 4

2
+ 20 · 4+10

2
+ 20 · 10+20

2
+ 30 · 20+40

2

90
= 15.2

A similar calculation can be performed on the data

reported for our simulations. Considering the test data

N ≤ 10000, we have reported 53% and 69% for the suc-

cessive binary measures β0 and β1 respectively. Therefore,

69% - 53% = 16% of the test data is within β1 and not within

β0, and for that 16% at most 6 trial and error procedures are

required in order to find the true prime according to Eq. 4.

Therefore we will assume that it takes half the number, i.e.

3 trial and error procedures on average. The average number

of trial and error procedures for all the reported data can be

given by:

16 · 6

2
+ 14 · 6+21

2
+ 11 · 21+41

2

94
= 6.1

Although these average values for the required number of

trial and error procedures have some inaccuracy, because not

all the test data (90% and 94%) is used in the calculations, in

3The data is within µ±2, therefore the correct output can be obtained within
the range of 2 above and 2 below of the actual output resulting in a maximum
of 4 trail and error procedures
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our opinion these values still give a very good understanding

of the performance gain that can be achieved by the newly

proposed method. We believe that these results support the

choice for a binary approach.

Moreover, a positive side effect is that the number of

training epochs in our experiments, 5000 and 15000 for SNNs

and MNNs respectively, is much lower compared to 50000-

80000 training epochs reported in the study of Meletiou et al.,

who also applied among others the RPROP learning algorithm.

VII. PROBABILITY DENSITY

Whenever N is restricted by a certain upper bound, i.e.

N < M and we consider all possible patterns N → p within

that limitation, then the lower the value of the smaller prime

p the higher the density of patterns. The density of patterns

w.r.t. p for N ≤ 10000 is shown in Fig. 1.

Fig. 1. Pattern density for N ≤ 10000

After observing the results of our experiments more in

detail, we noticed that the networks performed very well on

the data patterns having a high density w.r.t. p and that the

network performance gradually decreases as the density of

the (training) patterns w.r.t. p decreases. This can be seen

in Fig. 2, which shows the percentages of bit errors for all

patterns w.r.t. p.

This effect, where the performance of the network is in

accordance with the density of the training data, is a natural

occurrence. However, in some cases, for example in case of

an attack on the RSA cryptosystem where keys are usually

created using hard, i.e. large prime numbers, it is wishful to

obtain a similar or even better performance for N composed

of large prime numbers compared to N composed of smaller

prime numbers.

How to extend the ability of ANNs in order to solve the

integer factorization problem for sparse N composed of larger

primes remains an open problem. More research, such as

research to different training data creation and/or selection

techniques in order to address this problem is required.

Fig. 2. Percentages of bit errors for N ≤ 10000

VIII. CONCLUSIONS

The ability of artificial neural networks for solving the

integer factorization problem has been studied. The integer

factorization problem is a very difficult problem and the

mapping to approximate, be it N → p or N → ϕ(N) is

a function with a very spiky nature. Nevertheless, artificial

neural networks have shown to be able to solve this problem

with some accuracy for relatively small N . In this paper,

the multilayer neural network has been optimized, proposing

a binary expression of the input and the output data and

focusing on p, which is the smaller prime of N , to be obtained

as the network output. Simulation results have demonstrated

usefulness of the proposed approach. Probabilities for the

solutions without any bit error and the number of required

searches to obtain the true prime number are greatly improved

compared to existing methods.

In future research we intent to apply ANNs to larger, more

realistic problem instances and to investigate various other

network models and related techniques. However, at first future

work will be directed towards research addressing the problem

as outlined in Sec. VII where we will search for a solution to

extend the ability of ANNs for solving the integer factorization

problem for sparse N composed of larger prime numbers.
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