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ABSTRACT

In this paper, the geometric learning algorithm
(GLA) is proposed for an elementary perceptron which
includes a single output neuron. The GLA is a modified
version of the affine projection algorithm (APA) for
adaptive filters. The weights update vector is deter-
mined geometrically towards the intersection of the k
hyperplanes which are perpendicular to patterns to be
classified. k is the order of the GLA. In the case of the
APA, the target of the coefficients update is a single
point which corresponds to the best identification of
the unknown system. On the other hand, in the case
of the GLA, the target of the weights update is an area,
in which all the given patterns are classified correctly.
Thus, their convergence conditions are different. In
this paper, the convergence condition of the 1st order
GLA for 2 patterns is theoretically derived. The new
concept “the angle of the solution area” is introduced.
The computer simulation results support that this new
concept is a good estimation of the convergence prop-
erties.

1. Introduction

The perceptron learning is well known as the learning
algorithm for an elementary perceptron. This algo-
rithm has a special merit, that is, if the given pattern
set is linearly separable, the learning always finds the
solution in a finite learning steps. This property is
well known as the perceptron convergence theorem(1].
However, this algorithm has some demerits, that is, the
learning is slow and the solution is not always excellent
for noisy pattern classification.

On the other hand, the affine projection algorithm
(APA) is well known as the generalized algorithm of
the normalized LMS algorithm into the block signal
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processing in the field of adaptive filters[2]. The 2nd
order APA was applied to the bidirectional associative
memory (BAM) learning. The learning is faster than
the perceptron learning(3]. However, the paper(3] is
limited to the slightly special case, that is the BAM,
and the conditions for the learning convergence have
not been investigated in details.

In this paper, the geometric learning algorithm
(GLA) is proposed for an elementary perceptron. The
GLA is a modified version of the APA, that is, the GLA
is applied to an elementary perceptron. The condition
for the convergence within a finite number of learning
steps of the 1st order GLA for 2 patterns is derived
theoretically. After that, the new concept “the angle
of the solution area” is introduced in order to estimate
the convergence property of the given pattern set with
many patterns. The goodness of this new concept is
investigated through computer simulation. In this pa-
per, the word “convergence” means that the learning
process finishes by reaching the solution area.

2. Elementary perceptron

Figure 1 shows an elementary perceptron proposed
by Rosenblatt[4]. The operation can be described by

Eqs.(1) and (2).

N-1
u= E W;T; (1)
=0
_J +1, u>0
y= { -1, u<0 (2)

When 0 is substituted in u of Eq.(1), this means
the hyperplane of which gradient and position are de-
termined by the connection weights w;. Therefore, an
elementary perceptron has the ability to discriminate
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Fig. 1: Elementary perceptron.

the two classes which are divided by this hyperplane in
the pattern space. In Fig.1, the threshold is fixed to 0
by equipping with the input zq which always takes —1
and the weight wy. This type is convenient because
the hyperplane includes the origin point in exchange
for only 1 dimensional enlargement of input vectors.
Therefore, this type of elementary perceptron is con-
sidered in.this paper.

3. Geometric Learning Algorithm

3.1. LMS and Normalized LMS. algorithms

The LMS algorithm is well known in the field of the
adaptive filters. In this algorithm, the filter coefficients
vector h(n) is updated by[5]

h(n+1) = h(n) + pe(n)u(n) (3)
n is time step, e(n) is the error, u(n) is the tap input
vector and u is the step—size parameter. The LMS algo-
rithm doesn’t need to measure the correlation function
nor to calculate the inverse matrix.

