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Abstract 

 

The solidification process of undercooled alloy melts has been clarified experimentally in Part I 

of this paper. In this paper, using the experimental evidence, a solidification model linking 

macroscopic heat transfer and microscopic solidification is presented. The model reflects the 

microscopic solidification phenomena occurring until the thermodynamically unstable field shifts 

to equilibrium, consists of three fundamental processes: (1st stage) free growth, (2nd stage) 

crystal fattening with relaxation, and (3rd stage) equilibrium solidification. Based on this model, 

a numerical simulation is carried out for the temperature change, interface movement and solute 

concentration distribution during the solidification of undercooled Bi-Sn melt. Theoretical 

predictions of the temperature changes involving the recalescence, terminal time of the relaxation 

process and microsegregation for the solidified texture agree quantitatively with experimental 

observations.  
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NOMENCLATURE 

 

C : solute concentration, wt% 

cp  : specific heat, J/kgK 

D  : solute diffusivity, m2/s 

f  : solid fraction 

k0  : diffusion coefficient 

LH  : latent heat of fusion, J/kg 

r  : space coordinate in radial direction, m, mm 

T  : temperature, K, ˚C 

t  : time, s 

tter  : terminal time of 2nd stage of solidification, s 

v  : crystal growth velocity, m/s 

z  : space coordinate in z-direction, m, mm 

z1  : position of crystal tip, m, mm 

z2  : terminal position of 1st stage of solidification, m, mm 

α : primary arm spacing, m, µm 

∆T : degree of undercooling, K 

δ  : interfacial thickness, m 

δc  : position of concentration boundary-layer, m 

λ   : thermal conductivity, W/mK 

ρ  : density, kg/m3 

Superscripts 

'  : equilibrium/liquidus 

*  : interface 

Subscripts 

a : adiabatic wall 

e  : eutectic 
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i  : initial 

l, s, m : liquid, solid, mush 
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1.  INTRODUCTION 

 

Solidification in metal and alloy processing produces solid phases which are a regular or dense 

assembly of atoms with the release of latent heat. To advance the solid front at an 

equilibrium/liquidus temperature, the sensible and latent heat should be removed by external 

cooling. During the initial solidification process, however, some undercooling is needed to drive 

the heterogeneous or homogeneous nucleation, and the undercooled metastable state sometimes 

appears as a liquid. This implies that the solidification process must take into account two types 

of heat extraction sources: initially distributed undercooling and external cooling. The initially 

distributed undercooling makes free crystal growth possible and also affects the subsequent 

solidification and heat transfer.  

 

For free crystal growth in the undercooling state, various nonlinear models have been proposed 

since the theoretical work of Ivantsov [1] for pure metals. Typical solidification models for 

binary alloys were proposed by Trivedi et al. [2] and Lipton et al. [3-5]. These theories provide 

the temperature and concentration distributions around the crystal in a steady state, and are 

similar because they rely on a local equilibrium condition at the interface and make an 

assumption for determining the tip shape. Kabayashi [6] developed a numerical simulation using 

a phase-field model; in this simulation, the effects of noise and anisotropy on the dendrite shape 

are qualitatively analyzed. However, many other authors have exclusively considered the free 

growth in a uniform undercooling field. There are only a few works that deal with not only the 

free growth of numerous crystals in a non-uniform undercooling field but also the process after 

the free growth. In order to discuss the microscopic solidification phenomena from the viewpoint 

of controlling the microstructure, it is essential to develop a more realistic solidification model 

which considers the solidification process until the thermodynamically unstable field shifts to 

equilibrium.  
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The authors explain the entire solidification process of undercooled alloy melts by macro- and 

microscopic experimental observations in Part I of this work [7]. In this paper (Part II), the 

theoretical kinetic link between macroscopic heat transfer and microscopic solidification 

behaviors is developed, based on the experimental evidence.  

 

 

2.  SOLIDIFICATION MODEL 

 

As shown in Fig. 1, the heat transfer during solidification consists of the following basic 

phenomena: heat transfer until the undercooling state appears (1), recalescence due to the 

solidification driven by undercooling (2-1), relaxation of the non-equilibrium temperature and 

concentration fields under external cooling (2-2), and heat transfer with the release of latent heat 

over a range of temperatures (3). These macroscopic transport processes are represented in Fig. 1 

in relation to the stages of microscopic solidification, which consists of free growth (1st stage), 

fattening of the crystal (2nd stage) and equilibrium solidification (3rd stage). A numerical 

simulation linking these processes was carried out.  