The normalized LMS (NLMS) algorithm was pro-
posed independently by Nagumo and Noda[6], Albert
and Gardner[7]. The filter coefficient vector h(n) is
updated by

a
h(n+1) = h(n) + W&(n)u(n) (4)

The NLMS algorithm is convergent in the mean-
square sense if and only if the adaptation constant «
satisfies(8]

0<ax<x?2

(5)

The NLMS algorithm is faster than the LMS
algorithm[9]. The convergence rate is independent of
the input signal.
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3.2. Affine Projection Algorithm (APA)

The APA was proposed for an algorithm of adaptive
filters[2]. Figure 2 shows the 2nd order APA concep-

.tually. h* is the target of the adaptation, that is the

best identification of the unknown system. The update
vector of the filter coefficients is taken to be perpendic-
ular towards the intersection of the hyperplanes. The
hyperplanes are the sets of the coefficients which cor-
respond to the desired outputs at the different time.
Therefore, the hyperplanes are perpendicular to the tap
input vectors u*,u® of the adaptive filter at each time.
In the kth order APA (k—-APA), k hyperplanes are used
in each update. Figure 2 shows the case that the order
is 2 and the dimension of the pattern vectors u!,u? is
3. Therefore, the intersection of the hyperplanes is 1-
dimensional line I. The ratio PQ/PO is constant in the
APA. The NLMS algorithm is equivalent to 1-APA.
The APA converges if and only if the ratio satisfies[2],

PQ
< 2
70 <

0<

(6)

Fig. 2: 2nd-order APA.

3.3. Geometric Learning Algorithm (GLA)

As described in Sec.2, the weight hyperplane of an ele-
mentary perceptron shown in Fig.1 includes the origin
point. Therefore, the intersection of such hyperplanes
also includes the origin point. In this case, the intersec-
tion is “subspace”, and doesn’t have to be said “affine
subspace”.

For this reason, the algorithm, in which the APA
is applied to the learning of an elementary perceptron
for pattern classification is newly called “the geometric
learning algorithm (GLA)”. This name originates from



the fact that the ratio of the update vector(PQ) and
the perpendicular segment from the weight vector to
the intersection(PO) is constant, that is “geometric”.
In this paper, the ratio PQ/PO is called the learning
constant and is denoted A. Application of the k~APA
is called the k—-GLA. Application of k~APA means
that the weights update is done by using k patterns
which need more learning, that is the patterns of which
classes don’t agree with Eqs.(1) and (2). The k-GLA
is described as follows:

begin
w(0) is randomly set;

while ko(> 0) patterns, of which classes don’t
agree with Eqgs.(1) and (2), remain do begin

if ko >k
X =(z!,z?,---,z")T )
else
X = (z},2?,- -, zko)T (8)
end if}
w(n +1) = w(n) - AX+ Xw(n) (9)

end while;
end;

X7 means the Moore-Penrose generalized inverse of
X. In Egs.(7) and(8), ! ~ z* or ! ~ z*° are selected
from the patterns of which classes don’t agree with
Eqgs.(1) and (2). It isn’t defined here how to select the
patterns.

For example, the weight vector is updated as follows
in the 1-GLA:

zTw(n)

w(n+1) =w(n) - A 2|2

T (10)

x is the pattern vector selected from the patterns of
which classes don’t agree with Eqgs.(1) and (2).

Fig. 3: Weights update process in perceptron learning.
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Since the APA is the algorithm of adaptive filters,
the target of the adaptation is a “single point”. On the
contrary, since the GLA is applied to an elementary
perceptron, the target of the learning is an “area” ip
which the elementary perceptron classifies all the pat-
terns correctly. Therefore, the convergence condition
of the GLA is different from that of the APA given
by Eq.(6). The analysis of the condition for the GLA
convergence is the main subject of this paper and is
described in the next section.

Figure 3 shows the perceptron learning. Figure 4
shows the 1-GLA. The circle in Fig.4 means that the
norm of the weight vector is normalized at each learn-
ing step. Since the threshold is zero, the generality
isn’t lost.

Fig. 4: Weights update process in 1-GLA.

4. Theoretical analysis of 1-GLA conver-
-gence

In this section, the convergence condition of the 1-GLA
is derived. The 1-GLA is the application of the 1-APA
to an elementary perceptron. This is the starting point
of the theoretical analysis of the k-GLA.

As described in Sec.1, it had been proved that the
perceptron learning always converges within a finite
number of steps if the given patterns are linearly sep-
arable. On the contrary, the GLA doesn’t always con-
verge within a finite number of steps. Figure 5 shows
the situation, in which the learning process oscillates,
that is, (- A - B — C — D —). If the learning
falls into the oscillation, the weight cannot approach
the solution area any more, that is, the learning do&n.’t
converge. In the following, the condition that the 06?11'
lation occurs is analyzed when 2 patterns’ classification



is learned by the 1-GLA as the most basic case. The
condition that the learning converges in a finite number
of steps regardless of the initial weights is derived. As-
suming that Fig.5 shows the 2—dimensional plane which
includes the origin point and the 2 patterns to be clas-
sified in the N(> 2)-dimensional space, the arguments
in this section are true for the N(> 2) dimensional
patterns. When A < 1, the weight cannot cross the
pattern hyperplane, that is, the weight cannot reach
the solution area. Therefore, the case that A > 1 is
considered in the following.

Fig. 5: Oscillation phenomenon in weights update process.

In Fig5, DA/DE is A. As the two right-angled
triangles AOED, AOEA have the common side OE,
the following condition is obtained.

(A —1)sin(¢ — 6) cot ¢ = sin(¢ — 6) cot(¢ — 6) (11)
By solving this equation for /\,V we get

tan ¢

BCCEDN

1 (12)
6 is determined by 2 patterns to be classified and
their classes. If there exist A and ¢(> 0) satisfying
Eq.(12), the oscillation may occur.
Let consider the right side of Eq.(12) as the function
f of .
__tang

Figure 6 shows the outline of the function f(¢) when
0<6< 3.
From Fig.6, in the case of A > :"—:E—Eig +lori<
8l r s

tan(X—2)

tan(}+§)

+1 (13)

+1, there exists two values (one value if equal
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Fig. 6: Function f of ¢ (0< 6 < %).

sign) of ¢(> 0) satisfying f(¢) = A when 0 < 6§ < 7.
This means two (one) oscillation states exist.

. Though the details are omitted here, it is proved
that one of the two oscillations is stable and the other
is unstable (stable only from one side if equal sign).

Therefore, when A > ::%g—}g—; +lorA < %‘;&é—; +1,
it is possible that the learning falls into the stable oscil-
lation before reaching the solution area. Then, whether
the learning converges or not depends on the initial

weights. *
Figure 6 shows that if %ﬁ‘:—}% +1 > 2 >
4 2

an(X—2 . .
%‘s:—gﬁ—; +1, ¢(> ) satisfying f(¢) = A doesn’t exist.
4
Though the details are also omitted here, investigating
the direction of learning, it is proved that the learning
always converges within a finite number of steps in this
case.

Though the details are also omitted here, it is proved
that the learning always converges within a finite num-
ber of steps when 7 < 6 < m.

From the above consideration, the condition that
the learning converges regardless of the initial weights
is given as follows:

tan(Z + ¢ tan(Z - ¢)
(;_g +1>,\>t—ﬁ+1 (14)
tan(f — 5 an(§ +3)
o fZ2<6<m,
A>1 (15)



5. Convergence property of 1-GLA for
many patterns

5.1. Angle of solution area

In Sec.4, it is proved that the convergence property of
the 1-GLA for 2 patterns is determined by 6 in Fig.5.
That is, the larger 0 is, the wider the range of A for
convergence is, as shown in Eqs.(14) and (15).

Comparing the case of more than 2 patterns (ex-
pressed as “many patterns” in this paper) with the case
of 2 patterns, the learning process until convergence or
oscillation is more complicated. The reasons are that
the shape of the solution area is more complicated and
the order of patterns to be presented is added to the
degrees of freedom.

However, even in the case of many patterns, the
convergence property is considered to be determined by
a certain angle which is unique for the patterns to be
classified. It is a future subject what angle corresponds
to # and how the angle is calculated. In this paper,
the new concept “the angle of the solution areas” is
introduced. This angle is relatively easy to calculate
from the.patterns to be classified. The new concept
includes 6 in the case of 2 patterns.