 

2.1.  Modeling 

 

For the modeling, the physical coordinate systems are shown in Fig. 2(a), (b), which contrast the 

temperature field T and solute concentration field C with the crystal morphology. Here, z is the 

space coordinate in the vertical direction to the cold wall (i.e., the distance from the cold wall), 

and r is the space coordinate in the radial direction of the crystal in the cross section. z’ in the z 

direction is the position at which the field temperature at nucleation crosses the liquidus 

temperature at the initial concentration T’(Ci). Figure 2(a) shows the model for the 

non-equilibrium solidification process (1st and 2nd stages). In the undercooled region formed 

near the cold wall (0 ≤ z ≤ z’), the 1st stage of solidification (free growth) begins. In this stage, 

the crystal grows in the z direction with the temperature increase. Behind this is the 2nd stage of 
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solidification (fattening), in which the crystal fattens with the temperature drop. The solute 

concentration C and temperature T fields in the r direction, formed by the rejection of heat and 

solute from the solid/liquid interface, are shown in the lower two graphs of Fig. 2(a). Here, the 

negative temperature gradient or thermal undercooling, T*-T, is the driving force for the rapid 

solidification during the 1st stage. Although the thermal undercooling would be quickly reduced 

by the discharge of latent heat, the constitutional undercooling, T’- T*, must remain after the 

dissipation of the thermal undercooling because solute diffusivity is much less than thermal 

diffusivity. During the 2nd stage, the constitutional undercooling remaining between crystals may 

be relaxed gradually under the external cooling. Figure 2(b) shows the model for the equilibrium 

solidification process (3rd stage). During the 3rd stage, the solidification may proceed under 

thermodynamic equilibrium conditions, in which the liquid between crystals completely mixes.  

 

To simplify the mathematical manipulation, it is assumed that the mass of the side branches is 

included in the mass of the primary arm of the mass-equivalent interface, instead of in the mass 

of the actual dendritic interface. Furthermore, the following assumptions are made:  

(1) The primary arm spacing is uniform.  

(2) The lowering of the liquidus and solidus temperatures due to the curvature of the crystal 

surface is not considered. 

(3) At the 1st stage, adiabatic crystal growth proceeds so that the temperature distribution of the 

liquid in front of the crystal tips does not change with time. 

(4) Heat transfer due to the external cooling is conducted one-dimensionally in the z direction. 

(5) The mass transfer diffuses one-dimensionally in the r direction, and no back-diffusion in the 

solid is considered.  

(6) The effect of convection is not considered. 

(7) The change of volume during solidification is not considered. 

(8) The thermal properties do not depend on the temperature and solute concentration. The 

thermal properties in the mushy zone are weight-averaged according to the local solid fraction 

and change in the z direction.  
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Assumption (4) is supported by the reasoning that the boundary conditions at the cold wall and 

solidification front are restricted in the z direction, and the arrangement of crystals is very dense. 

Furthermore, assumption (5) is supported by the reasoning that the local equilibrium conditions at 

the interface prevail along the z direction, and the diffusion of solute, whose diffusivity is 

comparatively small, is governed only in the r direction with a small diffusion length.  

 

2.2.  Equations and calculation method 

 

The equations for the basic energy and mass balance of solute species (Eqs. (1), (3), (5)-(8) and 

(14)), and the initial condition (Eq. (2)) and the boundary conditions (Eqs. (4), (9)-(13)) 

corresponding to Fig. 2(a), (b), are represented in Table 1. In this table, subscripts l, m and s 

denote the liquid, mushy and solid regions, and the superscript * denotes the value at the interface. 

Equation (1) is the energy balance equation during the 1st stage. The left side of Eq. (1) 

represents the divergence of the latent heat of solidification. The first and second terms on the 

right side represent the change of enthalpy in the mushy zone due to recalescence and the change 

of the heat capacity due to the phase change, respectively. The location of the crystal tip z1 is 

provided as  

 

z1 = v
t
∫ dt ,  (15) 

 

where v is the velocity of the free growth, determined as a function of the initially distributed 

undercooling by the Lipton, Glicksman and Kurz (LGK) model [3,4]. In practice, a more 

complex treatment is required for the growth velocity close to equilibrium point z’ because the 