R

Qy
A‘lli “""Ihlllé A
O

----
< ,
. B
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s~ e
,

Fig. 7: Angle of solution area.

Figure 7 shows the solution area which is determined
by 5 patterns. In this figure, the shaded area means
the solution area. In Fig.7, S and T move on the
circumference of the area. Let (S) be the maximum
value of ZSOT when T circulates around the area with
the fixed S. Then, the angle of the solution area ¥m;n
is defined to be the minimum value of ¥(S) when S
circulates around the area. ¥,,:n can be considered to
be the minimum angle of the solution area viewed from
the origin point.

The way of thinking to calculate the angle of the
solution area 1n,;, about the patterns to be classified
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Fig. 8: Relation between patterns and separating hyperplane.

is described as follows: The hyperplane being perpen-
dicular to the weight vector separates the patterns cor-
rectly if and only if the weight vector is in the solution
area. Figure 8 shows the relation between the patterns
and the separating hyperplane. In this figure, the white
patterns and the black patterns belong to the different
classes. Therefore, the hyperplane separates these two
classes correctly if and only if the weight vector is in the
solution area. 1, is the angle of one black pattern and
the wedge-shaped range between two white patterns.
92 is the angle of one reversed white pattern and the
wedge-shaped range between two white patterns. As
the angle of the solution area %min is the minimum
angle of the solution area viewed from the origin point,
Pmin can be calculated as the minimum angle of the ¥,
and 5 of all the pattern combinations. All the pattern
combinations include the case of black and white inter-
change. In N-dimensional space, the wedge-shaped
range of linear combinations with non—negative coeffi-
cients of 1 pattern, 2 patterns, 3 patterns, --- , N —1
patterns must be considered.

5.2. Computer simulation

The goodness of the angle of the solution area i, as
the estimation of the convergence properties is investi-
gated through computer simulation.

First, 10 pattern sets are generated. Each set is com-
posed of 5 patterns which are 7-dimensional. About
all patterns, the 1st elements are —1.0 and the other
6 elements are random values which are —2.0 ~ +2.0.
Ymin Of each set is calculated by the way described in
Sec.5.1.

Next, the convergence properties of these sets are
investigated with various A. Eq.(14) is the theoreti-
cal condition that the learning must converges regard-
less of the initial weights. Therefore, it is necessary
to investigate the convergence properties using many



different initial weights. For this reason, 100 random
initial weights are used. As there are 5! = 120 orders
for pattern presentation, the learnings of 120 orders
about each initial weights are investigated. That is,
the convergence property about a certain pattern set
and a certain X is judged by 12000 trials. i

Figure 9 shows the theoretical condition and the
simulation results. T'wo solid lines represent the upper
and the lower bounds of the theoretical condition for
the convergence given by Eq.(14). Each vertical line
of “o”and “x"means the convergence properties of a
certain pattern set. “o”means that all the 12000 trials
have converged. “x”means that the 12000 trials include
which has not converged.

XX XX X X
20 X XX X X
x X X
X X X
15
x X X
/\. X X X
x X X
10 X X X
X X X
x X X
5
0

02 04 06 08 1

0, Y, (rad)

Fig. 9: Condition for 1-GLA convergence.

From Fig.9, the results of this simulation are sum-
marized as follows:

o There is the slight difference between the theo-
retical condition and the simulation results. This
fact indicates that the angle of the solution area
Pmin doesn’t determine the convergence property
exactly.

The simulation results agree quite well with the
theoretical condition. This fact indicates that the
angle of the solution area ¥m;n is a good estima-
tion of the convergence property.

6. Conclusion

The geometric learning algorithm (GLA) has been pro-
posed for an elementary perceptron. The condition
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for the convergence about the 1st order GLA for 2
patterns has been theoretically derived. The angle of
the solution area ,;, has been introduced and the
meaning as the estimation of the convergence property

‘has been investigated through computer simulation. It

has been shown that ¥,;, is a good estimation of the
convergence property.
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