LGK model cannot be applied for small undercooling. So, for simplicity, we assume that the 

growth velocity does not change after the fattening extends near the crystal tip. The terminal 

position of the 1st stage, z2, is defined as the location where the existing thermal undercooling 

dissipates in the gap between the crystals, as determined by the following convergence condition:  
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T *−T(α
2

) =10−6.  (16) 

 

Equations (5) and (6) in Table 1 are the mass balance equations in integral form. The first and 

second terms on the left side of Eq. (5) and (6) represent the mass of solute in the solid and the 

mass of solute in the liquid, respectively. The left side represents the mass of solute in the initial 

melt. The 1st stage of solidification is calculated for the mushy zone, which is divided into slab 

elements of width ∆z for the numerical simulation. For the first element, the interfacial 

temperature T*(∆z, t) is calculated by Eq. (1) for an assumed solidification rate ∆f in time 

increment ∆t. If the obtained  ∆f satisfies the mass balance determined in Eq. (5) or (6), the 

calculation may be carried out in succession for the next element, until the existing thermal 

undercooling dissipates completely. In the calculation, the following relationship is used:  

 

δ = α f
2

,  (17) 

 

where δ is the interfacial thickness, α  is the primary arm spacing, and f is the solid fraction. 

Additionally, to solve Eqs. (5) and (6) in Table 1 and (16) above, the temperature and 

concentration profiles within the boundary layer must be known. These profiles in the r direction 

are approximated by the secondary curve as follows:  

 

X(r) = a1r
2 + a2r + a3    (X =T,Cl ) ,  (18) 

a1 = ξ
2(ψ −δ)

, a2 = −2ψa1, a3 = X *−a1δ
2 − a2δ.  

 

In the case of the temperature distribution (X=T),  

 

ξ = ρLH

λ
⋅ dδ

dt
,            (19) 
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 and in the case of the concentration distribution (X=Cl),  

 

ξ = C * (1− k0 )
D

⋅ dδ
dt

,           (20) 

 

where C* is equal to the liquidus concentration C’(T*) because of assumption (2). If the 

boundary layer does not attain the center position between crystals, ψ is the position of the 

boundary layer δT or δC, or else ψ  is the position of half of the primary arm spacing, α /2. The 

boundary layer is expressed as  

 

δX =δ + 2(X *−X i)
ξ

.           (21) 

 

The derivation of the above equations is described in Appendix A. For the concentration in the 

solid Cs, the value at the interface, which is determined by the solidus line, is fixed continually.  

 

At the 2nd stage, the calculation is carried out by coupling the energy equation (Eq. (3)) and the 

mass equation (Eq. (5) or (6)) using Eq. (17). Equation (3) is Fourier’s differential equation, 

which includes a heat generation term due to the solidification. It is solved under the boundary 

condition for uniform heat flux at the cold wall, which is expressed as Eq. (4). Fourier's 

differential equation is calculated by the forward difference method with the conditions of ∆z=0.1 

mm, ∆t=0.0001 s. Moreover, the change in the solid fraction is calculated as satisfying Eq. (5) or 

(6) with the temperature recovery method [8]. The terminal time of the 2nd stage tter is defined as 

the time required for the constitutional undercooling to dissipate in the gap between crystals for 

the entire undercooled region (0 ≤ z ≤ z’), as determined by the following convergence condition:  

 

Cl *−Cl (
α
2

)

Ci

≤10−6.           (22) 
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At the 3rd stage, the system is treated as a simple one-dimensional heat conduction problem, 

which can be solved by coupling the energy equations (Eq. (7) and (8)) and the mass equation 

(Eq. (14)). Equation (9) is the boundary condition at the cold wall, and Eq. (10) is the boundary 

condition at the adiabatic wall. Equations (11) and (12) are the boundary conditions for the 

liquid-mushy interface and mushy-solid interface, respectively, where T’ is the liquidus 

temperature. A slight undercooling which remains at the crystal tips is ignored. Equation (13) 

describes the advance of the eutectic solid.  

 

 

3.  SIMULATION RESULTS 

 

After the microscopic solidification process was linked to the macroscopic transport process, as 

shown in Fig. 1, the numerical simulation was carried out. The results predicted for Sn-30 wt%Bi 

are shown in contrast with the experimental results in Fig. 4 and Fig. 5. In the calculation, the 

initial condition was set with the temperature at the solidification start. Also, we set the crystal 

spacing α=20 µm and heat flux q=-140 kW/m2.  

 

Figure 3 shows the change of the temperature distribution with time. From this, the series of 

thermal behaviors, which move from non-equilibrium conditions to equilibrium conditions, can 

be understood more clearly. In this figure, an initial undercooling state exists, as shown by the 

shaded region. First, the initial undercooling, which has a magnitude of about 17 K at the cold 

wall, collapses due to nucleation, and then the temperature rises due to the release of latent heat 

during the free growth. At each time of 0.35, 1.35, 3.86 s, temperature rises (recalescence) occur 

up to 2.5, 4.5, 6.5 mm, respectively, and this agrees with the experimental result. The magnitude 

of recalescence measured in the experiment appears less than the analytically predicted result. 

This is due to a thermocouple error in the experiment. After the recalescence, the temperature 

descends progressively from the cold wall by external cooling. The analytically predicted result 
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generally agrees with the experimentally measured result, even if the boundary conditions are 

strictly different from the experimental conditions.  

 

Figure 4 shows the movement of the solid/liquid interface corresponding to the temperature field 

described above. A crystal promoted by initially distributed undercooling grows in the z direction. 

Next, fattening of the crystal appears. Also, a eutectic solid appears as the temperature drops 

below the eutectic point. During the free growth, as shown by the darker shaded region, the 

growth velocity decreases away from the cold wall, and the morphology thins down from the root 

to the tip. This response depends on the magnitude of the initial undercooling. Although the 

fattening front of the crystal keeps about a 1-mm difference with the tip of the crystal near the 

cold wall, as shown by the lighter shaded region, the difference shortens progressively away from 

the cold wall. Consequently, the time required for the crystal tip to reach the equilibrium point at 

10.5 mm is 9.12 s, and the terminal time of the relaxation process tter, i.e., the time at which the 

crystal tip starts again, is 9.72 s. This result matches the experimental observations that the free 

growth and fattening of the crystal do not always occur as separate stages in metallic alloy melts.  

 

Figure 5 shows the solute concentration map for the solidified texture. The lines represent the 

solute concentration measured experimentally. The error bars were decided by the spatial 

resolution of the X-ray analyzer. At z=10 mm, a dendritic structure was observed, so the 

concentration along the centerline of the secondary arm is shown by the broken line. The solute 

concentration along the crystal center axis decreases in the undercooled region, and is a constant 

value in the region not undercooled. In the r direction, the solute concentration decreases during 

the process of free growth and increases during the process of fattening of the crystal. Also, the 

eutectic concentration Ce is formed between the crystals. In conclusion, it is shown that the model 

presented is able to describe the microstructure and microsegregation that appears during the 

complicated solidification process accompanied by undercooling.  
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4.  CONCLUSIONS 

 

The solidification process of undercooled alloy melts was studied theoretically, and the following 

conclusions were obtained.  

1. A good model linking macroscopic heat transfer and microscopic solidification has been 

presented. The microscopic model consists of three fundamental solidification processes: (1st 

stage) free growth with recalescence, (2nd stage) fattening of the crystal with the relaxation of 

constitutional undercooling, and (3rd stage) equilibrium solidification.  

2. The relaxation processes of thermodynamically unstable temperature and concentration fields 

were clarified in relation to the solid/liquid interface morphology in the model.  

3. Based on this model, by using the difference method, the temperature change, interface 

movement and microsegregation during solidification of undercooled metals can be calculated.  

4. Theoretical predictions of the temperature changes involved the recalescence, terminal time of 

the relaxation process and final concentration distribution in the solid phase. These predictions 

agree quantitatively with the experimental observations.  

 

 

APPENDIX A. Derivation of the temperature T and concentration Cl profiles in the radial 

direction of a crystal, and the temperature and concentration boundary layers δδδδT, δδδδC 

 

For a transport quantity such as temperature or concentration, its profile X can be approximated 

by the secondary curve  

 

X(r) = a1r
2 + a2r + a3    (X =T,Cl ) .  (A.1) 

 

This satisfies the boundary conditions  

 

at r=δ:  X = X *  (A.2) 
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at r=δ:  dX
dr

= −ξ   (A.3) 

at r= δX:  X = Xi  (A.4) 

at r= δX:  dX
dr

= 0,  (A.5) 

 

where δX is the thermal or concentration boundary layer, δT or δC, and ξ  is the rejection or 

diffusion of heat or solute at the interface, which is expressed as  

 

ξ = ρLH

λ
⋅ dδ

dt
  for the temperature field (X=T),      (A.6) 

ξ = C *(1− k0 )
D

⋅ dδ
dt

  for the concentration field (X=Cl).  (A.7) 

 

The radial direction of a crystal is finite in polycrystal growth. Hence, when interference of the 

boundary layer occurs between neighboring crystals, the following boundary condition is used 

instead of Eqs. (A.4) and (A.5):  

 

at r=α /2:  dX
dr

= 0.  (A.8) 

 

Rearranging Eqs. (A.2), (A.3) and (A.5) (or Eq. (A.8)) by Eq. (A.1) yields  

 
2δ 1 0
δ2 δ 1
2ψ 1 0

 

 

 
  

 

 

 
  

a1

a2

a3

 

 

 
  

 

 

 
  

=
−ξ
X *
0

 

 

 
  

 

 

 
  
,  (A.9) 

 

where ψ is δX or α /2. By solving the above equation, we obtain  
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a1

a2

a3

 

 

 
  

 

 

 
  

=
ξ 2 ψ −δ( ){ }

−2ψa1

X *−a1δ
2 − a2δ

 

 

 
 
 

 

 

 
 
 
.          (A.10) 

 

Also, from Eq. (A.4) 

 

−ξ
2

δX +δ( )+ X* = Xi.  (A.11) 

 

Transforming this,  

 

δX =δ + 2(X *−Xi)
ξ

.  (A.12) 
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Figure Captions 
 

Fig. 1.  Link between the transport process and the solidification process.  

Fig. 2.  Physical coordinate systems: (a) non-equilibrium solidification (1st and 2nd stages); (b) 

equilibrium solidification (3rd stage).  

Fig. 3.  Comparison of the simulation result and experimental data on the time change of the 

temperature distribution for Sn-30wt%Bi.  

Fig. 4.  Movement of the solid/liquid interface for Sn-30wt%Bi.  

Fig. 5.  Solute concentration map of the solidified texture for Sn-30wt%Bi.  

 

 
Table Caption 

 
Table 1 

Equations of the basic energy and mass balance equations of solute species, and initial condition 

and boundary conditions for the non-equilibrium solidification process (1st and 2nd stages) and 

for the equilibrium solidification process (3rd stage).  
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Mass

for z
2
 ≤ z < z

1
 :

(2nd stage)

for z < z
2
 : (ρc

p
)

m
- ρ

l
L

H

∂ f
∂T

m

∂T
m

∂t
= λ

m

∂2T
m

∂z2

- λ
m

∂T
m

∂z
= q

2πρ
s

C
s
r

0

δ(t)

dr + 2πρ
l

C
l
r

δ(t)

δc(t)

dr = πδ
c

2ρ
l
C

i

2πρ
s

C
s
r

0

δ(t)

dr + 2πρ
l

C
l
r

δ(t)

α/2

dr = πα2

4
ρ

l
C

i

as δc < α/2:

else :

(ρc
p
)

m
- ρ

l
L

H

∂ f
∂T

m

∂T
m

∂t
= λ

m

∂2T
m

∂z2

(ρc
p
)

n

∂T
n

∂t
= λ

n

∂2T
n

∂z2

- λ
n

∂T
n

∂z
= q

T
l
= T

m
= T’(C

i
)

T
m

= T
s
= T’(C

e
)

dz
e

dt
= 1

ρ
l
L

H
(1 - f

e
)

λ
s

∂T
s

∂z
- λ

m

∂T
m

∂z

Mass

Energy

(1st stage)

1st and 2nd stages  ( 0 < t < t
ter 

) 3rd stage  ( t
ter

< t 
 
)

Energy

2πρ
s

C
s
r

0

δ(t)

dr + π α2

4
- δ2 ρ

l
C’(T

m
) = πα2

4
ρ

l
C

i

(n = l, s)

at z = 0     (n = m, s)

(1)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(11)

(12)

(13)

(14)

T * = T
i
= T’(C

i
) - ∆T(z) (2)

ρ
l
L

H
∆ f = (ρc

p
)

m
T *(z,t+∆t) - T *(z,t)

+ ∆ f (ρc
p
)

s
- (ρc

p
)

l
T *(z,t+∆t)

at t = 0

at z = 0

at z = z
1
(t)

at z = z
e
(t)

at z = z
e
(t)

- λ
n

∂T
n

∂z
= 0 at z = z

a
     (n = l, m, s) (10)

Table 1




